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Objective(s): HIV-associated neurocognitive disorders (HAND) remain prevalent in
HIV-infected patients on antiretroviral therapy (ART), but the underlying mechanisms
are unclear. Some features of HAND resemble those of age-associated cognitive decline
in the absence of HIV, suggesting that overlapping mechanisms may contribute to
neurocognitive impairment.

Design: Cross-sectional analysis of cerebrospinal fluid (CSF) from 100 individuals (46
HIV-positive patients and 54 HIV-negative controls).

Methods: Untargeted CSF metabolite profiling was performed using liquid/gas chroma-
tography followed by mass spectrometry. Cytokine profiling was performed by Bioplex.
Bioinformatic analyses were performed in Metaboanalyst and R.

Results: Alterations in the CSF metabolome of HIV patients on ART mapped to path-
ways associated with neurotransmitter production, mitochondrial function, oxidative
stress, and metabolic waste. Many CSF metabolites altered in HIV overlapped with those
altered with advanced age in HIV-negative controls, suggesting a pattern indicative of
accelerated aging. Machine learning models identified neurotransmitters (glutamate,
N-acetylaspartate), markers of glial activation (myo-inositol), and ketone bodies (beta-
hydroxybutyric acid, 1,2-propanediol) as top-ranked classifiers of HAND. These CSF
metabolites correlated with worse neurocognitive test scores, plasma inflammatory
biomarkers [interferon (IFN)-a, IFN-g, interleukin (IL)-8, IL-1b, IL-6, IL-2Ra], and intrathe-
cal IFN responses (IFN-g and kynurenine : tryptophan ratio), suggesting inter-relationships
between systemic and intrathecal inflammation and metabolic alterations in CSF.

Conclusions: Alterations in the CSF metabolome of HIV patients on ART suggest that
persistent inflammation, glial responses, glutamate neurotoxicity, and altered brain
waste disposal systems contribute to mechanisms involved in HAND that may be
augmented with aging. � 2014 Wolters Kluwer Health | Lippincott Williams & Wilkins
AIDS 2014, 28:1579–1591
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Introduction

Despite reduced incidence of severe forms of HIV-
associated neurocognitive disorders (HAND) in HIV
patients on combination antiretroviral therapy (ART),
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mild forms including asymptomatic neurocognitive
impairment (ANI) and minor neurocognitive disorder
(MND) remain prevalent, affecting 20–50% [1–3]. Prior
to the introduction of ART, factors associated with HAND
included plasma and cerebrospinal fluid (CSF) HIV RNA
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and inflammation markers [e.g. chemokine (CC motif)
ligand 2 (CCL2), tumor necrosis factor (TNF), interleukin
(IL)-6, neopterin] [4–8]. In HIV patients on ART, HAND
is associated with older age (> age 50), lower nadir CD4þ,
innate immune activation, chronic inflammation, hepatitis
C virus (HCV) coinfection, cardiovascular risk factors, and
metabolic disorders [9–16]. The multifactorial nature of
factors contributing to HAND suggests these disorders
consist of subtypes reflecting distinct pathophysiological
mechanisms [3,8,17].

HIV patients on ART have a higher burden of neurological
disorders with advancing age compared to HIV-negative
controls, and these disorders occur at ayounger age [18,19].
The increased prevalence of these disorders, as well as other
age-associated comorbidities, including cardiovascular,
kidney, liver, and bone disease, is thought to reflect
accelerated aging [20–22]. Chronic inflammation plays an
important role in this phenotype, termed ‘inflammaging’,
and predicts age-associated comorbidities and mortality in
HIV patients [23–25]. Markers of inflammation are
detected in CSF and brain from HIV patients on ART
[26–31]. Neuroinflammation is a prominent feature
of age-associated neurodegenerative diseases including
Alzheimer’s and Parkinson’s disease, and has been
associated with altered synaptic connectivity and blood–
brain barrier (BBB) function and neuronal injury [32–34].
Whether similar mechanisms contribute to HAND is
unclear.

