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Abstract

Despite the advent of highly active anti-retroviral therapy HIV-associated neurocognitive dis-

orders (HAND) continue to be a significant problem. Furthermore, the precise pathogenesis

of this neurodegeneration is still unclear. The objective of this study was to examine the rela-

tionship between infection by the simian immunodeficiency virus (SIV) and neuronal injury

in the rhesus macaque using in vivo and postmortem sampling techniques. The effect of

SIV infection in 23 adult rhesus macaques was investigated using an accelerated Neu-

roAIDS model. Disease progression was modulated either with combination anti-retroviral

therapy (cART, 4 animals) or minocycline (7 animals). Twelve animals remained untreated.

Viral loads were monitored in the blood and cerebral spinal fluid, as were levels of activated

monocytes in the blood. Neuronal injury was monitored in vivo using magnetic resonance

spectroscopy. Viral RNA was quantified in brain tissue of each animal postmortem using

reverse transcription polymerase chain reaction (RT-PCR), and neuronal injury was

assessed by immunohistochemistry. Without treatment, viral RNA in plasma, cerebral spinal

fluid, and brain tissue appears to reach a plateau. Neuronal injury was highly correlated both

to plasma viral levels and a subset of infected/activated monocytes (CD14+CD16+), which

are known to traffic the virus into the brain. Treatment with either cART or minocycline
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decreased brain viral levels and partially reversed alterations in in vivo and immunohisto-

chemical markers for neuronal injury. These findings suggest there is significant turnover of

replicating virus within the brain and the severity of neuronal injury is directly related to the

brain viral load.

Introduction

HIV infection commonly results in significant neurocognitive abnormalities identified as

HIV-associated neurocognitive disorders (HAND) [1–3]. While the incidence of severe neuro-

logical symptoms has been seen to decrease with highly active antiretroviral therapy

(HAART), less severe versions of the disease persist among the infected population [4]. The

overall prevalence of HAND and associated morbidity remain high at approximately 50% [5–

7]. Major hurdles to the development of effective HAND treatments are 1) an incomplete

understanding of pathogenic pathways culminating in neuronal injury and 2) the inability to

characterize temporal and cumulative features of neuronal injury.

There is a consensus that HIV enters the central nervous system (CNS) during the early

stages of infection primarily through virally infected/activated monocytes from the blood

across the blood-brain barrier (BBB) [8, 9]. Although the virus does not directly infect neu-

rons, neurons suffer injury due to indirect mechanisms mediated by host proinflammatory

and viral proteins [8, 10–13]. The multifactorial nature of neuronal injury confounds efforts to

elucidate specific neuropathogenic pathways and challenges monotherapy approaches [14, 15].

In addition to the complexity presented by multiple potential pathways to neuronal injury,

little is known about the temporal process of neuronal injury itself. Reversible neuronal injury

has been demonstrated at both structural and metabolic levels [16–18], and improvement in

neuropsychological performance has been observed up to three years after introduction of

HAART in some individuals [19, 20]. The lack of clear demarcation of reversible and non-

reversible components of neuronal injury may confound treatment studies [16] and be an

important consideration in interpreting the varying degrees of HAART’s effectiveness in ame-

liorating HAND progression.

The simian immunodeficiency virus (SIV)-infected rhesus macaque shares very similar

pathology with HIV-infected human patients, including the development of AIDS, disease of

the CNS, and cognitive or behavioral deficits [21–23]. However, because of its parallels with

HIV pathogenesis, the traditional SIV macaque model is hindered by the low rate of develop-

ment of SIV encephalitis (SIVE) and the long time-period for its evolution. Only approxi-

mately 25% of infected macaques develop encephalitis and progression to terminal AIDS may

take several years [21, 24]. These factors make it difficult for use in testing specific hypotheses.

Therefore, attention has focused on rapid progressing SIV macaque models. The acceler-

ated model used in our study retains the use of the SIV-infected rhesus macaque, but uses a

monoclonal antibody to deplete the animal of CD8+ lymphocytes [25, 26]. In this model, 80%

of persistently CD8-depleted animals develop SIVE, with a course of progression to terminal

AIDS within 12 weeks [27]. Recent modifications in applying the antibody has resulted in

>90% of macaques becoming persistently CD8-depleted with nearly all of them developing

SIVE. This model also produces profound neuronal injury detectable within weeks by in vivo
1H MRS [18]. The accelerated SIV macaque model combined with magnetic resonance spec-

troscopy (MRS) has proven to be highly informative in characterizing SIV progression from

viral infection to neuronal injury and offers valuable insight into HAND’s therapeutic conun-

drum [28].

Correlations of viral loads and neuronal injury in SIV
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Using in vivo MRS, the neuronal marker N-acetylaspartate/creatine (NAA/Cr) enables tem-

poral monitoring of neuronal integrity as disease progresses. Upon SIV infection, NAA/Cr lev-

els steadily decline [17, 18].Various studies have shown lower NAA/Cr levels in

neurocognitively-impaired HIV+ individuals compared to neuroasymptomatic subjects, spe-

cifically in the basal ganglia and frontal cortex [29–31]. The extent of NAA decline in those

affected by HAND has been associated with severity of neurocognitive impairment [32]. The

SIV model also allows for postmortem confirmation of compromised neuronal health by

immunohistochemical staining for microtubule-associated protein 2 (MAP2) and synaptophy-

sin (SYN), markers for synaptodendritic integrity. In human studies, the extent of damage to

the synaptodendritic structures has been shown to correlate strongly with level of neurocogni-

tive impairment [16, 33–36].

The purpose of our investigation was to quantitatively analyze the relationship between the

amount of virus in the brain, CSF and plasma and the severity of the resultant neuronal injury.

