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Metabolic rate evolves rapidly and in parallel with
the pace of life history

Sonya K. Auer!, Cynthia A. Dick?, Neil B. Metcalfe! & David N. Reznick?

Metabolic rates and life history strategies are both thought to set the “pace of life”, but
whether they evolve in tandem is not well understood. Here, using a common garden
experiment that compares replicate paired populations, we show that Trinidadian guppy
(Poecilia reticulata) populations that evolved a fast-paced life history in high-predation
environments have consistently higher metabolic rates than guppies that evolved a slow-
paced life history in low-predation environments. Furthermore, by transplanting guppies from
high- to low-predation environments, we show that metabolic rate evolves in parallel with the
pace of life history, at a rapid rate, and in the same direction as found for naturally occurring
populations. Together, these multiple lines of inference provide evidence for a tight evolu-
tionary coupling between metabolism and the pace of life history.
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ife history traits differ markedly among populations and

species™2, but tend to fall together along a “slow—fast pace of

life continuum”, even after accounting for differences in
body size. At the slower end of this continuum are organisms that
mature at a later age and larger size, reproduce at slower rates,
and have longer lifespans; organisms that mature early and at a
smaller size, reproduce at a rapid rate, but die young are at the
faster end of the continuum>~. Metabolic rate reflects the ener-
getic cost of living and is also thought to set the pace of life31°,
but whether it evolves alongside the life history is not well
understood. Phenotypic correlations between metabolic rate and
the pace of life history can be positive, nonsignificant, or negative
across populations and species”‘ls. Contrasts between species
that differ qualitatively in their §eneral life history, ie., slow vs
fast, also produce mixed results!®!”. However, comparative stu-
dies thus far typically compare populations and species under
local rather than common garden environmental conditions.
Given that metabolic rates and life history traits are both sensitive
to environmental conditions'®!%, the extent to which these pat-
terns of covariation represent purely phenotypic vs genetic
(evolutionary) changes is presently unclear.

Here we use a combination of field-transplant experiments and
population comparisons under common garden conditions to
examine whether and how metabolic rate evolves alongside the
life history in Trinidadian guppies (Poecilia reticulata). Guppy
populations have diverged in the pace of their life history under
different predation regimes in their native freshwater streams:
populations with a low risk of predation mature at a larger size
and older age, reproduce at slower rates, and invest less in
reproduction relative to populations from high-predation sites?%~
23, The evolution from a faster- to a slower-paced life history as
guppies invaded upstream low-predation reaches has occurred
independently within multiple different drainages across Trinidad
(see refs. 222! and Supplementary Note 1) and can be quite rapid:
guppies experimentally transplanted from high- to low-predation
sites repeatedly evolve a slower-paced life history in <10 years
(~20 generations)24_26.

Under common garden conditions, we measured standard
metabolic rates in laboratory-reared offspring of wild-caught
guppies from six populations and three different drainage systems
that are known to differ in the pace of their life history?*=2,
Standard metabolic rate reflects the baseline cost of maintaining
the tissues and homeostatic mechanisms critical to life?” and is
indicative of total energy expenditure’®?°, We first compared
pairs of populations with slow- vs fast-paced life histories from
both the Oropuche and Yarra River drainages, testing for con-
sistent differences in standard metabolic rate across independent
evolutionary transitions from a faster- to a slower-paced life
history as guppies invaded low-predation environments within
different drainages across Trinidad®®?3, We then evaluated the
direction and speed at which standard metabolic rate evolves by
comparing its values between a naturally occurring population
with a fast-paced life history and a descendant population that
was transplanted to a low-predation site in the Caroni River
drainage 35 years ago and has since evolved a slower-paced life
histor)é“’zs. Finally, we examined the relationship between
standard metabolic rate and the overall pace of life history (male
age and mass at maturity, female age and mass at first parturition,
reproductive frequency, and reproductive investment) to assess
whether patterns of covariation across drainages mirror those
found within drainages.