Chronic HIV infection is associated with metabolic
changes in brain, even among patients on suppressive
ART [27,35–37]. Whereas brain tissue is difficult to
obtain, CSF is accessible and reflects the biochemical
milieu of the central nervous system [38–40]. Early
targeted studies of CSF metabolites identified alterations in
several neurotoxic metabolites including those associated
with the kynurenine (e.g. quinolinic acid) and nitric oxide
pathways during HIVand simian immunodeficiency virus
(SIV) infection [7,41,42]. CSF lipidomics identified
alterations in lipid metabolism, including increased
carnitine, acyl-carnitines, fatty acids, and phospholipids
in SIV infection [43], and increased ceramides, sphingo-
myelins, and cholesterol in HIV patients on ART with
HAND [44–47]. Here, we performed untargeted
metabolomics of CSF from 100 HIV patients and HIV-
negative controls to identify altered metabolic pathways
associated with HAND. We also examined relationships
between these metabolic alterations and those associated
with advancing age in HIV-negative controls.
Methods

Study participants
Cerebrospinal fluid samples from HIV patients (n¼ 46;
36 on ARTand 10 not on ART) collected between 1999
and 2009 were from the National NeuroAIDS Tissue
pyright © Lippincott Williams & Wilkins. Unautho
Consortium (NNTC) (Manhattan HIV Brain Bank,
National Neurological AIDS Bank, California Neuro-
AIDS Tissue Network, Texas NeuroAIDS Research
Center) and CNS HIV Anti-Retroviral Therapy
Effects Research (CHARTER) study. Matched plasma
metabolite profiles were available for 20 HIV patients. All
HIV patients were enrolled with written informed
consent and institutional review board (IRB) approval.
Inclusion criteria were advanced disease (nadir CD4þ

<300 cells/ml). Exclusion criteria were confounding
neurological and psychiatric disorders, systemic opportu-
nistic infection, severe hepatotoxicity (defined as grades 3
or 4 by AIDS Clinical Trials Group [48]), and moderate/
severe renal insufficiency [49]. HAND clinical diagnoses
were determined using established criteria [50]. Neurop-
sychological impairment due to other causes (NPI-O) was
diagnosed when factors in addition to HIV made
significant contributions to neurocognitive impairment
(NCI). HIVand HCV-negative control CSF samples from
young (<50 years old) and older (�50 years old) patients
collected between 2010 and 2011 were from Bioreclama-
tion (Westbury, New York) and used with Dana-Farber
Cancer Institute IRB approval. Samples were de-identified
remnants from diagnostic testing, prescreened for sCD14
and CCL2, to exclude those with levels outside normal
ranges reported in the literature (>0.25 mg/ml and
>1000 pg/ml, respectively).

Neurocognitive testing and neurocognitive
impairment classification
All participants were administered a comprehensive test
battery designed to assess seven domains of neurocog-
nitive function (Supplemental Digital Content 1, http://
links.lww.com/QAD/A519). Demographically cor-
rected global T scores were generated from individual-
domain T scores as described [51]. HIV patients were
classified as impaired if they had a HAND clinical
diagnosis (ANI, MND, HAD, or NPI-O) together with
global T score less than 40 (or at least two domain T scores
<40). Patients were classified as not impaired if they had
no clinical diagnosis of HAND and global T score at least
40. Three patients with an ANI diagnosis, global T scores
at least 40, and only one domain score less than 40 were
classified as not impaired.

Quantification of soluble markers in
cerebrospinal fluid and plasma
Interferon (IFN)-a, IFN-g, IL-8, C-X-C motif chemo-
kine ligand (CXCL)9, CXCL10, IL-1b, IL-6, TNF-a
and IL-2 receptor alpha (Ra) were measured using
Bioplex (Bio-Plex System; Bio-Rad Laboratories,
Hercules, California, USA). Soluble CD14 (sCD14)
and CCL2 were quantified by ELISA (R&D Systems,
Minneapolis, Minnesota, USA).

Metabolomic profiling
Metabolomic profiling was performed by Metabolon
(Durham, North Carolina, USA) using ultra high
rized reproduction of this article is prohibited.
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performance liquid or gas chromatography and tandem
mass spectrometry as described in the Supplemental
Methods (Supplemental Digital Content 1, http://links.
lww.com/QAD/A519) [52,53].

