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Abstract

Purpose

To link optic nerve (ON) structural properties to clinical markers of glaucoma using

advanced, semi-automated diffusion magnetic resonance imaging (dMRI) tractography in

human glaucoma patients.

Methods

We characterized optic neuropathy in patients with unilateral advanced-stage glaucoma

(n = 6) using probabilistic dMRI tractography and compared their results to those in healthy

controls (n = 6).

Results

We successfully identified the ONs of glaucoma patients based on dMRI in all patients and

confirmed that dMRI measures of the ONs correlated with clinical markers of glaucoma

severity. Specifically, we found reduced fractional anisotropy (FA) in the ONs of eyes with

advanced, as compared to mild, glaucoma (F(1,10) = 55.474, p < 0.0001, FDR < 0.0005).

Furthermore, by comparing the ratios of ON FA in glaucoma patients to those of healthy

controls (n = 6), we determined that this difference was beyond that expected from normal

anatomical variation (F(1,9) = 20.276, p < 0. 005). Finally, we linked the dMRI measures of

ON FA to standard clinical glaucoma measures. ON vertical cup-to-disc ratio (vCD) pre-

dicted ON FA (F(1,10) = 11.061, p < 0.01, R2 = 0.66), retinal nerve fiber layer thickness

(RNFL) predicted ON FA (F(1,10) = 11.477, p < 0.01, R2 = 0.63) and ON FA predicted per-

ceptual deficits (visual field index [VFI]) (F(1,10) = 15.308, p < 0.005, R2 = 0.52).

Conclusion

We describe semi-automated methods to detect glaucoma-related structural changes using

dMRI and confirm that they correlate with clinical measures of glaucoma.
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Introduction

Vision loss is a major cause of disability worldwide that is particularly common among the

elderly, conferring a greater risk of injury and diminished quality of life [1–2]. Glaucoma is

the leading cause of irreversible vision loss worldwide and is projected to affect nearly 80 mil-

lion individuals by 2020 [3]. It is clinically defined by characteristic patterns of visual field

impairment and optic nerve (ON) damage [4]. There is growing evidence that glaucoma may

be a neurodegenerative condition [5–6]. Thus, research seeking to understand the possible

underlying neurodegenerative processes associated with glaucoma may help guide the devel-

opment of more robust treatment paradigms and have applications for improving our under-

standing of other neurodegenerative diseases. In addition, current glaucoma treatments are

limited to the reduction of intraocular pressure (IOP) to prevent progressive visual field loss.

However, many patients continue to lose vision despite treatment, and no treatments are avail-

able to reverse damage that has already occurred to the visual system [4]. Therefore, the devel-

opment of robust methods enabling earlier diagnosis and more precise quantification of

disease progression are essential to limiting glaucomatous damage and improving patient

outcomes.

MRI-based in vivo human studies using voxel-based morphometry (VBM) and diffusion

tensor imaging (DTI) to explore gray- and white-matter cortical changes associated with glau-

coma have shown reduced gray-matter (GM) volume in late stages of the disease, along with

significant rarefaction along the optic radiations [7–9]. While these results are consistent with

animal models and post-mortem pathological studies of human subjects [6], there is a need for

more precise evaluation of neurological changes, particularly at the level of the ON. Animal

model studies of the early visual system using diffusion MRI (dMRI) demonstrate the ability to

detect changes in the neural structure of the ONs from damage occurring within the retina

[10–11]. In a meta-analysis of studies examining the ONs of human glaucoma patients using

various DTI methods, Li, et al. (2014) noted significant decreases in fractional anisotropy (FA)

and increases in mean diffusivity (MD) in the ONs of glaucoma patients compared to controls

[12]. A number of studies in this meta-analysis also examined the correlation between various

measures of disease severity (including glaucoma stage and optical coherence tomography

[OCT] measurements) and structural white-matter changes. Generally, increasing glaucoma

disease severity is associated with greater white-matter disruption (i.e. decreasing FA and

increasing MD) [13–17].