Towards that, 23 animals were infected with SIVmac251 virus and depleted of CD8+ T lym-

phocytes using anti-CD8 antibody to accelerate progression to neuroAIDS. Disease progres-

sion was modulated either with cART (4 animals) or minocycline (7 animals). cART consisted

of 9-R-2-Phosphonomethoxypropyl adenine (PMPA), 5-Fluoro-1-[(2R,5S)-2-(hydroxy-

methyl)-[1,3]oxathiolan-5-yl]cytosine (FTC), and 2’-3’-didehydro-2’-3’-dideoxythymidine

(Stavudin). The rationale of using this particular cART regimen was based on a study by zur

Megede et al. [37] which resulted in a significant drop in viral loads in their SIVmac239/

macaque model. Minocycline (MN), a well-tolerated and inexpensive antibiotic that has been

tested on a variety of neurodegenerative diseases including HAND, has been found to have

anti-inflammatory/neuroprotective effects and, possibly, a direct anti-HIV effect [38–40]. Pre-

viously, our group has shown that minocycline reduces trafficking of infected monocytes into

the brain [41].

Our group found a direct relationship between the amount of brain viral load assessed

using reverse transcription Polymerase chain reaction (RT-PCR) and the severity of neuronal

injury assess by in vivo magnetic response spectroscopy. Furthermore, reduction of brain virus

load by combination anti-retroviral therapy and by minocycline produced neuroprotection in

this primate model of AIDS.

Materials and methods

Experimental design

Twenty-seven rhesus macaques were included in this study. Four animals served as controls

for the postmortem evaluations. Twenty-three animals were infected with SIVmac251 virus

and depleted of CD8+ T lymphocytes using anti-CD8 antibody. 12 animals remained

untreated and were sacrificed at 4, 6 and 8 weeks post inoculation (wpi). Eleven animals were

treated with either cART (4 animals) starting at 6 wpi or minocycline (7 animals) starting at 4

wpi. MRI and MRS was performed on 23 animals twice pre-inoculation and biweekly until

sacrifice. S1 Fig illustrated the experimental design. Activated CD14+CD16+ monocytes quan-

tified by flow cytometry, viral RNA in the plasma and cerebrospinal fluid (CSF) was quantified

by RT-PCR. Postmortem, neuronal integrity was evaluated by quantitative IHC using MAP2

and SYN, and viral RNA in the brain (frontal cortex) was quantified by RT-PCR.

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health. The Massachusetts

General Hospital (MGH) Subcommittee on Research Animal Care (SRAC) and the
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Institutional Animal Care and Use Committee (IACUC) of Harvard University reviewed and

approved the animal care and protocol. Specifically, the MGH SRAC approved protocol num-

ber 2003N000167 and the Harvard University IACUC approved protocol number 3076. All

animal studies were performed in accordance with federal laws and regulations, international

accreditation standards, and institutional policies.

Animals were housed according to the standards of the American Association for Accredi-

tation of Laboratory Animal Care. Treatment of animals was in accordance with the Guide for

the Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources. Ani-

mals were quarantined at the New England Primate Research Center (NEPRC) and trans-

ported to the Center for Comparative Medicine (CCM) for the study. Housing in a laboratory

area was inspected and approved by both the SRAC and the Director of CCM.

All animals received environmental enrichment and were monitored daily for evidence of

disease and changes in attitude, appetite, or behavior suggestive of illness. Specifically, animals

were clinically monitored for general health with complete blood counts and physical exami-

nations performed. Weekly observations of body weight, food consumption and stool charac-

ter was also recorded. Health checks were performed each morning on every animal at the

MGH CCM by the animal care staff and if a problem was noted the animal was examined by a

veterinarian. The monkeys were on a diet of high-protein monkey diet biscuits.

Appropriate clinical support was administered under the direction of the attending veteri-

narian and included analgesics, antibiotics, intravenous fluids, and other supportive care. Ani-

mals were euthanized when they presented with advanced stages of AIDS; criteria for

euthanasia included 15% weight loss in two weeks, unresponsive opportunistic infection, per-

sistent anorexia, intractable diarrhea, progressive neurologic signs, significant cardiac or pul-

monary signs or other serious illness.

Animals were euthanatized at the NEPRC at the end of the study, specifically within 24

hours after their final MRI/MRS studies. Euthanasia was performed by administering a lethal

dosage of pentobarbital sodium (100 mg/kg, IV). For the purposes of this study, the entire

brain was examined postmortem quantitative histopathology, rendering death as an endpoint.

Non-human primates

Twenty-seven (27) Indian-origin adult (4–5 year-old) rhesus macaques (Macaca mulatta)

were included in this study. All macaques were tested to be specific pathogen free (SPF-free).

Twenty-three (23) animals were infected with SIVmac251 virus (20 ng SIVp27, i.v.) and

depleted of CD8+ T lymphocytes using anti-CD8 antibody cM-T807 at 6, 8 and 12 days post

inoculation (dpi) [18, 25, 26]. Four animals served as controls for the postmortem evaluations

and underwent CD8+ T cell depletion. Of note, all animals were age-matched and infected

with the same SIVmac251 virus batch.

Twenty-three animals were scanned twice pre-inoculation and biweekly until sacrifice. During

MR scanning sessions, each animal was tranquilized with 15–20 mg/kg intramuscular ketamine

hydrochloride and intubated to ensure a patent airway during the experiment. Intravenous injec-

tion of 0.4 mg/kg atropine was administered to prevent bradycardia, and continuous infusion of

approximately 0.25 mg/kg/min propofol was maintained throughout the experiment via catheter

in a saphenous vein. Heart rate, oxygen saturation, end-tidal CO2 and respiratory rate were moni-

tored continuously. A heated water blanket was used to prevent hypothermia.

