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Abstract: The technology of long reads substantially improved the contingency of the genome
assembly, particularly resolving contiguity of the repetitive regions. By integrating the interactive
fragment using Hi-C, and the HiFi technique, a solid genome of the honeybee Apis mellifera carnica
was assembled at the chromosomal level. A distinctive pattern of genes involved in social evolution
was found by comparing it with social and solitary bees. A positive selection was identified in
genes involved with cold tolerance, which likely underlies the adaptation of this European honeybee
subspecies in the north hemisphere. The availability of this new high-quality genome will foster
further studies and advances on genome variation during subspeciation, honeybee breeding and
comparative genomics.
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1. Introduction

Insect pollination is essential for maintaining the balance of the ecosystem, which
contributes approximately 35% to crop pollination [1]. The honeybee Apis mellifera is a key
managed pollinator, with an estimated annual global economic value of $195 billion [2].
The recent decline of honeybee colonies has provoked serious concerns regarding the
biodiversity, as well as food security [3]. A number of stressors have been proven to
cause the honeybee collapses, including parasites, pesticide, climate change and habitat
loss [4–8]. Among those stressors, parasites are a major cause leading to colony losses,
with a synergistic effect with pesticide. It is known that honeybee strains showed variation
in tolerance towards parasites and climates [9–13]. However, the genetic mechanism
underlying that tolerance is yet not fully understood. In this study, we aim to reveal
the genomic variation within A. mellifera species, which is essential to understand their
evolution, adaptation to different climates, as well as to refine breeding strategies for
disease-tolerant strains.

In this study, we provided a highly contiguous genome assembly of a valuable sub-
species of the European honeybee, Apis mellifera carnica. Two complementary sequencing
technologies of HIFI and Hi-C were used to generate a high-quality chromosome genome
assembly. Comparative genomic analysis revealed gene families selected during the social
evolution and climate adaptation.
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2. Material and Methods
2.1. DNA Extraction and Sequencing Library Preparation

The honeybee A. mellifera carnica were collected from the national honeybee breeding
center in Apicultural Science Institute of Jilin, China. Six A. mellifera carnica drone pupae
were collected from a single colony, which were pooled for DNA extraction by AxyPrepTM

Multisource Genomic DNA Miniprep Kit (Axygen, Irvine, CA, USA). The Qubitfluorime-
try system was used to define the DNA concentration (Thermo Fisher, Waltham, MA,
USA). Fragment size distribution was assessed using the Agilent 2100 Bioanalyzer with
the 12,000 DNA kit (Agilent, Santa Clara, CA, USA). Then, 5µg of high molecular weight
genomic DNA was used to prepare the library. The DNA which uses g-Tube (Covaris,
Woburn, MA, USA) to shear into 10 kb was used as input into the SMRTcell library prepara-
tion according to PacBio 10 kb library preparation protocol. The library was sequenced on
a PacBio Sequel system using Sequencing Kit 3.0.

Additionally, five drone pupae from the same colony were fixed with formaldehyde
and lysed for Hi-C library. The cross-linked genomic DNA was digested with Hind III
overnight. Sticky ends of the genomic DNA were biotinylated and proximity-ligated to
form chimeric junctions that were enriched for and then physically sheared to a size of
300–700 bp. Chimeric fragments representing the original cross-linked long-distance physi-
cal interactions were then processed into paired-end sequencing libraries and sequenced
on the Illumina HiSeq X Ten platform.

2.2. Genome Assembly and Gene Annotation

The reads were filtered through Fastp with default parameters, and 2,602,139 clean
Pacbio reads with a total size of 22,818,161,032 bp were obtained [14]. The reads were
assembled by HGAP4 of SMRT Link (version 6.0) with default parameters. Additionally,
280,437,292 Hi-C reads with a total size of 84.13 Gb was obtained. The raw contigs were
split into segments of 50 Kb on average. The Hi-C reads were aligned to the segments
using BWA (version 0.7.10) with default parameters [15]. The uniquely mapped reads were
retained to assemble the genome using LACHESIS package [16].