Data processing, bioinformatics, and statistical
analysis
Metabolite data were normalized by median centering.
Missing values were imputed with the lower limit of
detection for a given metabolite. Significantly altered
metabolites were defined by fold change greater than 1.2,
a P-value less than 0.05, and false discovery rate (FDR)
10% or less. Classification analysis [principal component
analysis (PCA), partial least-squares discriminant analysis
(PLS-DA), random forest, support vector machine
(SVM), and unsupervised hierarchical clustering] were
performed in Metaboanalyst (http://www.metaboana-
lyst.ca). Quantitative enrichment analysis was performed
in Metabolite Set Enrichment Analysis (MSEA) using the
Metabolic Pathways library. Visualization of pathway
mapping [Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Small Molecule Pathway Database
(SMPDB) pathways] was performed in Cytoscape.
Additional statistical analyses were performed on log-
transformed data in R. Pearson correlations were used to
evaluate relationships between metabolites (P< 0.05,
FDR�0.1). Spearman correlations were used to examine
relationships between metabolites, global and domain T
scores, and markers of intrathecal [sCD14, CCL2, IL-6,
IFN-g, and kynurenine to tryptophan ratio (K : T)] and
systemic inflammation (IFN-a, IFN-g, IL-8, CXCL9,
CXCL10, IL-1b, IL-6, IL-2Ra, sCD14, and CCL2).
Multiple hypothesis testing corrections were performed
for fold change and correlation analyses by calculating
FDR in fdrtool.
Results

HIV and aging cohorts
The HIV cohort was predominately male with late-stage
disease (nadir CD4þ <300 cells/ml) and high prevalence
of HCV coinfection (64%) (Supplemental Digital
Content 2, http://links.lww.com/QAD/A519), and
included young and older patients (50% <45 years and
50% �45 years). Two patients had mild hyperlipidemia,
one had lipodystrophy, and one had diabetes. Of those on
ART [n¼ 36; median time on ART 26 months;
interquartile range (IQR) 16–49], 72% were on protease
inhibitors, 100% were on nucleoside reverse transcriptase
inhibitors (NRTIs), and 31% were on drugs associated
with mitochondrial toxicity (zidovudine, stavudine and
didanosine) HIV patients on ART (n¼ 36) had lower
plasma (mean log10 2.87 vs. 4.99 copies/ml; P< 0.001)
and CSF viral loads (mean log10 1.68 vs. 2.87 copies/ml;
P¼ 0.009) than those not on ART (n¼ 10). HIV patients
had normal CSF protein levels and white blood cells
Copyright © Lippincott Williams & Wilkins. Unaut
counts. The HIV cohort had a high prevalence of
NCI (69%), the majority having ANI or MND. The
aging cohort was composed of HIV-negative controls.
Among them, 44% were young [<age 50; median age
40 (33–44)] and 56% were older [� age 50; median age
57 (53–67)].

Characterization of cerebrospinal fluid
metabolomes from HIV and aging cohorts
Untargeted metabolomic profiling of 100 CSF samples
detected 199 (145 named and 54 unnamed) and 204 (149
named and 55 unnamed) metabolites in the HIV and
aging cohorts, respectively (Supplemental Digital Con-
tent 3, http://links.lww.com/QAD/A519). To reduce
noise in the analysis, preprocessing was performed to
exclude xenobiotics and metabolites with more than 70%
imputed values. One HIV-negative sample was excluded
on the basis of outlier analysis in Metaboanalyst. One
hundred and seven named metabolites detected across
both cohorts met the acceptability criteria. The majority
of the detected metabolites were amino acids (49%),
followed by carbohydrates (19%), lipids (16%), and
nucleotides (8%), and were mapped to biologically
relevant pathways including neurotransmitters [gluta-
mate, N-acetylaspartate (NAA), N-acetylaspartylgluta-
mic acid (NAAG), glycine]; pathways associated with
neurotransmitter production [phenylalanine and tyrosine
metabolites (dopamine), tryptophan metabolites (seroto-
nin), and homocarnosine (gamma-aminobutyric acid
(GABA))]; markers of glial activation (choline, myo-
inositol, arachidonate); markers of mitochondrial dys-
function (acyl-carnitines and Krebs cycle components);
oxidation products (5-oxoproline and homocarnosine)
and markers of oxidative stress (purine metabolites);
and metabolic waste products (ketone bodies, lactate,
creatinine, phenylacetylglutamine, p-cresol sulfate).