Four animals were treated with cART consisting of 9-R-2-Phosphonomethoxypropyl ade-

nine (PMPA), 5-Fluoro-1-[(2R,5S)-2-(hydroxymethyl)-[1,3]oxathiolan-5-yl]cytosine (FTC),

and 2’-3’-didehydro-2’-3’-dideoxythymidine (Stavudine, Zerit1) starting at 42 dpi. PMPA and

FTC were administered subcutaneously at daily dosages of 30 mg/kg and 50 mg/kg, respectively.

Correlations of viral loads and neuronal injury in SIV
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PMPA and FTC were provided by Gilead Sciences, Inc. (Foster City, CA.) via a material transfer

agreement. Zerit was administered orally at 1.2 mg/kg twice daily [37]. Seven animals were

administered minocycline orally starting at 28 dpi at daily dosage of 4 mg/kg b.i.d. [40].

Cohorts are differentiated on basis of 1) time period between SIV-inoculation and sacrifice,

2) treatment versus none and 3) length of CD8-depletion (persistent versus short-term) (see

Table 1). The three untreated cohorts include four animals sacrificed at 4 wpi, four animals

sacrificed at 6 wpi and four animals sacrificed at 8 wpi. Treated cohorts include four animals

treated with cART from 6–12 wpi and seven minocycline-treated animals. Minocycline-

treated animals are further divided into those persistently CD8-depleted (n = 4) versus short-

term CD8-depleted animals (n = 3). All other cohorts consisted of persistently CD8-depleted

animals, defined as CD8 lymphocyte depletion for greater than 28 dpi.

Magnetic resonance spectroscopy

MRI/MRS experiments were performed on a 3 Tesla whole-body imager (Magnetom TIM

Trio, Siemens AG, Erlangen, Germany), using a circularly polarized transmit-receive extrem-

ity coil. A three-plane localizer scan was used to position the monkey in the coil, ensuring

highly reproducible voxel placement. To guide placement of the 1H-MRS volumes of interest,

sagittal and axial turbo spin echo (TSE) images were obtained using the following parameters:

140×140 mm2 field of view, 512×512 matrix, TE (echo time) of 16 ms; slice thickness was 2

mm for sagittal images and 1.2 mm for axial images; TR (repetition time) was 4500 ms for sag-

ittal and 7430 ms for axial images resulting in an acquisition time of 3 minutes for the sagittal

and 5 minutes for the axial TSE sequence.

Single voxel 1H MR spectroscopy was performed in the frontal cortex (FC) among other

regions using a point-resolved spectroscopy sequence (PRESS) with water suppression

enhanced through T1 effects (WET), and the following parameters: TE = 30 ms, TR = 2500

ms, and 192 acquisitions resulting in an acquisition time of 8 minutes. All spectra were pro-

cessed offline using the LCModel software package [42] to determine the quantities of the

brain metabolites NAA and Cr. Absolute metabolite concentrations in institutional units were

derived from the same voxel using the water signal as reference. In this study, our results focus

on the frontal cortex as we have seen the most prominent metabolic changes in the cortex in

the SIV-infected macaque model.

Viral load analysis

Plasma and cerebrospinal fluid SIV RNA was quantified using real-time reverse transcription-

PCR [43]. Blood was centrifuged at 20,000 g for 1 hour, and CSF samples were stored at -80˚C

Table 1. Cohorts of SIV-infected animals.

N CD8 depletion Sacrificed Treatment Treatment initiation

4 persistent 4 wpi� N/A -

4 persistent 6 wpi N/A -

4 persistent 8 wpi N/A -

4 persistent 12 wpi cART# 6 wpi

4 persistent 8 wpi Minocycline 4 wpi

3 short-term 8 wpi Minocycline 4 wpi

�WPI: week post-inoculation
# cART: PMPA, FTC and Stavudine.

https://doi.org/10.1371/journal.pone.0196949.t001
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until analysis. The threshold sensitivity was 100 copy eq./mL. Results are averages of duplicate

determinations.

Brain tissue RNA was isolated using an RNeasy MiniKit from Qiagen (Valencia, CA). 50

mg of brain tissue from the frontal cortex of each animal was used. The protocol provided by

the manufacturer was followed. Purified RNA was analyzed by RT-PCR.

Flow cytometry

Peripheral blood was drawn twice prior to infection, at days 6, 8, and 12 pi, and weekly thereaf-

ter. Flow cytometric analyses were performed with 100 μl samples of blood as previously

described [41]. Fluorochrome-conjugated primary antibodies including anti-CD3-FITC

(SP34-2), anti-CD4-FITC (L200), anti-CD8-PE (DK25; Dako), anti-CD14-FITC (M5E2), anti-

CD16-PE (3G8), all from BD Pharmingen were used. Samples were fixed in PBS containing

2% formaldehyde, acquired on a FACSAria cell sorter (Becton-Dickinson) and analyzed with

Tree Star Flow Jo version 8.7. Monocytes are first selected based on size and granularity (FSC

vs. SSC). From this gate, HLA-DR+ CD14+ monocytes were selected. Complete blood counts

were obtained using a CBC Hematology Analyzer (Hema-True, HESKA). The absolute num-

ber of CD8+ lymphocytes was determined by multiplying the percentage of CD8+/CD3+ cells

by absolute lymphocyte counts obtained using a standard veterinary 3-point WBC differential,

CBC Hematology Analyzer. The absolute number of peripheral blood monocytes was calcu-

lated by multiplying the total white blood cell count by the total percentage of each monocyte

subset population as determined by flow cytometric analysis.

Tissue collection and processing

At study endpoints animals were anesthetized with ketamine-HCl and sacrificed by intrave-

nous pentobarbital overdose. At necropsy, animals were exsanguinated and were perfused

with 4 L of chilled saline. A complete set of CNS and peripheral tissues were collected in 10%

neutral buffered formalin, embedded in paraffin and sectioned at 6 μm.