While these studies have quantified the diffusion properties of glaucomatous ONs and their

relationship with various clinical measures of disease severity, they rely on older dMRI meth-

odologies. In particular, these studies employ relatively low-resolution, single phase-encoding

direction diffusion scans and sample the ONs using manually placed regions of interest (ROIs)

[13–18]. By sampling from only small portions of the ONs, these techniques are limited in

their ability to measure the full extent of optic neuropathy. Moreover, manual ON segmenta-

tion is time-intensive, may introduce operator error, and limits the ability to translate this

technique into widespread clinical practice. Diffusion MRI methods have advanced substan-

tially since the publication of these studies, and there is an opportunity to investigate and vali-

date methods that rely on semi-automated techniques to assess the ON using dMRI.

Recent dMRI based probabilistic tractography methods have been developed that can more

precisely evaluate white-matter changes in the human visual system. These methods have dem-

onstrated altered white-matter structure (including reduced FA) in patients with amblyopia

[19]. In this study, we apply this technique to patients with asymmetric glaucomatous optic

neuropathy in each eye to evaluate dMRI methods as a diagnostic tool for visual disorders,

linking changes in white-matter structure to retinal and perceptual changes in glaucoma.

Linking neural and clinical measures of glaucoma with diffusion magnetic resonance imaging (dMRI)

PLOS ONE | https://doi.org/10.1371/journal.pone.0217011 May 31, 2019 2 / 14

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0217011


Recent methodological advances make it possible to reliably identify the microstructural prop-

erties of the ON with limited user input [20]. Using a pair of diffusion scans acquired with

opposite phase-encoding directions, a low-noise field-corrected volume can be created [21–

22], allowing the ONs to be isolated using probabilistic tractography. This provides a unique

opportunity to quantify changes across the entire length of the ONs in glaucoma patients.

Further, we purposefully selected patients with asymmetric glaucomatous ON damage to

allow for within-subjects comparisons of ON properties, quantifying differences in eyes with

“advanced” versus “mild” glaucoma as defined by the American Academy of Ophthalmology

[23].

We used an advanced dMRI tractography method to identify and analyze the ONs of six

asymmetric glaucoma patients and six controls. Using both within-subject analyses and com-

parison to controls, we evaluated structural changes in the ONs associated with glaucoma. Fur-

thermore, we assessed the relationship between these MRI-based neural measures, clinical

measures of ON and retinal structure (e.g. vertical cup-to-disc ratio and average peripapillary

retinal nerve fiber layer thickness), and perceptual measures (e.g. visual field index).

Methods

Participants

Our study was conducted in accordance with the Code of Ethics of the World Medical Associ-

ation (Declaration of Helsinki) and was approved by the University of Wisconsin-Madison

Institutional Review Board. Informed consent was obtained from all participants (written) and

all participants completed MRI screening with consultation and approval obtained from their

physicians as needed to ensure they could safely participate.

Glaucoma patients. Six glaucoma patients (4 female) aged 19–66 years (mean

53.3 ± 17.4) were recruited from the Glaucoma Service of the University of Wisconsin Hospi-

tals and Clinics (Table 1). All patients had a diagnosis of either primary open-angle, pigment

dispersion, pseudoexfoliation, or chronic angle-closure glaucoma and a history of IOPs greater

than 22 mmHg. Selection criteria included a Snellen best-corrected visual acuity of 20/25 or

better in the eye with “mild” glaucoma and 20/200 or better in the eye with “advanced” glau-

coma. Patients with any history of neurodegenerative diseases, normal-tension glaucoma, dia-

betic retinopathy, advanced macular degeneration, uveitis, or previous (non-surgical) eye

trauma were excluded.