Alterations in the cerebrospinal fluid
metabolome of HIV patients on antiretroviral
therapy map to pathways associated with
neurotransmitter production, mitochondrial
dysfunction, oxidative stress, and metabolic
waste
Fifteen named and 12 unnamed metabolites distinguished
between HIV patients on ART (n¼ 36) and age and sex-
matched HIV-negative controls (fold change >1.2,
P< 0.01, FDR <10%; Fig. 1a, Supplemental Digital
Content 4 and 5, http://links.lww.com/QAD/A519).
The 15 named metabolites classified HIV vs. control
individuals with more than 90% predictive accuracy in
random forest. Mapping altered named metabolites to
KEGG and SMPDB pathways identified alterations in
aspartate and glutamate metabolism, phenylalanine and
tyrosine metabolism, GABA synthesis, Krebs cycle,
mitochondrial electron transport chain, carnitine metab-
olism, glutathione metabolism, and ketone body metab-
olism, corresponding to metabolic alterations associated
with altered neurotransmitter production, mitochondrial
horized reproduction of this article is prohibited.

http://links.lww.com/QAD/A519
http://links.lww.com/QAD/A519
http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
http://links.lww.com/QAD/A519
http://links.lww.com/QAD/A519
http://links.lww.com/QAD/A519


Co

1582 AIDS 2014, Vol 28 No 11

Control
HIV on ART

–4 –2 0 2 4

5-
ox

op
ro

lin
e

p-
cr

es
ol

 s
ul

fa
te

ph
en

yl
ac

et
yl

gl
ut

am
in

e

3(
4-

hy
dr

ox
yp

he
ny

l)-
la

ct
at

e

su
cc

in
at

e

gl
ut

am
at

e

B
H

B
A

1,
2 

pr
op

an
ed

io
l

m
al

at
e

3-
de

hy
dr

oc
ar

ni
tin

e

pr
ol

in
e

N
A

A
G

N
-a

ce
ty

l-3
-m

et
hy

l-
hi

sd
in

e

ho
m

oc
ar

no
si

ne

N
A

A

Mitochondrial function

Mitochondrial
electron

transport chain
NAA NAAG

homocarnosine GABA
synthesis

3-(4-hydroxyphenyl)lactate

Alanine,
aspartate, and

glutamate
metabolism

Phenylalanine and
tyrosine

metabolismglutamate

Krebs cycle
succinate

malate

5-oxoproline

Glutathione
metabolism

p-cresol sulfate phenylacetylglutamine

Ketone bodies

1,2-propanediol BHBA
Carnitine

metabolism
3-dehydrocarnitine

Neurotransmitter production

Oxidative stress Metabolic waste

2
1

0
–1

S
ca

le
d 

in
te

ns
ity

–2
–3

–4

glutamate

P = 0.012
P = 0.018

P = 0.050

P = 0.039

P = 0.001

P = 0.001

P = 0.004

P = 0.005

P = 0.005
P = 0.002

NAA

Neurotransmitter production Mitochondrial function Metabolic waste

NAAG 3-dehydrocarnitine succinate malate BHBA 1,2-propanediol p-cresol
sulfate

phenylacetyl-
glutamine

–4
–2

0
2

4
6

8

4
3

2
1

0
–1

–2

Control

HIV on ART VL < 400

(a)

(c)

(b)