Quantitative immunohistochemistry

To evaluate synaptodendritic integrity of neurons, sections from frontal cortex were immuno-

labeled overnight with monoclonal antibodies, followed by biotinylated horse anti-mouse

immunoglobulin G and avidin-horseradish peroxidase (Vectastain Elite kit; Vector, Burlin-

game, CA), then reacted with 3,3’-Diaminobenzidine (DAB). SYN is a 38-kd calcium-binding

protein localized to synaptic vesicles and is commonly used to assess synaptic density [44].

MAP2 is a high-molecular-weight protein that localizes to the dendritic compartment of neu-

rons and is involved in microtubule assembly. Monoclonal antibodies against SYN and MAP2

were used to evaluate synaptic (1:10) and dendritic integrity, respectively (Boehringer Mann-

heim, Indianapolis, IN). Expression of SYN and MAP2 were determined by computer image

analysis, as previously described [45]. Immunoreactivity was semi-quantitatively assessed as

corrected optical density by using a microdensitometer (Quantimet 570C; Leica, Microsystem

Cambridge, UK). Three immunolabeled sections were analyzed from each animal. As previ-

ously described [45–47], the system was first calibrated with a set of filters of various densities

and ten images for each section at 100x magnification were obtained. After delineating the

area of interest (layers 2–5) with the cursor, the optical density within that area was obtained.

The optical density in each image was then averaged and expressed as the mean per case. All

measurements for SYN and MAP2 are in arbitrary optical density units and range from 0 to

500 (i.e. 0 indicates all light is allowed to pass through the sample, while 500 indicates no light
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is allowed to pass through the sample). All values are expressed as mean ± standard error of

the mean.

Statistical methods

All analyses were conducted using JMP 12.0 (SAS, Cary, NC). To determine significant differ-

ences between cohorts’ mean values at endpoints analysis of variance (ANOVA) was used; if

significant by ANOVA (P<0.05) least square means Student’s t-tests were used to isolate dif-

ference between groups. For the serial data such as in vivo MRS and plasma or CSF viral loads,

repeated measures analysis of variance (RM-ANOVA) in combination with Holm’s t-tests was

employed to isolate differences between time-points within the cohorts. Correlations using

endpoint data were determined using Spearman Rank analysis (Rρ). To analyze relationships

among in vivo markers using serial data, a least-squared means model was used. A p value of

<0.05 was considered significant.

Results

Animal cohorts

Twenty-seven rhesus macaques were studied (Table 1). Twenty-three of these animals were

SIV infected and underwent CD8+ T cell depletion [18]. Twenty animals were persistently

CD8+ lymphocyte-depleted for a minimum of 28 days; however, three animals were short-

term depleted unexpectedly, i.e. their CD8+ lymphocytes returned to baseline by 28 days.

Twelve of the 23 animals remained untreated and sacrificed at 4, 6, and 8 weeks post inocula-

tion (4 animals in each cohort). Four animals were treated with cART, and seven animals

were treated with minocycline (MN). The cART regimen was based on a study by zur Megede

et al. [37] and consisted of 9-R-2-Phosphonomethoxypropyl adenine (PMPA), 5-Fluoro-1-

[(2R,5S)-2-(hydroxymethyl)-[1,3]oxathiolan-5-yl]cytosine (FTC), and 2’-3’-didehydro-2’-3’-

dideoxythymidine (Stavudine, Zerit1) administered daily starting at 6 weeks post inoculation

(wpi) for 6 weeks. Minocycline was administered daily starting at 4 wpi for 4 weeks. Each of

the 23 infected animals were evaluated at baseline and biweekly following infection using 3T

MRI neuroimaging as well as studies of blood and CSF. Four uninfected animals served as

controls and did undergo CD8+ T cell depletion as previously described. Additionally, post-
mortem evaluation of brain tissue for all 27 animals was performed at the end of the study.

Untreated animals

Viral RNA and CD14+/CD16+ monocytes. In SIV infected, CD8 depleted (SIV+/CD8-)

animals, viral RNA was detectable in plasma 6 days after infection (~107 copies eq./mL), and

the viral load approached a plateau by ~2 wpi. The mean plasma viral load was 4.9 x 108 copies

eq./mL at 8 wpi (Fig 1A). CSF viral loads were found to be approximately three logs lower

than plasma viral loads in untreated animals (Fig 1A). The CSF viral load in untreated animals

at 8 wpi (endpoint) was 7.2 x 104 copies eq./mL.

The amount of viral RNA in the frontal cortex of untreated animals sacrificed at 4, 6 and 8

wpi was 7.5 x 105 copies eq./g, 9.2 x 105 copies eq./g, and 3.0 x 105 copies eq./g, respectively

(Fig 1B). Viral RNA of untreated SIV+/CD8- animals was found to be not significantly differ-

ent at the various time points (P> 0.11).

SIV progression in the accelerated model is characterized by the expansion of activated

CD14+/CD16+ monocytes outside the CNS, and there is much evidence that these cells play a

major role in the trafficking of virus across the BBB into the brain [18, 41]. SIV+ animals had

Correlations of viral loads and neuronal injury in SIV
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high levels of circulating CD14+/CD16+ monocytes 28 days after infection and ~300 cells/μL

by 8 wpi (Fig 1C).

Neuroimaging and neuropathology. Brain MRI was performed biweekly and no struc-

tural or signal abnormality was identified in any animal; however, major metabolic changes

were observed by 1H MR spectroscopy. The neuronal marker NAA/Cr steadily declined fol-

lowing SIV infection in all animals, reaching decreases as low as 20% below baseline by 8 wpi

in untreated animals (Fig 2A). The decrease in NAA/Cr following infection is due to both,

decreases in neuronal NAA and increases in Cr, which most likely reflects the cumulative

effects of altered metabolic states of neurons and glial cells, respectively, in the setting of SIV

infection (for further discussion, see Ratai et al. [17].