Control subjects. Control subjects were recruited from the University of Wisconsin-

Madison. Six gender-matched subjects aged 21–34 years (mean 24 ± 5.3) were included in the

analysis. All subjects had Snellen best-corrected visual acuity of 20/20 or better and had no

prior medical history of neurologic or ocular pathology other than refractive error. Eye domi-

nance was determined as follows: subjects were instructed to form a small aperture using both

hands (right and left hands overlapping so a small opening is formed with the inner sides of

the palms and thumbs) and to fixate on a distant object through that opening with both eyes

open. Without moving their head or hands, subjects were then instructed to close their left eye

and were asked whether or not they could still see the object. This same task was repeated with

the right eye closed. The eye with which they could see the fixation target was recorded as the

“dominant” eye. Ocular dominance was successfully determined for 6/6 control subjects.

Clinical measures

Clinical measures of ON structure and function were assessed for each of the six glaucoma

patients during clinical ophthalmologic exams by a glaucoma specialist (Y.L.). These measures

included Snellen best-corrected visual acuity (VA), vertical cup-to-disc ratio (vCD), average

Linking neural and clinical measures of glaucoma with diffusion magnetic resonance imaging (dMRI)
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peripapillary retinal nerve fiber layer thickness (RNFL), and visual field index (VFI). The vCD

was determined by direct visualization of the ON using slit-lamp biomicroscopy, average peri-

papillary RNFL thickness was measured using Cirrus Spectral-Domain Optical Coherence

Tomography (Carl Zeiss Meditec, Inc., Dublin, CA, USA) with all scans having adequate signal

strength (>7/10), and VFI was measured using the Humphrey visual field 24–2 SITA-Standard

testing algorithm (Carl Zeiss Meditec, Inc. Dublin, CA, USA) on visual fields with adequate

reliability indices (<33% fixation losses, false positives, and false negatives). Clinical measures

were not assessed for control subjects.

Magnetic resonance imaging data acquisition

Brain imaging data was obtained at the Waisman Center in Madison, WI using a GE Discov-

ery Medical 3T MRI scanner (GE Healthcare, Inc., Chicago, IL, USA) equipped with a

32-channel head coil. First, a 10-minute structural whole-brain T1-weighted anatomical scan

(2.93 ms TE; 6.70 ms TR; 1 mm3 isotropic voxels) was acquired. Then, a 15-minute diffusion

sequence with two 48-direction diffusion-weighted scans (6 b0), collected in the anterior to

posterior (AP) and posterior to anterior (PA) directions (76.7 ms TE; 8.1 s TR; 2x2x2 mm3 iso-

tropic voxels; b = 2000 s/mm2; reconstruction matrix FOV: LR 212 mm x AP 212 mm x FH

144 mm).

Data processing

Pre-processing. To improve the quality of our tractography and increase the signal-to-

noise ratio in the nasal cavity, the two reverse-encoded (AP and PA) diffusion scans were com-

bined into a single corrected volume using the FSL software (University of Oxford, Oxford,

England) [21–22]. Subsequent processing was completed using the mrVista software package

(Stanford University, Stanford, California), based on previously published methods [20]. A

mean b = 0 image was calculated from the corrected DTI volume and underwent eddy current

correction. This corrected b0 image was co-registered to the AC-PC-aligned T1 image and dif-

fusion tensors were fit to the volume using a least-squares estimate bootstrapped 500 times

[24].

ROI placement. We manually identified three ROIs along the brain’s visual pathway.

The T1 image was used to place the left and right ONs and the optic chiasm (OC) by gross

Table 1. Demographics and ocular characteristics of glaucoma patients.