Fig. 1. Cerebrospinal fluid metabolomics identifies metabolites that distinguish HIV patients on antiretroviral therapy from
HIV-negative controls. (a) Unsupervised hierarchical clustering of signature metabolites (n¼15; FC >1.2, P< 0.01, FDR <10%)
altered in HIV patients on ART (n¼36, red) compared to age and sex-matched HIV-negative controls (n¼ 36, blue). Red and blue
indicate increased and decreased metabolite levels, respectively. FDR was used to correct for multiple hypothesis testing. (b)
Metabolites altered in HIV patients on ART compared to HIV-negative controls mapped to biosynthetic pathways linked to
production of neurotransmitters, mitochondrial dysfunction, oxidative stress, and metabolic waste products. Altered metabolites
(FC >1.2, P<0.01, FDR <10%) were mapped to metabolite pathways and interaction networks were generated in Cytoscape.
Green and red nodes represent metabolites with increased and decreased levels, respectively. White nodes represent pathways.
(c) Box plots of metabolites altered in HIV patients on ART with low plasma viral loads (n¼20, plasma VL<400 copies/ml, CSF VL
<50 copies/ml) compared to age and sex-matched HIV-negative controls (n¼ 20) that could be mapped to biological processes
associated with NCI. Medians are represented by horizontal bars, boxes span the interquartile range (IQR) and whiskers extend to
extreme data points within 1.5 times IQR. Outliers plotted as open circles lie outside 1.5 times the IQR. Blue and red represent
controls and HIV patients, respectively. The P-values were calculated using Welch’s t-tests. ART, antiretroviral therapy; BHBA,
beta-hydroxybutyric acid; CSF, cerebrospinal fluid; FC, fold change; FDR, false discovery rate; GABA, gamma-aminobutyric acid;
NAA, N-acetylaspartate; NAAG, N-acetylaspartylglutamate; NCL, neurocognitive impairment; VL, viral load.
dysfunction, oxidative stress, and accumulation of
metabolic waste products (Fig. 1b). Fourteen of these
15 named metabolites were altered in the subgroup of
HIV patients on ART with suppressed viral replication
(n¼ 20, plasma viral load <400 copies/ml, CSF viral
load <50 copies/ml) compared to age and sex-matched
HIV-negative controls (n¼ 20; Fig. 1c). Eleven were
altered in the subgroup of HIV patients on stable ART
pyright © Lippincott Williams & Wilkins. Unautho
(>2 years) with maximally suppressed plasma viral loads
(<50 copies/ml) (n¼ 10 per group; Supplemental Digital
Content 6, http://links.lww.com/QAD/A519) and 13
were altered in HIV patients not on ART (n¼ 10 patients
per group, median CSF viral load 328 copies/ml, median
plasma viral load 76 936 copies/ml) (Supplemental Digital
Content 5, http://links.lww.com/QAD/A519). An
additional 12 metabolites were altered only in HIV
rized reproduction of this article is prohibited.

http://links.lww.com/QAD/A519
http://links.lww.com/QAD/A519


Cerebrospinal fluid metabolomics of HIV patients Cassol et al. 1583
patients not on ART, including kynurenine and markers
of glial cell activation (choline and myo-inositol)
(Supplemental Digital Content 7, http://links.lww.
com/QAD/A519). Therefore, alterations in these CSF
metabolites were detected irrespective of viral replication
in CSF and plasma or current ART.

Alterations in the HIV cerebrospinal fluid
metabolome overlap with those associated with
normal aging in HIV-negative individuals
Given recent studies suggesting accelerated aging in HIV
patients on ART [23,24], we compared alterations in the
CSF metabolome of young HIV patients on ART
(n¼ 16, age <50, plasma viral load <1000 copies/ml and
CSF viral load <50 copies/ml) to the profile altered with
aging in HIV-negative controls (n¼ 23 per group, young
vs. older patients) (Supplemental Digital Content 8,
http://links.lww.com/QAD/A519). Thirty-four named
and 12 unnamed metabolites were altered in older (age
�50) compared to sex and race-matched young HIV-
negative controls (age <50), including metabolites
associated with neurotransmitter production [glutamate,
homocarnosine, 3-(4-hydroxyphenyl)lactate], markers of
glial activation (choline and arachidonate), oxidative
products (5-oxoproline) and markers of oxidative stress
(urate, hypoxanthine), and metabolic waste products
[3-hydroxybutyrate (BHBA), 1,2-propanediol, phenyla-
cetylglutamine, lactate] (Fig. 2a). Many of these
metabolites correlated positively with advancing age
(P< 0.05; Fig. 2b). Ten named and four unnamed
metabolites altered in young HIV patients on ART vs. age
and sex-matched HIV-negative controls overlapped with
those associated with normal aging in HIV-negative
individuals including glutamate, phenylacetylglutamine,
succinate, and ketone bodies (BHBA and 1,2 propane-
diol) (Fig. 3), suggesting a pattern indicative of accele-
rated aging.