We found that the evolution of a slower-paced life history as
guppies invaded upstream low-predation habitats is accompanied
by a decrease in standard metabolic rate within each of the three
drainages. Furthermore, there is a strong positive association
between the rate of metabolism and a suite of life history traits
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Fig. 1 Metabolic rates differed among populations according to their pace of
life history. a Standard metabolic rate (mean + 1 SE) was lower in naturally
occurring populations with a slow (gray) relative to a fast-paced (blue) life
history (LMM: P < 0.001) in both the Oropuche (slow: n=29, fast: n=28)
and Yarra (slow: n= 26, fast: n=28) River drainages. b Standard metabolic
rate (mean +1 SE) was also lower in a population transplanted from high-
to low-predation sites in 1981 that has since evolved a slow-paced life
history (green, n=22) vs their naturally occurring ancestral population with
a fast-paced life history (blue, n=24) in the Caroni River drainage. Values
for standard metabolic rate are standardized to a common body mass of 74
mg (mean across all fish)

across all populations, regardless of drainage. These parallel
changes suggest a tight evolutionary association between meta-
bolic rate and the pace of life history.

Results

Naturally occurring populations. We found consistent differ-
ences in standard metabolic rate among naturally occurring
guppy populations that exhibit slow- vs fast-paced life histories
(Fig. 1a). Standard metabolic rate differed between the Oropuche
and Yarra drainages (linear-mixed model (LMM): F; g9 3 =33.53,
P <0.001) after controlling for effects of body mass (LMM: F, 793
=84.12, P <0.001); guppies from the Oropuche drainage exhib-
ited a lower standard metabolic rate than those from the Yarra
drainage (Fig. 1la). However, standard metabolic rate in the
populations with a slow-paced life history was consistently lower
than their counterparts with a fast-paced life history across both
drainages (Fig. 1a; LMM: F; g5 o= 55.85, P < 0.001). There was no
difference in standard metabolic rate between males and females
(LMM: F,g6.4=0.36, P=0.551) or any interactive effects of life
history, drainage, and sex (LMM: all P> 0.05).

Experimental evolution. Additionally, standard metabolic rate
evolved rapidly in the experimental population in the Caroni
drainage and in the same direction as found above (Fig. 1b). After
controlling for effects of body mass (LMM: Fj 404=34.04, P <
0.001), standard metabolic rate diverged between the naturally
occurring population with a fast-paced life history and its des-
cendants that have evolved a slow-paced life history since being
transplanted into an upstream low-predation site within that
same drainage (Fig. 1b). Specifically, the standard metabolic rates
of guppies in the introduced population were significantly lower
than that of guppies of the same size from the ancestral popu-
lation with a fast-paced life history (LMM: F;3;3=12.30, P=
0.001). Assuming 1.74 generations per year?>, this minimum rate
of evolutionary divergence from the ancestral high-predation
population is equivalent to 0.02 haldanes over 60.9 generations, a
value that is comparable to those reported for guppy life history
traits in the same river, but faster than the average reported thus
far for animal taxa in general (Fig. 2)°. There was no difference
in standard metabolic rate between males and females (LMM:
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Fig. 2 Rates of evolution are slower when measured over longer time
intervals. Rates, plotted in haldanes (standard deviations of change per
generation), are shown for metabolic rate in guppies from the El Cedro
River from this study (yellow, n=1), previously published estimates for
guppy life history traits from the EI Cedro River (purple, n=18)3%, and
previously published estimates for life history and morphological traits of
other taxa (white, n = 402)30. All estimates are absolute values of haldanes
derived from common garden or quantitative-genetic methods. Note the
logarithmic scale on both axes

F,313=0.80, P=0.377) or any interactive effects between sex and
life history (LMM: P > 0.05).

Covariation with the pace of life history. Finally, we found that a
single linear function describes the relationship between standard
metabolic rate and the pace of life history across all populations,
regardless of predation level or drainage. Mean mass-independent
standard metabolic rate was positively correlated with the overall
pace of life history across the six study populations (Fig. 3;
Pearson correlation: r=0.93, P=0.007).