Patient Age Sex Eye VA VFI vCD RNFL (μm)

G1 19 F OD

OS

20/20

20/30

100%

41%

0.34

0.83

121

56

G2 54 M OD

OS

20/20

20/20

92%

99%

0.66

0.63

66

70

G3 57 F OD

OS

20/25

20/30

54%

99%

0.82

0.63

52

73

G4 59 M OD

OS

20/30

20/20

62%

97%

0.82

0.80

45

57

G5 65 F OD

OS

20/40

20/25

96%

69%

0.57

0.78

73

52

G6 66 F OD

OS

20/20

20/20

100%

91%

0.74

0.89

83

66

Characteristics of glaucoma patients including age, sex, Snellen best-corrected visual acuity (VA), visual field index (VFI), vertical cup-to-disc ratio (vCD), and average

peripapillary retinal nerve fiber layer thickness (RNFL). Eyes with advanced glaucoma are indicated in bold.

https://doi.org/10.1371/journal.pone.0217011.t001

Linking neural and clinical measures of glaucoma with diffusion magnetic resonance imaging (dMRI)

PLOS ONE | https://doi.org/10.1371/journal.pone.0217011 May 31, 2019 4 / 14

https://doi.org/10.1371/journal.pone.0217011.t001
https://doi.org/10.1371/journal.pone.0217011


anatomy. 4-mm spheres were used for the ONs (centered slightly posterior to the ON head at

the back of the eye), and a 6-mm sphere was used for the OC. See Supplementary S1 Fig for

additional details on ROI placement.

Tractography. We derived visual pathways through probabilistic diffusion-weighted

tractography using MRtrix2 (Brain Research Institute, Melbourne, Australia) [25–33]. Con-

strained spherical deconvolution (CSD) estimates were used to generate fibers between two

ROI pairs, representing the left and right ONs (ON » OC). Whole-brain tractography was

completed using an Lmax of 6 with 500,000 seeds and a maximum of 5,000,000 fibers. A modi-

fied white-matter mask generated using mrVista was used to constrain fibers to the brain

while still allowing CSDs to be fit within the nasal cavity, enabling detection of the ONs. Final

pathways were restricted to fibers passing between the specified ROIs, omitting any spurious

results.

Fiber cleaning. Fiber groups were cleaned using the Automated Fiber Quantification

(AFQ) toolkit (Stanford University) [34]. Fibers were removed when they were more than 2.6

standard deviations in distance away from the pathway’s fiber core or were more than three

standard deviations longer than the pathway’s average fiber length. After automated cleaning

was complete, all optic nerve pathways were subject to quality assessment, with additional

manual cleaning as necessary. Fibers were overlaid on the anatomical T1 volume and any

fibers that were found to be anatomically implausible were manually removed. Pathways from

all 12 participants were processed using the same AFQ cleaning parameters and were manually

refined by the same operator (N.M.) (Fig 1). Additional fiber cleaning details are provided in

Supplementary S1 Table, and visualizations of all patient and control ONs are provided in Sup-

plementary S2 Fig.

Diffusion measures. Voxel-wise tensor properties were extracted from the volumetric

region defined by each tractography-generated pathway. The main diffusion properties

included in our analysis were mean diffusivity (MD, μm2/s) and fractional anisotropy (FA)

(Fig 2). MD provides an average measure of pathway diffusivity and is a useful approximation

of white-matter density, where large values indicate a diffuse (“weak”) pathway, and small

values indicate a denser (“strong”) pathway [35]. FA provides a measure of diffusion direction-

ality and is indicative of microstructural changes across various visual and non-visual patholo-

gies, where small values indicate multiple intersecting, degenerated, or demyelinated pathways

[35–36]. Studies examining white-matter changes in other visual disorders like amblyopia,

macular degeneration, and retinitis pigmentosa have shown decreased FA in the optic radia-

tions, among other visual pathways [19–20, 37–39]. While highly indicative of microstructural

changes, FA is nonspecific and provides little information about the nature of the underlying

tissue properties (e.g. demyelination, axonal degeneration, crossing fibers, etc.). To more pre-

cisely characterize the MD and FA measures, we also assessed the component measures, radial

diffusivity (RD, μm2/s) and axial diffusivity (AD, μm2/s). RD has been demonstrated to be

more indicative of changes in white-matter myelination, while AD is more indicative of axonal

degeneration [40]. Typically, large RD values are evidence of possible demyelination, while

small AD values are evidence of possible axonal degeneration.