To confirm the relationship between in vivo MRS findings and neuronal injury, we per-

formed postmortem quantitative immunohistochemical measurements of SYN, a marker of
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pre-synaptic neuronal damage, and MAP2, a marker of post-synaptic neuronal damage. Mean

MAP2 levels in the frontal cortex of SIV+ untreated animals were 176 at 4 wpi, 166 at 6 wpi

and 142 at 8 wpi (Fig 2B). MAP2 levels of SIV+ untreated animals sacrificed at 4, 6 and 8 wpi

were decreased compared to uninfected controls (P = 0.05, P = 0.02, and P = 0.004, respec-

tively). While MAP2 expression decreased with disease progression, there was no significant

difference between in MAP2 4, 6 and 8 wpi.

Mean levels of SYN in the frontal cortex of SIV+ untreated animals are shown in Fig 2C.

One animal was excluded from the SYN analysis as it was identified as an outlier by Grubb’s

Test using JMP 12.0. Mean SYN levels were 175 at 4 wpi, 170 at 6 wpi and 168 at 8 wpi.

Decreased levels of SYN were observed in untreated animals sacrificed at 4, 6, and 8 wpi con-

trols (P = 0.0058, P = 0.0067, and P = 0.0030, respectively) compared to uninfected controls.

There was no significant difference in SYN between 4, 6 and 8 wpi in SIV-infected macaques.

CART treated animals

Viral RNA and CD14+/CD16+ monocytes. In a prior study using PMPA, FTC, and stav-

udine, all infected animals remained below 104 RNA copies/ml after cART treatment [37].

Thus, we used a similar combined antiretroviral treatment for SIV+/CD8- animals, however

treated much shorter. The rationale for administering cART for only 6 weeks was based on

our previous studies in which SIV infected/CD8 depleted animals received cART (consisting

of the nonpenetrating agents PMPA and RCV) for four weeks, beginning 4 weeks after SIV

inoculation (43) (18). Typically, studies using CD8-depleted, SIV-infected macaques are brief

in duration due to the rapidly progressive course of SIV infection in these experimentally

immunocompromised animals, and this had to be taken into consideration when the experi-

ment was designed.

In our cART cohort, plasma viral loads were roughly one log lower at their endpoints when

compared to untreated animals at 8 wpi (7.8 x 107 copies eq./mL P = 0.019, Fig 3A). In the

cART cohort, the plasma viral load also appears to stabilize after 6 weeks of cART. As com-

pared to zur Megede’s study, modest reduction was seen in the plasma viral load due to short-

term use of cART and CD8 depletion [37]. CSF vRNA was decreased in the cART cohort (1.7

x 104 copies eq./mL) at endpoint compared to untreated animals at 8 wpi (7.2 x 104 copies eq./

mL, Fig 3B); however, differences in CSF viral burden did not reach statistical significance.

Brain tissue vRNA levels in short-term cART treated animals were lower than those in

untreated animals (1.1 x 105 copies eq./g, P = 0.007, Fig 3C). These findings are consistent

with our previous reports on PMPA- and RCV-treated animals [18, 48].

Treatment with cART also prevented an increase of circulating activated CD14+/CD16+

monocytes. The cART cohort had significantly lower CD14+/CD16+ monocytes compared to

the untreated cohort at endpoints (P = 0.014, Fig 3D).

Neuroimaging and neuropathology. The decline in NAA/Cr was arrested with the cART

treatment (Fig 4A) resulting in higher NAA/Cr levels when compared to untreated animals

sacrificed at 8 wpi, (P = 0.09). MAP2 and SYN levels in the cART-treated cohort were signifi-

cantly higher than in untreated SIV+ animals (P = 0.006 and P = 0.002, respectively), compara-

ble to the four uninfected animals (Fig 4B).

Minocycline treated animals

Viral RNA and CD14+/CD16+ monocytes. Minocycline is an anti-inflammatory treat-

ment that has been reported to have an antiretroviral effect [38]. It has been previously noted

that MN treatment decreases plasma SIV viral load [41]. In the persistently CD8-depleted

MN-treated cohort, plasma viral loads were roughly one log lower at their endpoints when

Correlations of viral loads and neuronal injury in SIV
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compared to untreated animals at 8 wpi (MNpersistent 6.5 x 107 copies eq./mL P = 0.0063, Fig

3A). The plasma viral load also appears to plateau as therapy is begun. In the animals who had

early CD8+ T cell recovery and who were treated with MN, there was a decline from peak viral

load levels to a new plateau that was nearly two orders of magnitude lower than that of

untreated animals (MNshort 1.2 x 107 copies eq./mL P = 0.0032, Fig 3A). CSF vRNA was

decreased in MN treated animals (MNpersistent: 7.5 x 103 copies eq./mL and MNshort: 8.6 x 103

copies eq./mL) at endpoint compared to untreated animals at 8 wpi (7.2 x 104 copies eq./mL);
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https://doi.org/10.1371/journal.pone.0196949.g003

Correlations of viral loads and neuronal injury in SIV

PLOS ONE | https://doi.org/10.1371/journal.pone.0196949 May 11, 2018 10 / 21

https://doi.org/10.1371/journal.pone.0196949.g003
https://doi.org/10.1371/journal.pone.0196949


however, differences in CSF viral burden between the MN-treated cohort and untreated ani-

mals did not reach statistical significance (Fig 3B).

Brain vRNA levels in MN-treated animals were lower than those in untreated animals

(MNpersistent 1.1 x 105 copies eq./g P = 0.006; MNshort 2.0 x 104 copies eq./g P<0.0001; Fig 3C).

Short-term CD8-depleted MN-treated animals had significantly reduced brain vRNA levels

when compared to all other cohorts, including persistently CD8-depleted MN-treated animals

(P = 0.032).