Augustus (v3.3.2) was used to train and predict the gene features with Amel_HAv3.1
gene set [17,18]. Based on the deduced amino acid sequences, the annotation was performed
through BLASTP against the non-redundant peptide database with the cut-off E-value
at 10−5 and RPS-BLAST against the Conserved Domain Database at E-value at 10−3 [19].
Gene ontology analysis was performed using BLASTP against the InterProScan [20]. The
Pathway was constructed based on the KEGG database [19].

2.3. The Genome Completeness and Honeybee Evolution

The protein sequences were used to query the BUSCO arthropod ortholog set to evaluate
the genome completeness. The genomes of honeybee subspecies A. mellifera mellifera and
A. mellifera DH4 were further queried to A. mellifera carnica using minimap2 [21]. The align-
ment files were viewed using package pafr (https://github.com/dwinter/pafr, accessed on
7 January 2021). The microsatellite was identified using MISA (microsatellite identification
tool) with default parameters [22]. The microsatellite markers primers were blasted against
the three genomes and the congruent was analyzed using Chi-squared test, R [23].

2.4. Phylogenetic Analysis of Social Genes

To investigate the molecular mechanisms underlying sociality between social and
solitary bees, the protein sequences of four insulin family proteins insulin receptor substrate 1
(IRS1), insulin receptor substrate 4 (IRS4), insulin receptor like (IR-like) and insulin-like peptides
(IPR) were retrieved from Eastern honeybees (Apis cerana), dwarf honeybees (Apis florea),
giant honeybees (Apis dorsata), bumble bees (Bombus terrestris), digger bees (Habropoda laboriosa),
red mason bees (Osmia bicornis bicornis) and small carpenter bees (Ceratina calcarata) by
NCBI blast with E-value cutoff ≤ 1 × 10−5. The protein sequences were aligned using
Muscle with default parameters by MEGA X package (Version 10.0.2) [24]. The phylogenetic

https://github.com/dwinter/pafr
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tree was constructed using the Neighbor joining model with 1000 bootstraps and the small
carpenter bees were used to root the tree.

2.5. Identifying Genome Selection Pressures

Orthologs between 7 species (Nasonia vitripennis, Bombus terrestris, Bombus impatiens,
Apis florea, Apis dorsata, Apis laboriosa, Apis cerana) and 4 subspecies (Apis mellifera carnica,
Apis mellifera caucasica, Apis mellifera ligustica, Apis mellifera mellifera) were discovered using
Orthofinder (v2.5.2) [25]. To optimize the number of single-copy orthologs, we categorized
them as such if at least 3 Apis mellifera subspecies and Apis cerana had a single-copy gene
for the given orthogroup, culminating at 6328 single-copy ortholog families. Phylogenetic
tree reconstruction, including all species described above, was undertaken by OrthoFinder.
For each single-copy ortholog family, the longest protein isoforms for each of the species’
gene were used in multiple sequence alignment with MAFFT (using local-pair algorithm
and 1000 iterations) [26] and unreliably aligned residues and sequences were masked with
GUIDANCE (v2.02) [27]. To optimize alignment length without gaps, we ran a maxalign
script and removed subsequent sequences leading to more than 30% of gapped alignment
as long as it did not result in the removal of any A. mellifera subspecies and A. cerana [28].
The protein sequences were replaced with coding sequences in the multiple alignments
using the pal2nal script [29]. Furthermore, sequences containing a stop codon or having
a length inconsistency between protein and DNA coding sequences (after removal of
undefined bases) were filtered out. Alignments regions, where gapped positions were
present, were removed with a custom python script, as these are the most problematic
for positive selection inference [30,31]. Finally, CDS shorter than 100 nucleotides were
eliminated [32].

Phylogenetic tests of positive selection in protein-coding genes usually contrast sub-
stitution rates at non-synonymous sites to substitution rates at synonymous sites taken
as a proxy to neutral rates of evolution. The adaptive branch-site random effects model
(aBSREL) from Hyphy software package was used to detect positive selection experienced
by a gene family in a subset of sites in a specific branch of its phylogenetic tree [33]. The
test for positive selection was run only on the branches leading to the origin of A. mellifera
and on each A. mellifera subspecies. Results from the adaptive branch-site random effects
model were corrected for multiple testing as one series using False Discovery Rate (FDR)
and set up our significant threshold at 10% [34].