Analysis. A combination of within- and between-groups analyses were conducted to eval-

uate the structural white-matter changes associated with glaucoma-related vision damage.

All six asymmetric glaucoma patients had one eye with no or early glaucomatous visual field

defects (“mild”) and one eye with moderate or advanced glaucomatous visual field defects

(“advanced”) [23]. Within-subjects, diffusion-tensor properties were compared between the

“advanced” and “mild” eyes. Between-subjects, the ratios of “advanced” / “mild” ON FA in

glaucoma patients were compared to non-dominant/dominant ratios in controls. This design

minimized the possible effect of global changes in white-matter properties as a result of age.

Linking neural and clinical measures of glaucoma with diffusion magnetic resonance imaging (dMRI)
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To facilitate these comparisons and normalize pathway lengths, 100 samples were taken

along the length of each pathway such that 100 average MD, FA, RD, and AD values were

available for each pathway in each of the two groups (glaucoma patients and control subjects).

These values were generated for each cross-section using a Gaussian-weighted average, where

the calculated “core” of each pathway was selectively weighted over the outlying fibers. From

Fig 1. Optic nerve visualization using diffusion-weighted magnetic resonance imaging. Visualization of final tractography-generated optic nerve white-matter

pathways (blue) in a representative glaucoma patient (G6) using diffusion-weighted magnetic resonance imaging.

https://doi.org/10.1371/journal.pone.0217011.g001

Fig 2. Optic nerve diffusion properties using diffusion weighted magnetic resonance imaging. Mean diffusivity (μm2/s) and fractional anisotropy values in a

representative glaucoma patient (G6) with advanced glaucoma in the left optic nerve and mild glaucoma in the right optic nerve using diffusion weighted magnetic

resonance imaging.

https://doi.org/10.1371/journal.pone.0217011.g002
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these 100 samples, the central 80 were retained for further analysis to reduce the risk of includ-

ing measures contaminated by retinal cell bodies or contralateral fiber tracts [19–20, 38]. The

central 80% of each sample was further subdivided into 10% bins to more precisely quantify

differences along the pathway length.

Statistical analysis. Linear mixed effect (LME) models were used to compare the MD,

FA, RD, and AD values of the advanced and mild ONs across the middle 80% of samples and

at each of the eight 10% bins in glaucoma patients. This model factored glaucoma severity

(Group; advanced or mild) as a fixed effect and subject as a random effect. These models fol-

lowed the general structure: MD/FA/RD/AD ~ Group + (1|Subject). Reported p-values are

from ANOVAs of the fixed “glaucoma severity” effects. Similar LME models were used in the

glaucoma and control ratio comparisons, as well as in all correlational data (factoring clinical

and neurological measures as fixed effects and subjects as random effects). For all correlations,

reported R2 values are adjusted to the number of predictors included in the LME model.

To compensate for multiple comparisons in the advanced vs. mild tract profile analyses, we

implemented the Benjamini and Hochberg False Discovery Rate (FDR) test [41]. In this test,

the fixed effect (advanced vs. mild) p-values from each LME model were pooled and an FDR

value was calculated for each test. A total of 36 p-values were pooled (eight individual bin tests

and one whole-pathway test for each of the four diffusion measures) and tests for which the

FDR value was less than our target alpha (α = 0.05) were considered significant.

Results

Selection of clinical measures of structure and function

As expected, we identified strong correlations between vCD and RNFL (F(1,10) = 229.17,

p = 3.20e-8, R2 = 0.98), vCD and VFI (F(1,10) = 15.662, p = 0.0027, R2 = 0.64), and RNFL and

VFI (F(1,10) = 24.228, p = 0.00060, R2 = 0.76) (Fig 3). These measures quantify the anticipated

correlations between clinical measures of structural and functional glaucomatous optic nerve

damage in our patient sample.