Treatment with MN prevented an increase of circulating activated CD14+/CD16+ mono-

cytes. Both MN cohorts had significantly lower CD14+/CD16+ monocytes compared to

untreated animals at their endpoints (MNpersistent P = 0.004; MNshort P = 0.0035). Data on

MN-treated animals have previously been reported in Campbell et al. [41].

Neuroimaging and neuropathology. The decline in NAA/Cr was arrested with MN treat-

ment (Fig 4A) resulting in higher NAA/Cr levels when compared to untreated animals sacri-

ficed at 8 wpi, (MNpersistent P = 0.029; MNshort P = 0.0012). Animals that were MN-treated and

had partial immune reconstitution of the CD8+ T cell population had the most complete

recovery (Fig 4A). Data on the neuroprotective nature of MN on neuronal injury have been

previously reported in Ratai et al. [40].

MAP2 levels in all treated cohorts were significantly higher than in untreated SIV-infected

animals (MNpersistent P = 0.010; MNshort P = 0.016) and were comparable to the four uninfected

animals (Fig 4B). There was no significant difference between the SYN levels of MN-treated

and untreated SIV+ animals (Fig 4C).

Endpoint correlations between viral loads and compartments

There was a strong correlation between the amount of viral RNA in the plasma and in the

brain (P = 0.00030, Rρ = 0.68). In addition, there is a significant correlation between viral loads

in brain and CSF (P = 0.0080, Rρ = 0.54). There was no significant correlation, however,

between viral RNA in plasma and in CSF (P = 0.16; Table 2).

B. MAP2 C. SYNA.NAA/Cr

0 2 4 6 8 10 12
60
65
70
75
80
85
90
95

100
105
110

*

*
*

NA
A/

Cr
 in

 F
ro

nt
al

 C
or

te
x 

(%
)

Weeks Post Infection

MN CART

0

50

100

150

200

250

300

M
AP

2 
le

ve
ls

Controls Untreated cART MN MN short

* * **

0

50

100

150

200

250

300

350

**

SY
N 

Le
ve

ls

Controls Untreated cART MN MN short

Fig 4. Viral RNA and neuronal markers (NAA/Cr, MAP2, and SYN) with and w/o treatments. A. The decrease in NAA/Cr was arrested with this regimen of

combination antiretroviral treatment as well as minocycline treatment resulting in higher NAA/Cr levels when compared to untreated animals sacrificed at 8 wpi,

(cART P = 0.09; MNpersistent P = 0.029; MNshort P = 0.0012). Animals that were minocycline treated and had partial immune reconstitution of the CD8 T cell population

showed the best results. B. MAP2 levels in combination antiretroviral treated and in minocycline treated animals were significantly higher than untreated SIV-infected

animals (cART P = 0.006; MNpersistent P = 0.010; MNshort P = 0.016). C. Similarly, SYN levels in combination antiretroviral treated animals were significantly higher than

untreated SIV-infected animals (P = 0.002). (� indicates statistically significant differences when compared to untreated animal.).
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Expansion of the circulating CD14+/CD16+ monocyte subset strongly correlated with viral

levels in plasma (P = 0.0018, Rρ = 0.61) and brain (P = 0.00030, Rρ = 0.68), consistent with pre-

vious findings [18, 41, 49], but did not correlate with viral RNA in the CSF (P = 0.27, Rρ =

0.26).

Endpoint correlations between viral /loads and neuronal biomarkers

Understanding the relationship between the severity of neuronal injury and the amount of

virus in all three compartments may explain the viral entry into the CNS and the subsequent

fate of the virus. In our study, the severity of neuronal injury was reflected by declines of neu-

ronal biomarkers which correlated with the amount of virus in the brain and plasma. The

severity of neuronal injury also correlated with the number of activated CD14+/CD16+ mono-

cytes, but not with the CSF viral load (Table 3). At endpoints, significant inverse correlations

were found between all three neuronal biomarkers (NAA/Cr, MAP2, SYN) and viral levels in

both brain and plasma (S2 Fig), indicating more severe neuronal injury with higher viral levels

in plasma and brain compartments. In addition, endpoint levels of CD14+/CD16+ monocytes

significantly inversely correlated with NAA/Cr and MAP2 levels. Inverse correlation between

endpoint CD14+/CD16+ monocyte levels and SYN levels trended toward statistical signifi-

cance. CSF viral loads had no significant correlation with any of the neuronal markers at

endpoint.

Table 2. Correlation between viral loads in different compartments and CD14+/CD16+ monocytes.

Endpoint Measure Endpoint Measure N Spearman Rank Correlation Coefficient rho P Value

Plasma Viral Load Brain Viral Load 23 0.68 0.00030

CSF Viral Load Brain Viral Load 23 0.54 0.0080

Plasma Viral Load CSF Viral Load 23 0.30 0.16

Plasma Viral Load CD14+/CD16+ Monocytes 23 0.61 0.018

Brain Viral Load CD14+/CD16+ Monocytes 23 0.52 0.018

CSF Viral Load CD14+/CD16+ Monocytes 23 0.26 0.27

https://doi.org/10.1371/journal.pone.0196949.t002

Table 3. Correlations between viral load and neuronal markers.