Discussion

Guppies exhibit consistent changes in their life history when
invading low-predation environments?*~>2, Here we consider the
role that energy metabolism may play in these evolutionary
transitions from a faster- to a slower-paced life history. Our
common garden approach comparing naturally occurring and
experimentally transplanted populations provide multiple lines of
evidence that standard metabolic rate evolves together and in a
positive direction with the pace of life history. This relationship is
sustained across genetically divergent populations®!, indicating
parallelism among different lineages. Consistent differences in
metabolic rate and life history traits between low- and high-
predation populations under common garden conditions suggest
genetically based divergence in the wild*2. Maternal effects may
have also contributed to observed differences but are unlikely,
given that they are generally found to be absent or negligible in
studies of metabolic rate, see e.g., refs >>=7. In addition, we
observed an effect of drainage that was independent of predation
(Fig. 1), suggesting that evolutionary history may also play a role
in how these traits coevolve (see Supplementary Note 1).

These parallel evolutionary changes suggest a tight association
between metabolic rate and the life history. Indeed, our study and
others show that metabolic rate®~** and the life history?>4>=47
can evolve in response to some of the same environmental factors
—including predation, disease, climate, food availability, diet
quality, and population density. While it is not yet clear whether
metabolic and life history traits are responding to the same or
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Fig. 3 Standard metabolic rate covaries with the pace of life history.
Standard metabolic rate was positively correlated with a suite of life history
traits across six populations (Pearson correlation: P = 0.007). Included are
naturally occurring populations with fast-paced (blue, n=3) and slow-
paced life histories (gray, n=2) and a population transplanted from a high-
to low-predation site 35 years ago that has since evolved a slow-paced life
history (green, n=1). The pace of life history was determined using
principal component analysis (PCA) of estimates for the suite of traits
including male age and mass at maturity, female age and mass at first
parturition, inter-litter interval, and reproductive allotment. The first
principle component (plotted on the y axis) had an eigenvalue of 3.70,
explained 61% of the variation in life history traits, and differentiated
populations with later maturity and lower reproductive investment (lower
scores) from those with earlier maturity and higher reproductive
investment (higher scores). Values for standard metabolic rate were
standardized to a common body mass of 74 mg prior to analysis (mean
across all fish)

different agents of selection, quantitative-genetic and physiolo-
gical studies suggest a functional linkage between them that could
cause them to evolve together. In particular, there is some evi-
dence for a positive genetic correlation between metabolic rate
and the pace of life history*®=°, Species with a higher standard
metabolic rate also tend to have higher levels of activity and total
energy expenditure’®?°. Faster metabolic rates may therefore
enable faster rates of energy acquisition that then promote faster
rates of somatic growth and reproduction®’=>3. However, they
can also lead to increased predation risk and/or cause biological
damage that is costly to survival®*™7. As such, trade-offs in the
allocation of metabolic power among competing functions may
limit the combination of possible trait values and provide a
unifying mechanistic explanation for why life history strategies
across a broad array of taxonomic groups tend to evolve along a
slow—fast continuum’.

Methods

Ethics statement. Experiments were conducted in accordance with approved
protocols from the Institutional Animal Care and Use Committee of the University
of California-Riverside (Animal Use Protocol No: A-20170006).

Source populations. Wild pregnant females (10-15 fish) were collected in the
summer of 2016 from populations inhabiting three separate river systems draining
the Northern Range Mountains of Trinidad, West Indies. Parental fish were col-
lected from populations in low-predation (LP) and high-predation (HP) sites
within the northern slope Yarra drainage (Yarra-Limon LP and Yarra 3 HP sites
and within the southeastern slope Oropuche drainage (Quare 6 LP and Oropuche 2
HP sites??). Guppies were also collected from two sites in the southwestern slope
Caroni drainage: a high-predation site (El Cedro 1 HP site??) and an upstream low-
predation site where fish from that same high-predation site were introduced in
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1981 (fish taken from El Cedro 1 HP site!8 and moved to El Cedro tributary25'26).
These populations were selected because guppies from the LP and HP sites within
each of the three drainages are known from previous laboratory common garden
studies to exhibit slow- vs fast-paced life histories, respectively?®»23.