2.6. Test for Functional Category Enrichment

Gene Ontology (GO) annotations for our gene families were taken from Hymenoptera
Genome database [35]. The enrichment of functional categories was evaluated with the
package topGO version 2.4 of Bioconductor [36,37]. To identify functional categories
enriched for genes under positive selection, strengthened, and relaxed selection pressure,
the SUMSTAT test was used [38,39]. The SUMSTAT test is more sensitive than other
methods and minimizes the rate of false positives [40–43]. To be able to use the distribution
of log-likelihood ratios of the aBSREL and RELAX tests as scores in the SUMSTAT test, a
fourth root transformation was used [39]. This transformation conserves the ranks of gene
families [44]. Gene Ontology categories mapped to less than 10 genes were discarded. The
list of significant gene sets resulting from enrichment tests is usually highly redundant.
We therefore implemented the “elim” algorithm from the Bioconductor package topGO,
to decorrelate the graph structure of the Gene Ontology. To account for multiple testing,
the final list of p-values resulting from this test was corrected with the FDR and set up our
significant threshold at 20%. To cluster the long list of significant functional categories, we
used REVIGO with the SimRel semantic similarity algorithm and medium size (0.7) result
list [45,46].



Life 2022, 12, 1642 4 of 12

3. Results and Discussion
3.1. The Genome Assembly Statistics of A. mellifera carnica

A robust genome of 226.02 Mbp comprised of 313 contigs was assembled, which were
further collapsed into 169 scaffolds (GCA_013841245.2) (Table 1). By aligning the predicted
protein sequences to 1066 core arthropod Benchmarking Universal Single-copy orthologs
(BUSCOs) [47], 93.53% of complete BUSCOs were identified. The results suggest that the
assembled genome and predicted gene set were complete. Phylogenetic tree reconstruction
revealed the subspeciation events of the European honeybees and the topology agreed with
the evolution from solitary to social living (Figure 1) [48,49].

Table 1. Statistics of the studied A. mellifera carnica genome and other recently assembled honeybee
genomes. NA indicates that the genome was assembled at contig level.

A. mellifera
carnica

A. mellifera
caucasica

A. mellifera
DH4

A. mellifera
mellifera

A. cerana
cerana

Technology Pacbio, Hi-C Pacbio Pacbio, Hi-C Pacbio, Hi-C Pacbio, Hi-C

Coverage 101 112 192 100 134

Assembly
size (Mbp) 226.02 224.7 225.25 227.03 215.6

Number of
Contigs 313 224 227 199 214

N50 Scaffold
size (Mbp) 13.4 NA 13.6 13.5 13.7

Releasing
date 2020 2020 2018 2018 2020
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natural structural variation among the genomes, reflecting local adaption [50,51]. Overall, 
88,380 microsatellites with dinucleotides motif were identified in A. mellifera carnica. Com-
paratively, 89,099 and 89,569 were identified in A. mellifera DH4 and A. mellifera mellifera, 

Figure 1. Phylogenetic tree of the studies insects for the genome selection. All nodes were 100%
bootstrap supported. N. vitripennis was used to root the tree. For A. mellifera carnica, 93.53% of
complete BUSCOs were found, which suggests the assembly is complete.