Endpoint Measure Neuronal Marker N Spearman Rank Correlation Coefficient rho P Value

Brain Viral Load ΔNAA/Cr 23 -0.48 0.019

Brain Viral Load MAP2 23 -0.52 0.012

Brain Viral Load SYN 23 -0.42 0.048

Plasma Viral Load ΔNAA/Cr 23 -0.48 0.019

Plasma Viral Load MAP2 23 -0.47 0.022

Plasma Viral Load SYN 23 -0.47 0.024

CD16+/14+ Blood Monocytes ΔNAA/Cr 23 -0.44 0.035

CD16+/14+ Blood Monocytes MAP2 23 -0.44 0.034

CD16+/14+ Blood Monocytes SYN 23 -0.35 0.10

CSF Viral Load ΔNAA/Cr 23 -0.19 0.39

CSF Viral Load MAP2 23 -0.25 0.26

CSF Viral Load SYN 23 -0.23 0.30

Longitudinal Measure Neuronal Marker N Correlation Coefficient R P Value

Plasma Viral Load ΔNAA/Cr 88 -0.41 0.0053

CD14+CD16+ Blood Monocytes ΔNAA/Cr 85 -0.49 0.0001

CSF Viral Load ΔNAA/Cr 88 -0.30 0.17

https://doi.org/10.1371/journal.pone.0196949.t003
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Longitudinal correlations between viral loads and neuronal biomarkers

In the longitudinal data analysis of the study, neuronal biomarker NAA/Cr shows a strong

inverse correlation with plasma viral load (P = 0.0053, Rρ = -0.41) and levels of activated

CD14+/CD16+ monocytes (P = 0.0001, Rρ = -0.49). No correlation was found between NAA/

Cr and CSF viral load (P = 0.17, Rρ = 0.30; Table 3).

Discussion

The accelerated (i.e., CD8 lymphocyte-depleted) SIV-infected macaque model recapitulates

key features of HIV neuropathogenesis [18, 25, 26]. Immunodeficiency virus-induced neuro-

nal injury is highly reproducible using this model, thus allowing scrutiny of the complete

chain of events underlying HAND progression in the same living animal. During SIV progres-

sion, viral loads were measured in three compartments (e.g. plasma, CSF, and brain) and neu-

ronal health was assessed longitudinally by the in vivo MRS marker NAA/Cr. Neuronal

structural integrity was assessed postmortem by immunohistochemical staining for SYN and

MAP2, markers of synaptodendritic integrity. SIV progression was manipulated by the follow-

ing three treatment conditions: 1) cART (PMPA, FTC, and stavudine), 2) minocycline, 3) min-

ocycline in the setting of incomplete immune suppression.

Viral loads plateaued early after infection and CD8 depletion

In this primate model, plasma viral load reached high levels and then plateaued. The amount

of virus in the brain was approximately two logs lower than in plasma and did not change sig-

nificantly after blood levels plateaued at 4 wpi. Finally, the lowest viral loads were observed in

the CSF. Therefore, the relative vRNA concentrations within each compartment and the corre-

lations between viral loads (shown in Table 2) suggest a trajectory of the virus from blood to

brain to CSF. Furthermore, the observed plateauing of plasma, brain, and CSF viral loads sug-

gests a balance in production of virus in blood was attained. Thus, we hypothesize that the pro-

duction of virus within each compartment is balanced by clearance mechanisms resulting in

the observed “steady-state” levels. One clearance mechanism may constitute the movement of

virus from one compartment to the other. In the cART and MN treatment cohorts, the plasma

viral load also appeared to plateau as therapy began, which suggests that a different “steady

state” was attained with a new balance between viral production and removal.

Lack of correlation between plasma and CSF viral loads in our SIV model supports observa-

tions of discordant levels of HIV in plasma and CSF both in neuroasymptomatic and neuro-

cognitively-impaired individuals receiving antiretroviral treatment [50, 51]. Our study

comparing viral levels in three different compartments raises the possibility of preferential

influx of virus from plasma to CNS parenchyma and subsequent harboring of the virus with

potential for persistent seeding to the CSF and/or plasma.

Neuronal injury strongly correlated with CNS vRNA

SIV-induced alterations in neuronal viability, as assessed in vivo and confirmed postmortem,

were found to correlate with the amount of vRNA in the corresponding region. In SIV-

infected animals that were not treated, in vivo brain neuronal marker levels continued to

decrease despite a plateau in viral loads in the three compartments. Thus, neuronal injury

appears to be cumulative.

The provision of MN or cART, however, stabilized markers for neuronal viability indicat-

ing there is no further damage to neurons or, alternatively, that the rate of neuronal injury

caused by the continuing CNS infection is balanced by endogenous neuronal recovery

Correlations of viral loads and neuronal injury in SIV
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mechanisms. Postmortem studies using immunohistochemical staining for SYN and MAP2

revealed that SIV-induced alterations are reversible after the initiation of cART and MN treat-

ment. These results are consistent with our prior studies [18, 40].

Peripheral factors such as plasma vRNA levels and activated monocytes are

critical factors in CNS infection and injury

In this accelerated SIV model, levels of vRNA in CNS parenchyma strongly correlate with

plasma vRNA levels, implicating peripheral viral replication as a critical factor in CNS infec-

tion. Furthermore, unsuppressed plasma viral levels corresponded with increased production

of activated monocytes in the periphery, which have been shown to play a major role in traf-

ficking the virus into the CNS [18, 41, 52, 53] and to correlate with neurocognitive impairment

in the setting of HIV [54].

Control of peripheral factors can ameliorate CNS injury

As compared to zur Megede’s study, one interesting observation in our study was that the uti-

lized cART did not very effectively decrease the viral loads [37]. However, despite the modest

reduction in plasma viral load by cART, neuronal injury was alleviated. Both cART and MN

inhibited activated monocyte expansion, and these changes paralleled recovery of NAA/Cr lev-

els in the brain. This suggests that manipulation of peripheral factors can have a significant

impact on the progression of neuronal injury.

Our findings, if projected to HIV-infected humans, may offer valuable insight into

HAND’s therapeutic conundrum, discussed below:

Relationship between CNS vRNA and neuropsychological functioning in

HIV-1 infection

The observed plateauing of the brain viral load in the primate model may explain prior reports

of poor correlation between CNS viral levels and neurocognitive status of HIV-infected indi-

viduals [15, 55–57]. While viral loads seem to plateau, neuronal marker levels continued to

decrease, indicating that neuronal injury is cumulative.