Rearing of F1 experimental fish. Wild-caught guppies were transported to the
University of California-Riverside, where each population was housed separately in
10-gallon tanks. Females can produce multiple broods using stores of viable sperm
from multiple males®®, so they continued to produce offspring even in the absence
of males. The tanks were checked daily, and new-born F1 offspring from each
population were transferred and housed together in 5-gallon tanks. F1 offspring
were born under communal conditions, so we were not able to quantify the
number of offspring produced by each female that were included in the experi-
ment. However, females reproduce at regular intervals, so experimental fish
represent a random sample of the F1 offspring produced by all wild-caught
mothers.

Once experimental (F1) fish began to show signs of maturity, males from each
population were transferred to a separate 5-gallon tank (11-16 fish per population
per tank). Maturing females were distinguished from males by the triangular
pattern of melanophore development in their abdominal region, while males were
identified by their partially (immature) or fully developed (mature) intromittent
organ®”. Both parent and F1 tanks were maintained at 25.0 + 0.5 °C (mean = actual
range) and under a 12D:12L cycle. The fish were fed to satiation twice daily with
liver paste in the morning and Artemia brine shrimp nauplii in the afternoon.

Transgenerational effects are a common concern when inferring genetic from
phenotypic differences between populations or species under common garden
conditions. However, an equally valid concern is that of inadvertent selection for
particular genotypes favored by artificial laboratory conditions®>%0, As such, we
chose to focus on the F1 generation because it is an optimal resolution to the
trade-off between minimizing potential environmental/maternal effects while also
minimizing the erosion of genetic diversity that can occur due to (unintentional)
selection in the laboratory environment. In addition to our use of common garden
conditions, our experimental protocol also minimized potential effects of field
conditions (via maternal or environmental effects) by including in the experiment
only those F1 offspring yolked under these common laboratory conditions. This
was verified by using known growth trajectories®! and inter-litter intervals
(21.6-24.7 days)®® of guppies under similar laboratory conditions to back-calculate
to the time experimental fish were yolked and conceived. Based on their body size
at the time of the experiment, all experimental fish were yolked and conceived 2 or
more months after the time their mothers first arrived in the laboratory.

Metabolic rate measurements. Standard metabolic rate was measured in juvenile
and adult male and female F1 guppies (Supplementary Table 1). Metabolic rates
were measured using continuous flow through respirometry in the same
temperature-controlled laboratory during the autumn of 2016 and using the
methodology and instrumental set-up described in ref. %2, Briefly, water in the
respirometry system was run through a UV sterilizer (Aqua Ultraviolet, Temecula
CA) to minimize background respiration rates. Water was pumped from an aerated
upper bin through individual oxygen impermeable Tygon tubes (Cole Parmer,
London, UK) to each of 16 respirometry chambers (volume 20 ml) arranged in
parallel and submerged in a lower water bath, then via additional tubing past an
oxygen sensor (robust probe; PyroScience GmbH, Aachen, Germany) sealed inside
a small chamber before draining into a lower bin and being recirculated back up to
the upper bin. A peristaltic pump (Cole Parmer, London, UK) pulled water
through the system at a constant rate and was used to adjust the flow rate through
each chamber.

Fish were isolated from their stock tanks and fasted for 24 h before their
metabolic measurements to ensure they were in a postabsorptive state. Dissection
analysis indicated that this time interval is sufficient for them to fully evacuate their
guts and thereby prevent digestive costs from biasing measurements of standard
metabolism. Oxygen sensors were calibrated using fully aerated water before each
batch of fish was put in the chambers. Fish were then placed in their respirometry
chambers in the early afternoon, and their oxygen consumption was measured
continuously over the next 20 h. The water bath containing the respirometry
chambers was covered with a sheet of black plastic on all sides to keep fish activity
to a minimum. The flow rate was set to 0.84 ml/min as this allowed us to detect
their oxygen consumption while ensuring that oxygen levels in the chambers never
dipped below 80% saturation. Oxygen levels were measured every 2s by four
multichannel oxygen meters and associated software (FireStingO,, PyroScience).