3.2. Genome Alignment among Honeybee Subspecies

By pair-wised alignment, 83% and 89% of A. mellifera carnica genome can be perfectly
aligned to A. mellifera mellifera and A. mellifera DH4 genome, respectively (Figures 2 and S1).
The average length of the aligned region was 103 Kbp and 108 Kbp for A. mellifera mellifera
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and A. mellifera DH4, respectively (Figure S2). The inverted fragment may reflect nat-
ural structural variation among the genomes, reflecting local adaption [50,51]. Overall,
88,380 microsatellites with dinucleotides motif were identified in A. mellifera carnica. Com-
paratively, 89,099 and 89,569 were identified in A. mellifera DH4 and A. mellifera mellifera,
respectively. The relative abundance of microsatellites along the motifs were not signifi-
cantly different among the three genomes (Pearson’s Chi-squared test, df = 24, p = 0.26).
However, the number of microsatellites decreased with the increasing number of repeats
for all three genomes (Pearson’s correlation coefficient, df = 9, p < 0.001, Figure 3A). A set
of linkage map makers were further compared among the three genomes [52–54]. Out
of 1081 paired microsatellite primers, 839 (77%) could be aligned to all three genomes
(Figure S3), with an average density of 4.8 cM per locus (Figure 3B). For the remaining
242 markers, 162 were aligned to at least one genome. A. mellifera DH4 shared a higher
number of markers with A. mellifera carnica compared with A. mellifera mellifera, which
significantly deviated from random (Pearson’s Chi-squared test, df = 2, p < 0.01) and is
congruent with the genome phylogenetic tree in general (Figure S4).
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Figure 3. Microsatellite analysis of the three honeybee subspecies. (A): the distribution of microsatel-
lites of the dinucleotide motif. The number of microsatellites decreased with the increasing number of
repeats for all three genomes. Overall, the variation of the microsatellite distribution among the three
genomes was not significant. (B): Venn diagram of the linkage map makers among the three honeybee
genomes. A. mellifera DH4 shared significantly higher number of markers with A. mellifera carnica
compared with A. mellifera mellifera.

3.3. Phylogenetic Analysis of Sociality-Related Proteins

The evolutionary process of bee sociality is fascinating, and highlights how genomes
evolved to give rise to new and complex behaviors [49,55,56]. Insulin is an essential



Life 2022, 12, 1642 6 of 12

gene family regulating honeybee caste determination [57,58]. Hexamerin regulates the
reproductive tissue development after honeybee caste differentiation [59–61]. The two gene
families were selected to indicate the social evolution. The phylogenetic tree of insulin
and hexamerin gene families clearly showed that solitary bees (digger bees and red mason
bees) were an early branch from the root (small carpenter bees), followed by bumble
bees (Figure 4). The four honeybee species were clustered together, indicating that the a
distinctive gene selection of sociality [62–64].
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3.4. Signature of Positive Selection

Overall, 4897 single-copy orthologous groups were identified, out of which 245 orthol-
ogous groups displayed signs of positive selection in at least one branch test. The number
of orthologous groups under positive selection within each branch varied significantly
(Chi-squared test, p < 2.2 × 10−16) and ranged from 10 to 114 with 10, 27, 45, 78, and
114 for A. mellifera caucasica, A. mellifera mellifera, A. mellifera spp., A. mellifera carnica, and
A. mellifera ligustica, respectively (Table S1). Such a variation in the number of genes under
positive selection among the different A. mellifera subspecies may highlight a fast pace of
adaptation or directed domestication in A. mellifera carnica and A. mellifera ligustica com-
pared with others [65,66]. However, this result could also be the consequence of different
population structures among A. mellifera subspecies with differential gene flow and intro-
gression levels. Only one orthologous group, encoding for the protein obscurin involved in
myogenesis and Hippo signaling pathway [67,68], was found to be under positive selection
in three branches (A. m. carnica, A. m. ligustica, and A. m. spp., Table 2). Moreover, a few
orthologous groups were found under positive selection in more than one branch (Table 2).
Additionally, Hippo signaling pathway was involved in cold temperature adaptation in
bees [13].
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Table 2. Orthologous found to be under positive selection in more than one branch tested.

Gene/Protein Name Putative Function Branches

obscurin Involved in myogenesis and the Hippo
signaling pathway

A. mellifera carnica
A. mellifera ligustica

A. mellifera spp.

ATP-dependent RNA
helicase abstrakt axonal growth (visual system) A. mellifera carnica

A. mellifera ligustica

bifunctional heparan sulfate N-
deacetylase/N-sulfotransferase involved in Wnt signaling A. mellifera carnica

A. mellifera ligustica

foxP protein Central Nervous
System/learning-memory

A. mellifera carnica
A. mellifera ligustica

serine/threonine-protein kinase
tricorner

Post-transcriptional regulation,
development (dendrite morphogenesis)

A. mellifera carnica
A. mellifera ligustica

protein turtle homolog B Establishing coordinated motor control,
axonal targeting of the R7 photoreceptor

A. mellifera carnica
A. mellifera ligustica

GTPase-activating Rap/Ran-GAP
domain-like protein 3 signal transduction A. mellifera carnica