Neurocognitive impairment is associated with
alterations in cerebrospinal fluid
neurotransmitters/neuropeptides, markers of
glial activation, and accumulation of metabolic
waste in HIV patients on antiretroviral therapy
To identify metabolic pathways associated with HANDs,
we compared CSF metabolite profiles between HIV
patients on ARTwith (n¼ 12) and without (n¼ 14) NCI
for groups matched by age, sex, race, and current and
nadir CD4þ (plasma viral load <1000 copies/ml, CSF
viral load <50 copies/ml). Seven metabolites differen-
tiated between HIV patients with and without NCI, but
these differences did not reach statistical significance
following multiple testing correction (Supplemental
Digital Content 9, http://links.lww.com/QAD/A519).
Next, we performed fold-change analysis on HIV
patients with or without NCI vs. age and sex-matched
HIV-negative controls (n¼ 14). Ten metabolites distin-
guished HIV patients with NCI, but not HIV patients
without NCI, from HIV-negative controls including
Copyright © Lippincott Williams & Wilkins. Unaut
neurotransmitters (glutamate, NAA); markers of glial
cell activation (myo-inositol, arachidonate); markers of
mitochondrial dysfunction (propionylcarnitine, 3-dehy-
drocarnitine); and metabolic waste products (BHBA,
lactate, phenylacetylglutamine) (fold change >1.2,
P <0.05, FDR <5%). Twelve metabolite sets were
enriched in HIV patients with NCI compared to HIV-
negative controls. Five of these sets were enriched only in
HIV patients with NCI including ketone body metab-
olism, aspartate metabolism, and phenylalanine and
tyrosine metabolism (P< 0.05, FDR<5%; Supplemental
Digital Content 10, http://links.lww.com/QAD/A519).
Recursive SVM classification models identified eight
metabolites as top-ranked classifiers of HANDs; these
included neurotransmitters (glutamate, NAA); markers of
glial activation (myo-inositol); and ketone bodies (beta-
hydroxybutyric acid, 1,2-propanediol) (Fig. 4a and c).
These eight metabolites distinguished HIV patients with
vs. without HAND with greater than 85% predictive
accuracy (Fig. 4b). Further validation in a cohort of
HIV patients with plasma viral loads greater than
10 000 copies/ml (n¼ 15; 9 with NCI and 6 without
NCI) showed that six of these metabolites also
distinguished HIV patients with vs. without HAND in
a separate test cohort (glutamate, NAA, BHBA, 1,2
propanediol, isobutyrylcarnitine, and N-acetylvaline)
(Fig. 4d). These CSF metabolite profiles suggest that
altered neurotransmitter production, glial cell activation,
mitochondrial dysfunction, and accumulation of meta-
bolic waste products are processes that characterize
HAND, irrespective of HIV replication.

Inter-relationships between cerebrospinal fluid
and plasma metabolites, neurocognitive test
scores, and inflammation in HIV patients on
antiretroviral therapy
Next, we examined inter-relationships between CSF
metabolites associated with NCI, plasma metabolites, and
markers of systemic and intrathecal inflammation. Two
distinct subclusters of CSF metabolites were identified
by correlation analysis (P< 0.05, FDR <0.1) (Fig. 5).
In subcluster 1, isobutyrylcarnitine, myo-inositol, and
N-acetylvaline correlated negatively with global and
several domain T scores (motor, memory-encoding,
memory-retrieval and executive function) and positively
with intrathecal IFN responses (CSF IFN-g and K : T
ratio). In subcluster 2, succinate, glutamate, NAA,
BHBA, and 1,2 propanediol correlated positively with
systemic markers of inflammation (IFN-a, IFN-g, IL-8,
IL-1b, IL-6, IL-2Ra) and negatively with plasma
lysophosphocholines (LPCs) and steroids. Plasma LPCs
and steroids correlated positively with T scores (global,
motor, memory-encoding, memory-retrieval and execu-
tive function) and negatively with systemic inflamma-
tion. These results suggest inter-relationships between
systemic and intrathecal inflammation and plasma or CSF
metabolite alterations associated with NCI.
horized reproduction of this article is prohibited.
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Fig. 2. Alterations in the cerebrospinal fluid metabolome associated with aging in HIV-negative controls. (a) Box plots of
metabolites altered in older (n¼23; �50 years old) compared to young HIV-negative controls (n¼23; <50 years old). Light and
dark blue represent young and older controls, respectively. Medians are represented by horizontal bars, boxes span the
interquartile range (IQR) and whiskers extend to extreme data points. The P-values were calculated using Welch’s t-tests. (b)
Correlation plots of biologically relevant metabolites (log2 scaled intensity) vs. age in HIV-negative controls (n¼53). Spearman
correlations were used to examine relationships between metabolite levels and age. The correlation coefficient R and P-value are
shown above each plot. False discovery rate below 10% was used to correct for multiple hypothesis testing.
Discussion