Oxygen consumption was generally measured in one male and one female per
population per day (a total of 14 batches over 15 days), except for the last two
batches where we included mostly females to increase sample sizes of females
differing in their reproductive status (see below). The remaining two fish-free
chambers served as a control of background respiration. Standard metabolic rate
(mg O, h™!) was measured as: Mo, = Viy X (Cyozcontro=Cwo2fish)> Where Vi, is the
flow rate of water through the respirometry chamber (L h™Y), and Cyozcontrol and
Cyo26ish are the concentrations of oxygen (mg LY in the outflow of the chambers
lacking and containing fish, respectively, after adjusting for temperature and
barometric pressure®®. Standard metabolic rate for each fish was calculated by
taking the mean of the lowest 10 percentile of oxygen consumption
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measurements over the 20 h measurement period, and then excluding outliers, i.e.,
those measurements below 2 standard deviations from this mean®. Several fish did
not settle down in their respirometry chambers, so they were excluded from further
analyses (see Supplementary Table 1 for final sample sizes). After measurement of
metabolic rates, fish were removed from the system, euthanized with a fatal
overdose of neutrally buffered MS-222 (Sigma-Aldrich, St. Louis, MO), weighed
(+0.001 g), and preserved in 5% formalin for later dissection analysis. The
respirometry system was then cleaned using bleach and UV-sterilized tap water
before the next batch of measurements.

Determination of female reproductive status. Females were maintained in their
own sex-specific stock tanks, but could still yolk eggs in the absence of males.
Female guppies are lecithotrophic, meaning that they provide no additional
resources to their young after yolking their eggs®*. However, the effect of pregnancy
status on standard metabolic rate is not known. As such, females were dissected
under a microscope and their reproductive tissues were removed to assess their
stage of reproduction. Females were then weighed again to determine their non-
reproductive wet mass. Most females had no eggs (54%) or undeveloped eggs
(38%), but some females (8%) carried developing embryos because the maturation
of some males went initially undetected, while they were housed together in
communal stock tanks. Five females were in the process of yolking their eggs, so
they were excluded from analyses.

Characterization of the pace of life history. The pace of life history was char-
acterized using data on the entire suite of guppy life history traits including male
age and mass at maturity, female age and mass at first parturition, inter-litter
interval, and reproductive allotment (Supplementary Table 2). Life history traits
were measured in separate laboratory studies that compared the F2 generation of
populations from low- vs high-predation sites within each of the three drai-
nages®*23, Life history traits for the naturally occurring high-predation population
and its descendant population in the Caroni River drainage were evaluated 13 years
post introduction. All three laboratory studies were conducted under similar
environmental conditions with respect to light (12D:12L) and diet (liver paste in
the morning and Artemia brine shrimp in the afternoon as done here). One of the
two food levels used in each study (low food levels from?® and high food level
from?®) sustained roughly 60~70% of maximum growth, so food levels were also
comparable across all three studies. All three studies used the same protocols with
respect to the rearing of laboratory stocks and the measurement of life history traits
in fish. F2 males and females from each population were reared individually
starting from age 21 to 25 days until they matured, in the case of males, or had
given birth to their third litter, in the case of females. Morphogenesis of the anal fin
was used to determine male age and size at maturation; specifically, males were
considered mature if their 3rd anal fin ray had fully developed into their intro-
mittent organ, the gonopodium®. Female age and size at first parturition were
determined at the birth of their first litter. Inter-litter interval is a measure of
reproductive frequency and was calculated as the mean time interval (in days)
between the births of the first and second and between the second and third litters.
Reproductive allotment was calculated as % female dry weight devoted to offspring
in the third litter and used as measure of reproductive effort that takes into account
the positive effects of female size on reproductive output.

Statistical analyses. We first assessed potential differences in standard metabolic
rate among paired guppy populations with slow- vs fast-paced life histories from
the Yarra and Oropuche drainages. The general linear model included the pace of
life history (slow vs fast), drainage (Oropuche vs Yarra), and their interaction as
fixed categorical factors, body mass as a covariate, and respirometry batch and
chamber number as random effects. Both standard metabolic rate and body mass
were log;o-transformed to linearize the data. The slope of metabolic rate with body
mass did not differ between the four populations (population by log;,-transformed
body mass: P = 0.496).