Diffusion magnetic resonance imaging

ON white-matter pathways were successfully identified and refined in 6/6 glaucoma patients

and 6/6 controls. All pathways appeared to be anatomically plausible after cleaning and were

Fig 3. Correlations between clinical glaucoma measures in glaucoma patients with asymmetric optic nerve damage (n = 6). (A) Vertical cup/disc ratio

(vCD) predicts average retinal nerve fiber layer (RNFL) thickness (p = 3.20e-8, R2 = 0.98). (B) vCD predicts visual field index (VFI) (p = 0.0027, R2 = 0.64). (C)

RNFL predicts VFI (p = 0.00060, R2 = 0.76). Correlations within individual patients are indicated by each solid colored line, with closed points marking eyes with

“advanced” glaucoma and open points marking eyes with “mild” glaucoma. A least-squares regression estimate is indicated by the dashed line.

https://doi.org/10.1371/journal.pone.0217011.g003
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amenable to within-subjects and group-wise comparisons. A significant difference in mean FA

between the advanced and mild ONs of glaucoma patients was noted in 3/8 bins (F1(1,10) =

55.442, p1 = 2.20e-5, FDR1 = 4.0e-4; F2(1,10) = 18.382, p2 = 0.0016, FDR2 = 0.019; F3(1,10) =

11.322, p3 = 0.0072, FDR3 = 0.048), along with a significant difference across the middle 80%

of samples (F(1,10) = 55.474, p = 2.19e-5, FDR = 4.0e-4) (Fig 4). In the same pathway, a

significant difference in average MD was noted in 1/8 bins (F(1,10) = 10.885, p = 0.0080,

FDR = 0.048). For RD, we found a significant difference in 1/8 bins (F(1,10) = 15.87,

p = 0.0026, FDR = 0.023). No significant difference in AD was found (all FDR> 0.05). Our

subsequent analyses focus on ON FA because of the magnitude and reliability of the effect

(compared to MD and RD).

Fig 4. Advanced versus mild glaucomatous optic nerve (ON) tract profiles. Average tract profiles for the ONs of 6 eyes with advanced (red) and 6 eyes with mild

(blue) glaucoma, with the middle 80% of samples marked with bold lines, and each 10% bin marked with dotted lines. Significant differences (FDR< 0.05) denoted by
�. (A) Differences in fractional anisotropy across the middle 80% of samples (p = 2.19e-5, FDR = 4.0e-4), and in 3/8 individual bins (p1 = 2.20e-5, FDR1 = 4.0e-4; p2 =

0.0016, FDR2 = 0.019; p3 = 0.0072, FDR3 = 0.048). (B) Difference in mean diffusivity in 1/8 bins (p = 0.0080, FDR = 0.048). (C) Differences in radial diffusivity in 1/8

individual bins (p = 0.0026, FDR = 0.023). (D) Difference in axial diffusivity was not significant (all FDR> 0.05).

https://doi.org/10.1371/journal.pone.0217011.g004
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To more precisely characterize the nature of these within-subject effects, we compared the

FA ratios of advanced/mild ONs in glaucoma patients to non-dominant/dominant ONs in

controls. As in earlier analyses, these ratios were computed from the central 80% of samples,

omitting samples from the first and last 10% of the pathway estimates. We found selective FA

reductions in the “advanced” ONs of glaucoma patients. As expected, there were no significant

differences between non-dominant and dominant ON FA values in control subjects. We

found a significant difference between the ON FA ratios of glaucoma patients compared to

controls in a LME model including group and age as fixed factors (F(1,9) = 20.276, p = 0.0015)

(Fig 5).