Here, we characterized the CSF metabolome in a cohort
of HIV patients on ART with advanced disease and
identified eight metabolites as top-ranked classifiers of
pyright © Lippincott Williams & Wilkins. Unautho
HAND, including neurotransmitters (glutamate, NAA);
markers of glial cell activation (myo-inositol); mitochon-
drial function (succinate); and ketone bodies, suggesting
that glutamate excitotoxicity, astrocyte activation, mito-
chondrial dysfunction, and accumulation of metabolic
rized reproduction of this article is prohibited.
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waste may contribute to NCI. This HAND signature
overlapped with a CSF metabolite profile associated with
aging in HIV-negative controls, suggesting a pattern
indicative of accelerated aging. Correlation analysis
identified inter-relationships between plasma inflam-
mation markers and intrathecal IFN responses and
metabolic alterations associated with NCI, suggesting
that ongoing systemic and intrathecal inflammation may
contribute to this accelerated aging phenotype. These
results suggest that therapeutic strategies targeting
‘inflammaging’ and associated metabolic abnormalities
may be beneficial for treatment of HAND.

Alterations in CSF metabolites identified in our study
provide insights into mechanisms that may contribute to
HAND. In particular, alterations in neurotransmitters
(glutamate and NAA) and markers of glial cell activation
(myo-inositol) and mitochondrial dysfunction (succinate)
were associated with NCI. Glutamate is neurotoxic
at high concentrations and increased levels have been
shown in HIV-associated dementia (HAD) and other
Copyright © Lippincott Williams & Wilkins. Unaut
neurological disorders [54–56]. Decreased NAA, a
marker of neuronal density and integrity, has been
reported in brain from HIV patients with HAND
[27,35–37,57,58]. Here, CSF NAA was increased in
patients with HAND, possibly reflecting differences in the
sample tested (brain vs. CSF), and may represent leakage
into the CSF associated with neuronal damage. Altera-
tions in N-acetylated alpha-linked acidic dipeptidase
activity, which converts NAAG to glutamate and NAA,
have been shown to correlate with neuronal loss in
Alzheimer’s disease [59]. Myo-inositol, a marker of
astrocyte activation, was also increased in HIV patients,
consistent with magnetic resonance spectroscopy studies,
showing increased myo-inositol in the brain of HIV
patients with HAND, including those on ART [27,35–
37,58]. This may be relevant to HAND pathophysiology
because astrocyte activation can impair their neuropro-
tective functions (e.g. BBB integrity and glutamate
reuptake) [60]. Another important finding was increased
CSF succinate. Increased succinate, a component of the
Krebs cycle, can reflect mitochondrial dysfunction [52].
horized reproduction of this article is prohibited.
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Succinate may also act as a danger signal stabilizing
hypoxia-inducible factor (HIF)-1a expression and enhan-
cing IL-1b production during inflammation [61]. More
than 80% of the CSF metabolites which were altered in
HIV patients on ART were also altered in HIV patients
not on ART (Supplemental Digital Content 7, http://
links.lww.com/QAD/A519), suggesting that these
alterations are not directly associated with ART or
ongoing HIV replication in plasma or CSF. These results
suggest that glutamate excitotoxicity, astrocyte activation,
and mitochondrial dysfunction may contribute to
HAND.

Another important finding was increased accumulation
of metabolic waste, including ketone bodies, phenylace-
tylglutamine, and p-cresol sulfate. Accumulation of
metabolic waste, such as protein aggregates, is a hallmark
of Alzheimer’s disease and other age-associated neuro-
degenerative diseases [62–64]. In HIV patients, accumu-
lation of hyperphosphorylated tau, amyloid, and alpha-
synuclein has been reported in older patients [65–68].
CSF circulates nutrients filtered from the blood to the
brain and removes metabolic waste by active transport or
bulk flow. CSF is absorbed into the blood through
arachnoid villi or exchanged with brain interstitial fluid
via aquaporin 4 (AQP4) channels [69–71]. In reactive
astrogliosis, mislocalization of AQP4 results in a loss of
interstitial flow and accumulation of extracellular waste
products [69–71]. Whereas astrogliosis is common in
HIV [30,72] and AQP4 expression is increased in HIV
patients with HAD [73], further studies are required to
determine if loss of interstitial flow and detrimental effects
on the glymphatic system [64,69–71] contribute to
accumulation of metabolic waste and development
of HAND.