A. mellifera ligustica

zinc finger protein 512B involved in transcriptional regulation A. mellifera carnica
A. mellifera mellifera

prohormone-2 precursor neuropeptide/social behavior regulation A. mellifera carnica
A. mellifera mellifera

protein lingerer copulation/short-term memory A. mellifera carnica
A. mellifera mellifera

retinoid-inducible
serine carboxypeptidase involved in vascular wall A. mellifera carnica

A. mellifera mellifera

cAMP-specific 3′,5′-cyclic
phosphodiesterase

signaling, phsysiology, female fertility,
learning/memory

A. mellifera carnica
A. mellifera mellifera

7SK snRNA methylphosphate
capping enzyme methylation, development A. mellifera carnica

A. mellifera mellifera

RB1-inducible coiled-coil protein 1 involved in autophagy A. mellifera carnica
A. mellifera caucasica

muscle LIM protein Mlp84B cell differentiation late in myogenesis A. mellifera carnica
A. mellifera spp.

junctophilin-1 formation of junction membrane
in sarcomere

A. mellifera carnica
A. mellifera spp.

RNA binding protein fox-1
homolog 2 alternative splicing A. mellifera ligustica

A. mellifera mellifera

chitin synthase chs-2 chitin biosynthetic synthesis A. mellifera ligustica
A. mellifera spp.

ell-associated factor Eaf regulation of transcription elongation A. mellifera ligustica
A. mellifera spp.

nuclear protein localization
protein 4 homolog ubiquitination A. mellifera ligustica

A. mellifera spp.

kinesin-like protein unc-104 synaptic vesicle transport/locomotion A. mellifera ligustica
A. mellifera spp.

actin-interacting protein 1 sarcomere
organization/development/locomotion

A. mellifera ligustica
A. mellifera spp.

ubiquitin carboxyl-terminal
hydrolase 36 stem cell line maintenance A. mellifera ligustica

A. mellifera spp.

teneurin-a neural development A. mellifera ligustica
A. mellifera spp.

troponin I muscle contraction A. mellifera ligustica
A. mellifera spp.

3.5. Functional Categories Enriched of Positively Selected Genes

We identified 11 significant functional categories in A. m. carnica, 28 in A. m. ligustica,
5 in A. m. mellifera and caucasica, and 6 in A. mellifera branch, which were enriched in genes
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under positive selection at 20% FDR. The long list of significant GO-terms found to be
significantly enriched of positively selected genes in A. m. ligustica were mainly related
to larval development (Figure 5), as demonstrated with clustering from REVIGO [45].
Interestingly, the two most significant enriched functional genes under positive selection in
A. mellifera branch, chitin metabolism and mitochondrial translation (Figure 6), matched
functional genes previously found in A. mellifera [34]. While functions found to be enriched
of positively selected genes in A. m. mellifera were mainly related to the nervous system,
in A. m. caucasica. They were mainly related to autophagy/cell death (Figure 6). In
A. m. carnica, most of significant GO terms seems to be linked with stress tolerance,
notably response to wounding, reactive oxygen species (ROS) metabolism, and larval
midgut programmed cell death (Figure 6). More precisely, several significant GO terms
are likely involved in cold resistance in honeybees, such as developmental growth [69],
ROS metabolism [70], and hippo signaling [13]. Interestingly, the gene encoding the
protein Dachsous, which was under positive selection in A. m. carnica and found in
several significant GO terms, plays a key role in the adaptation to temperate climate in
the A. m. sinisxinyuan [13]. Furthermore, the genes Amel_mTOR and Amel_Imp, encoding
serine/threonine-protein kinase mTOR and insulin-like growth factor 2 mRNA-binding
protein 1, respectively, might also play a role in cold tolerance as they both are involved in
the insulin pathway regulating food intake, essential for cold tolerance [71,72]. Moreover,
cold tolerance in A. cerana involved serine/threonine-protein kinases like mTOR [73].
The protein RB1-inducible coiled-coil protein 1, part of the GO term ‘larval midgut cell
programmed cell death’, was found to be under positive selection in A. m. caucasica and
involved in cold adaptation in amphipods [74].
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