Relating dMRI to clinical measures in glaucoma

Reductions in ON FA were found to correlate with clinical measures of glaucoma (vCD, RNFL,

and VFI). We found that vCD predicted ON FA (F(1,10) = 11.061, p = 0.0077, R2 = 0.66),

Fig 5. Optic nerve fractional anisotropy ratios in glaucoma patients (n = 6) and controls (n = 6). Comparison of optic nerve fractional anisotropy ratios (%)

in glaucoma patients (green) and controls (blue). Glaucoma patient ratios were calculated for “advanced” / “mild” optic nerve fractional anisotropy, and control

subject ratios were calculated for non-dominant/dominant optic nerve fractional anisotropy. Mean ratios are indicated by the bold lines, with standard error

denoted by the surrounding box. The dashed gray line at 100% represents baseline, i.e. the same fractional anisotropy measures in the two optic nerves. We

found a significant difference between fractional anisotropy ratios in glaucoma patients versus controls (p = 0.0015).

https://doi.org/10.1371/journal.pone.0217011.g005
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RNFL predicted ON FA (F(1,10) = 11.477, p = 0.0069, R2 = 0.63), and ON FA in turn predicted

VFI (F(1,10) = 15.308, p = 0.0029, R2 = 0.52) (Fig 6). Thus, dMRI measures of FA in the optic

nerve reliably linked the retinal and perceptual deficits observed in our patient sample.

Discussion

We assessed the utility of probabilistic dMRI tractography in correlating neural and clinical

measures of ON damage in patients with asymmetric glaucoma and normal controls. We iso-

lated the ON white-matter pathway in 6/6 glaucoma patients and 6/6 controls. We combined

AP and PA phase-encoded dMRI volumes to recover from imaging distortions caused by the

adjacent nasal cavities. To our knowledge, this is the first probabilistic tractography study to

successfully isolate the ONs in glaucoma patients. Previous work relied largely on manual ON

segmentation or ROI-based analyses, while our methodology allows the entire ON to be iden-

tified with minimal manual operator input. This technique increases the efficiency of data col-

lection and reduces the risk of operator error. We correlated clinical measures of ON structure

and function (i.e. vCD, RNFL, and VFI) with dMRI measures of ON structure (i.e. FA, MD,

RD, and AD). Our methods sample diffusion measures along the entire length of the ON

(rather than small targeted regions) and provides a more comprehensive account of dMRI

measures of disease.

We found significant differences in average FA, MD, and RD of ONs with “advanced” ver-

sus “mild” glaucoma. These trends (smaller FA and greater MD and RD in “advanced” ONs)

indicate disruption to the visual system white-matter consistent with clinical measures of glau-

coma severity. Our results were robust to False Discovery Rate testing to compensate for multi-

ple comparisons and our small sample size. Our findings are mostly consistent with earlier

studies, which showed general trends of decreasing FA and increasing MD with increasing

glaucoma severity [13–18]. However, there was a significant difference in radial, but not axial

diffusivity, which would suggest that glaucoma predominantly impacted myelination rather

than axonal degeneration of ONs with advanced glaucoma. However, increased RD was noted

in only 1/8 bins along the length of the ON, so we are limited in our ability to comment on the

precise contributions of axonal degeneration and/or demyelination to the observed changes in

FA. Additionally, this result differs from previous work, where changes were noted in both RD

Fig 6. Correlation of dMRI fractional anisotropy with clinical measures of glaucoma (n = 6). (A) Vertical cup-to-disc ratio predicts optic nerve fractional

anisotropy (p = 0.0077, R2 = 0.66). (B) Average retinal nerve fiber layer thickness predicts optic nerve fractional anisotropy (p = 0.0069, R2 = 0.63). (C) Optic nerve

fractional anisotropy predicts visual field index (p = 0.0029, R2 = 0.52). Correlations within individual patients are indicated by each solid colored line, with closed

points marking eyes with “advanced” glaucoma and open points marking eyes with “mild” glaucoma. A least-squares regression estimate is indicated by the dashed

line.

https://doi.org/10.1371/journal.pone.0217011.g006
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and AD [15]. This discrepancy may be the result of differences in diffusion sequence parame-

ters but is most likely the result of our small sample size.