Ketone bodies (BHBA and 1,2 propanediol) were
identified as top-ranked CSF classifiers of HAND.
Ketone bodies are an energy source for metabolically
active tissues under conditions of glucose deficiency [74].
Whereas ketogenic diets have shown therapeutic
potential in some neurological diseases [75,76], ketone
bodies are toxic at high concentrations and can stimulate
insulin release, generate oxygen radicals, and cause lipid
peroxidation, contributing to oxidative stress [77,78].
Increased ketone bodies have been reported in metabolic
disorders (i.e. diabetes and obesity), inflammatory diseases
(i.e. multiple sclerosis and rheumatoid arthritis), and are
associated with neurological complications in diabetic
ketoacidosis [79–82]. In view of these observations, we
predict that increased ketone bodies in CSF from patients
with HAND reflect both increased production and
decreased clearance. Given that ketone bodies are
signaling molecules that play an important role regulating
lipid metabolism and mitochondrial function (reviewed
in [83]), further studies are warranted to examine their
potential role in HAND via neurotoxic or metabolic
effects.
pyright © Lippincott Williams & Wilkins. Unautho
Antiretroviral therapy is associated with increased age-
associated comorbidities including cardiovascular, liver,
kidney, and bone diseases [20,22]. These age-related
comorbidities often occur at younger ages than would
be expected among HIV-negative individuals, possibly
reflecting ‘inflammaging’ along with other mechanisms
[23,24]. Here, alterations in the HIV CSF metabolome,
including those associated with NCI, showed significant
overlap with metabolites altered in aging HIV-negative
controls (e.g. glutamate, succinate, BHBA, and 1,2
propanediol), suggesting a pattern of accelerated aging.
Consistent with these findings, increased glutamate and
succinate were detected in plasma from HIV-negative
individuals with advancing age [84,85], and increased
glutamate and ketone bodies were detected in CSF from
HIV-negative individuals with cognitive impairment and
Alzheimer’s disease [86]. These alterations likely reflect
increased metabolite production, together with decreased
metabolite clearance and reduced CSF turnover, which
has been reported in aging populations and Alzheimer’s
disease [87,88]. In the present study, alterations in these
CSF metabolites were associated with systemic inflam-
mation (IFN-g, IFN-a, IL-8, IL-1b, IL-6, and IL-2Ra)
and intrathecal IFN responses (IFN-g and K : T ratio),
suggesting ongoing systemic and intrathecal inflam-
mation both contribute to this accelerated aging
phenotype. Plasma LPC and steroids correlated positively
with neurocognitive test scores, and negatively with
markers of systemic inflammation. These findings,
together with previous studies, suggest these LPC and
steroids may have beneficial roles, such as anti-
inflammatory or neuroprotective effects. Phosphatidyl-
cholines represent a class of lipids altered in Alzheimer’s
and other neurodegenerative diseases [89,90]. Depletion
of dehydroepiandrosterone sulfate and related steroids
have been implicated in aging, age-related comorbidities,
and immune dysfunction [91–93]. These results suggest
that metabolic abnormalities and ‘inflammaging’ mech-
anisms both contribute to HAND.

We acknowledge certain limitations of our study. We
selected HIV patients with advanced disease and high
prevalence of HCV coinfection. Although we cannot
exclude the possibility that HCV contributed to the
results, matched analyses of HIV patients with and
without HCV coinfection did not identify significant
differences in CSF metabolites or inflammation markers.
HIV samples were collected from 1999 to 2009 and
therefore may not reflect contemporary populations due
to differences in ART regimens. We cannot exclude the
possibility that prolonged sample storage could affect the
stability of some metabolites. However, recent studies
suggest prolonged storage has minimal effects on the
majority of CSF metabolites [94,95]. Small sample
volumes limited our ability to detect certain lipids in
CSF that were detected by others [43,44,46]. Further
studies are required to define alterations in larger, recent
cohorts with less advanced disease, treated with specific
rized reproduction of this article is prohibited.
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ART regimens, and their possible association with
HAND subtypes.

In summary, untargeted metabolomic profiling identified
alterations in the CSF metabolome of HIV patients on
ART that suggest persistent inflammation, glial responses,
glutamate neurotoxicity, and age-dependent effects on
brain waste disposal systems contribute to mechanisms
involved in HAND that may be augmented by aging.
These alterations were not directly associated with ART
or ongoing HIV replication in CSF or plasma. This study
provides insights into disease mechanisms associated with
HAND and represents progress toward identifying
biomarkers to predict and monitor neurocognitive
outcomes and therapeutic responses.
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