Effectiveness of AZT

The modest effectiveness of cART treatment helps explain the observations of neurocognitive

recovery with the use of anti-retrovirals with poor CNS penetrance [58]. These include the

landmark study that demonstrated HIV-associated cognitive abnormalities are partially ame-

liorated after the administration of zidovudine (AZT), an anti-retroviral drug with poor CNS

penetrance [58]. The lowering of plasma viral load by such drugs should reduce the viral flux

into the CNS with a resultant lower viral load in that compartment, allowing neuronal

recovery.

Era of highly active antiretroviral therapy (HAART)

We hypothesize that the time course and cumulative nature of neuronal injury seen in this

model may also suggest a mechanism for the slowly progressive neurocognitive changes

observed in the current era of highly active antiretroviral therapy [59–61]. While HAART ther-

apy may greatly suppress viremia, imperfect adherence to therapy or other factors may lead to

transient increases in viremia with a resultant increase of virus into CNS compartments. Such

increases may temporarily overcome constituent neuroprotective mechanisms. While a single
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episode may be clinically silent, the cumulative effect over many years could produce clinically

observable cognitive dysfunction.

Failure of clinical trials using neuroprotective agents

In HIV studies, degree of neurocognitive impairment has been shown to correlate with

reduced NAA levels [32]. Although neuronal apoptosis has been observed in brains of individ-

uals with HAND [62, 63], the general consensus is that prolonged neuronal dysfunction pre-

cipitates permanent neuronal loss. Reversible alterations in synaptodendritic networks have

been demonstrated in the setting of HIV infection [16, 64], and damage to these structures is a

strong pathological correlate of neurocognitive impairment due to HIV [33, 65].

The time course of reversible and permanent neuronal injury may also provide an experi-

mental design explanation for the failures of clinical trials conducted to date in which neuro-

protective and other drugs were used as adjunct therapy to ameliorate neurocognitive deficits

in HIV-infected individuals. Such trials typically involve treatment that last up to 20 weeks

[66, 67]. It is likely that the neurocognitive dysfunction in HIV-infected individuals is due

both to permanent neuronal injury that has accumulated over years and as well as some degree

of recoverable injury that has occurred recently. It would be expected that a neuroprotective

drug would help reverse the recoverable but not the permanent components of injury. If the

permanent injuries are much greater than the recoverable ones, then failure in improving neu-

rocognitive measurements are to be expected. A more rational design of clinical trials that

account for the CNS viral load and neuronal damage may produce better outcomes.

Interference strategies

Our study also suggests that the interference of viral trafficking into the CNS may be a useful

approach, especially therapies targeting CD14+/CD16+ monocytes [18, 52–54, 57, 68]. The

severity of neuronal injury strongly correlated with the expansion of CD14+/CD16+ mono-

cytes, suggesting HAND is instigated by this peripheral monocyte subset. Expansion of the

CD14+/CD16+ monocytes has been shown to correlate with lower neuropsychological perfor-

mance and CNS injury in HIV+ individuals [54, 68] and with CNS disease in the setting of

SIV infection [18]. Activated monocytes’ clear pathogenic role in HAND suggests that effective

HAND treatments may require incorporation of monocyte-directed therapies targeting this

potential peripheral viral reservoir, as proposed by Valcour et al [69].

Potential approaches include interference of virally infection monocytes, which appears to

explain in part the efficacy of MN as a neuroprotective agent [38, 41]. Minocycline, which was

previously shown to suppress SIV-induced encephalitis [70, 71], was also able to reduce viral

loads in the brain [38]. An effective approach is to use antiretrovirals that can penetrate the

blood brain barrier [6, 72].

Finally, a combination of drugs that target different points in this chain of events may be

the most effective strategy. Future studies will include the use of antiretroviral therapy in com-

bination with MN or other neuroprotective drugs.

Summary and relevance for the future

In the accelerated SIV model, there is significant turnover of replicating virus within the brain.

Additionally, the severity of neuronal injury is directly related to the brain viral load and may

not be reflected by CSF viral levels. Such injury is reversible via reduction of brain viral levels.

Targeting plasma viral load and disruption of trafficking of the virus into the CNS compart-

ment via activated monocyte/macrophages are two potential approaches to preserving and/or

reversing neuronal injury. Trafficking of the virus from plasma to the CNS parenchyma via
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activated monocytes may explain several uncertainties regarding the state of the CNS in those

infected by HIV and offers valuable insight into strategies to promote CNS health.

Supporting information

S1 Fig. Study design. Twenty-three animals were infected with SIVmac251 virus and depleted

of CD8+ T lymphocytes using anti-CD8 antibody. 12 animals remained untreated and were

sacrificed at 4, 6 and 8 weeks post inoculation (wpi). Eleven animals were treated with either

cART (4 animals) starting at 6 wpi or minocycline (7 animals) starting at 4 wpi. MRI and MRS

was performed twice pre-inoculation and biweekly until sacrifice.

(PDF)

S2 Fig. Correlations between viral loads and neuronal markers at endpoint. A. Plasma Viral

Load was observed to be inversely correlated with percent changes in N-Acetylasparate/Crea-

tine (Rρ = -0.48, P = 0.019). B. Plasma Viral Load was inversely correlated with microtubule

associated protein 2 (Rρ = -0.47, P = 0.022) at endpoint. C. Plasma Viral Load was negatively

correlated with synaptophysin (Rρ = -0.47, P = 0.024) at endpoint. D. Brain Viral Load was

shown to be inversely correlated with percent changes in N-Acetylasparate/Creatine (Rρ =

-0.48, P = 0.019) at endpoint. E. Brain Viral Load was observed to be negatively correlated with

microtubule associated protein 2 (Rρ = -0.52, 0.012) at endpoint. F. Brain Viral Load was

inversely correlated with synaptophysin (Rρ = -0.42, P = 0.048) at endpoint.

(PDF)
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