To minimize the impact of the difference in mean age between our glaucoma patients and

controls in this study, we primarily relied on within-subjects comparisons of the advanced and

mildly glaucomatous ONs. Through comparison of ON FA ratios in glaucoma patients and

controls, we determined that these structural changes were not global changes in the ONs of

glaucoma patients, but rather unilateral changes in the “advanced” glaucomatous eyes. By

using a ratio comparison, we compensated for the difference in mean age between our glau-

coma patients and controls. Regardless of age, within-subject ratios of the left and right optic

nerves of healthy control subjects would be expected to be ~100%. Any global changes to

white-matter structure as a result of age (and absent any additional ocular or neurological dis-

ease) would be expected to affect the left and right ONs equally. Thus, by restricting between-

subject analyses to a ratio comparison, we minimized the potential confound of the differences

in age between our patients and controls.

Lastly, we examined the correlation between clinical glaucoma measures (vCD, RNFL, and

VFI) and dMRI neural measures (ON FA). We found that vCD and RNFL were correlated

with ON FA and that ON FA was predictive of VFI. Thus, our analysis confirms and quantifies

correlations between measures of glaucoma-related damage between neural (ON FA), struc-

tural (vCD), retinal (RNFL), and functional (VFI) measures.

In summary, we correlated neural dMRI measures and clinical glaucoma measurements in

patients with asymmetric glaucoma damage. Our results using current dMRI methods agree

with previous studies using older techniques and validate probabilistic tractography methods

that assess deficits in the visual pathways of glaucoma patients. Future larger, prospective stud-

ies may evaluate dMRI as a possible diagnostic tool for glaucoma evaluation. In addition, stud-

ies quantifying the relationship between neural and clinical measures longitudinally may

determine whether these methods may be useful for monitoring glaucoma progression and

treatment efficacy.

Supporting information

S1 Fig. Visualization of optic chiasm and optic nerve regions of interest (ROI) placement

and fiber cleaning results. (A) Optic chiasm (6-mm sphere) and left and right optic nerve

(4-mm spheres) regions of interest (ROI) placement in axial, coronal, and sagittal views (top to

bottom). ROIs drawn in red. (B) Visualization of pre-cleaned tractography-generated left and

right optic nerve white-matter pathways (blue). (C) Visualization of cleaned tractography-gen-

erated left and right optic nerve white-matter pathways (blue).

(TIF)

S2 Fig. Visualization of anatomical variation in optic nerves of glaucoma patients and con-

trols using diffusion-weighted magnetic resonance imaging (dMRI). Visualization of final

tractography-generated left and right optic nerve white-matter pathways (blue) in six glau-

coma patients (denoted G1-G6) and six control subjects (denoted C1-C6).

(TIF)

S1 Table. Optic nerve fiber cleaning details for glaucoma patients and control subjects.

Detailed description of the specific fiber cleaning results for six glaucoma patients (denoted

G1-G6) and six control subjects (denoted C1-C6). The total number of fibers removed, per-

centage of fibers retained, and the normalized pathway volumes of the left and right optic

nerves of all glaucoma patients and control subjects are provided. Values corresponding to the

“advanced” glaucomatous eyes are marked in bold. Pathway volume estimates were generated

Linking neural and clinical measures of glaucoma with diffusion magnetic resonance imaging (dMRI)

PLOS ONE | https://doi.org/10.1371/journal.pone.0217011 May 31, 2019 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217011.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217011.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0217011.s003
https://doi.org/10.1371/journal.pone.0217011


using AFQ and are based on the number of unique fiber coordinates at each sample point. The

number of fibers removed, percentage retained, and the normalized pathway volumes varied

between subjects based on the number of initial fiber streams isolated. There was not a signifi-

cant difference between average normalized volumes of glaucomatous and healthy control

optic nerves (t(1,22) = -0.4185, p = 0.68). Optic nerve volumes across all subjects were found

to be normally distributed in the Shapiro-Wilk test (p> 0.05) [42] and no significant outlier

volumes were found with Iglewicz and Hoaglin’s outlier test (all modified Z scores< 3.5) [43].
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