We then evaluated the direction and rate at which standard metabolic rate
evolves by comparing its values between a naturally occurring population with a
fast-paced life history and its descendants that were transplanted to a low-
predation site in the Caroni River drainage 35 years ago and have since evolved a
slower-paced life history. Both standard metabolic rate and body mass were log;o-
transformed to linearize the data. The model included pace of life history (slow vs
fast) as a fixed categorical effect, body mass as a covariate, and respirometry batch
and chamber number as random effects. The slope of metabolic rate with body
mass did not differ between the two populations (population by log;o-transformed
body mass: P = 0.389).

Reproductive status (no eggs vs eggs or embryos) did not affect the standard
metabolic rate of females (Supplementary Table 3), so males and females were
analyzed together and sex was included as a fixed categorical effect in the same
models. Growth may also contribute to metabolic costs. However, if growth
influenced SMR, then we would expect to see differences in metabolic rate between
those individuals that are still growing (juveniles and females) and those that have
matured and stopped growing (males). Instead, we find no effect of life stage (P =
0.367) or sex (see Results). As such, immature and mature individuals were
analyzed together.
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Evolutionary rates of divergence were quantified using haldanes. Haldanes
measure the change in a phenotypic trait, in units of standard deviations, over time
and were calculated as follows®>C; [(In x,/si0)—(In X1/s1,,)]/t where In x; and In x,
are sample means of natural log-transformed measurements and the standard
metabolic rate in the introduced and ancestral population, respectively, ¢ is the time
interval (in number of generations) over which evolution was measured, and sy, is
the pooled standard deviation of In x; and In x,. Rates for guppies were calculated
assuming 1.74 generations per year®. The absolute values of evolutionary rates
decline as a logarithmic function of the interval over which they are measured®>°,
so the observed rate of divergence in standard metabolic rate was log;o-
transformed and plotted against log;o-transformed time interval (in generations) in
order to compare it with published estimates from previous studies of the evolution
of life history traits in guppies in that same population and life history and
morphological traits in other animal taxa.

Finally, we used correlation analysis (Pearson’s r) to assess the covariation
between standard metabolic rate and the overall pace of life history. Residuals from
the model relating log;o-transformed standard metabolic rate (SMR) to log;,-
transformed body mass (BM; log;o-SMR =—-0.95 + 0.61*log;o-BM) were used to
standardized standard metabolic rate to a common body mass of 74 mg (mean
across all fish). The pace of life history was determined using principal component
analysis (PCA) of population level estimates for the suite of traits that define the life
history including male age and mass at maturation, female age and mass at first
parturition, inter-litter interval, and reproductive allotment (Supplementary
Table 2). The first PCA had an eigenvalue of 3.70 and described 61% of the
variation in life history traits across populations. Loadings along PCA 1
characterized the slow-to-fast life history continuum across guppy populations:
-0.763 for male size at maturity, -0.866 for male age at maturity, -0.843 for female
age at first parturition, -0.744 for female size at first parturition, -0.677 for inter-
litter interval, and 0.806 for reproductive allotment. PCA thus arrayed the
populations from ones with rapid development (early maturity) and high
investment in reproduction to those with slow development and low investment in
reproduction. This analysis was conducted on the mean standard metabolic rate
and the single PCA score for each population.

Data were analyzed using SPSS version 22.0 (IBM statistics). Fresh body mass
was highly correlated with formalin-preserved body mass in males and non-
reproductive females (Pearson correlation: r=0.99, P < 0.001, n=124), and the
slope of their relationship did not differ from unity (slope + SE: 1.07 £ 0.02). As
such, we used measurements of formalin-preserved body mass in all our analyses of
metabolic rate since this allowed us to include reproductive females and their non-
reproductive body masses determined after preservation and dissection.
Spontaneous activity of fish in the respirometry chambers was minimal, but may
still bias estimates of standard metabolic rate. However, we found no evidence for
such effects: there was no correlation between mass-independent standard
metabolic rate and mass-independent excess routine metabolic rate (the excess
oxygen expended on spontaneous activity above standard metabolic rate; Pearson
correlation: r=-0.09, P=0.225, n=157).

Data availability. Data supporting the findings of this study are available in the
manuscript, its supplementary files, and from the corresponding author upon
request.
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