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Abstract

The deleterious genetic variants contributing to certain diseases may differ in terms of num-

ber and allele frequency from population to population depending on their evolutionary back-

ground. Here, we prioritize the deleterious variants from Pakistani population in manually

curated gene list already reported to be associated with common, Mendelian, and congeni-

tal cardiovascular diseases (CVDs) using the genome/exome sequencing data of Pakistani

individuals publically available in 1000 Genomes Project (PJL), and Exome Aggregation

Consortium (ExAC) South Asia. By applying a set of tools such as Combined Annotation

Dependent Depletion (CADD), ANNOVAR, and Variant Effect Predictor (VEP), we

highlighted 561 potentially detrimental variants from PJL data, and 7374 variants from ExAC

South Asian data. Likewise, filtration from ClinVar for CVDs revealed 03 pathogenic and 02

likely pathogenic variants from PJL and 112 pathogenic and 42 likely pathogenic variants

from ExAC South Asians. The comparison of derived allele frequencies (DAF) revealed

many of these prioritized variants having two fold and higher DAF in Pakistani individuals

than in other populations. The highest number of deleterious variants contributing to com-

mon CVDs in descending order includes hypertension, atherosclerosis, heart failure, aneu-

rysm, and coronary heart disease, and for Mendelian and congenital CVDs

cardiomyopathies, cardiac arrhythmias, and atrioventricular septal defects.

Introduction

Cardiovascular diseases (CVDs) are the prime cause of death globally, accounting for over

31% of all the global deaths as estimated in 2012. The major proportion is endured by low- and

middle-income countries, such as Pakistan [1]. The World Health Organization has reported

6.34 million disability adjusted life years (DALYs) due to CVDs in Pakistan in the duration

2000–2012, which was 19.6% of the burden by non-communicable diseases in the country [2].

The high prevalence and subsequent mortality attributed to CVDs is due to heritable and envi-

ronmental contributing factors. The heritable component is polygenic and a result of complex

interaction of many genes that confers an increased risk of CVD development [3].
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Availability of population scale large DNA sequence datasets, such as 1000 Genomes Proj-

ect [4] and the Exome Aggregation Consortium (ExAC) [5], have enabled researchers to

explore variants frequencies of individual loci across populations and to highlight those related

to local adaptations and disease susceptibility. The discovery of huge number of rare popula-

tion or individual specific variants (MAF < 0.5%) in these genome sequencing projects is

important for evaluating their contribution to the susceptibility and onset of diseases [6, 7].

Compared to the common variants, these rare variants more likely occur at evolutionary con-

strained site of proteins which have been kept conserved due to their functional importance.

Such rare variants affect proteins composition in a more disruptive manner compromising or

eliminating their function and affecting some phenotype [8]. The rate of emergence and distri-

bution of such deleterious variants in populations is important in determining the patterns of

underlying genetic load for diseases, because the increased accumulation of genetic load of dis-

eases due to non-random segregation of deleterious variants is so detrimental that fixation or

near-fixation of these mutations can play a significant role in the extinction of isolated popula-

tions with small effective population size [9, 10].

The effect of genetic variants for susceptibility or onset of diseases can be assessed in two

ways using the DNA sequencing data: either screening the catalogued disease causing variants

found already associated with certain disease by case-control studies, or prioritizing the detri-

mental variants, which have not been previously associated with diseases, by predicting their

damaging effect [11]. The variant effect prediction tools make use of the available information

such as the degree of conservation at the variant site and type of alteration in the protein com-

position, or its association with regulatory features and then predict the possible deleterious-

ness of variants under question [12]. As estimated earlier, on average a healthy person carries

281–515 missense substitutions, out of which 40–85 in homozygous state, predicted to be dam-

aging and disease causing [11]. The presence of such deleterious variants in healthy individuals

without showing apparent disease symptoms may be due to these variants being present in the

heterozygous state, particularly for those that are associated with autosomal recessive disor-

ders, having low penetrance, or being associated with a late disease onset. By genome wide

association studies (GWAS), hundreds of common genetic variants have already been attrib-

uted to common CVDs such as hypertension, hypercholesterolemia, and coronary artery dis-

ease. Likewise genetic screenings have also identified many rare variants associated with

Mendelian CVDs such as cardiomyopathies and arrhythmias. The common variants impart

small cumulative risk in the onset of disease. The rare deleterious variants have been hypothe-

sized to pose greater effect for these complex diseases [13]. Quantification of the mutational

load for certain diseases provides a framework for understanding the overall effect of popula-

tion-specific history on deleterious variation.

South Asia is one of the most densely populated regions having approximately one fourth

of the world’s population [14]. This region faces severe socioeconomic inequities leading to

serious health care issues [15]. Large scale ethnographic studies have shown that South Asians

are at more risk to cardiovascular diseases than other ethnicities [16, 17]. CVDs account for

27% of the deaths in this region of the world, which is alarmingly high [18]. The age-standard-

ized years of life lost due to CVDs has been increased in South Asia as compared to other

regions. The incidence of acute myocardial infarction occurs about six years earlier than in

western countries [19]. Likewise, the risk and prevalence of coronary artery disease is also con-

siderably high in South Asians than in European populations [20].

Pakistan, the 2nd largest country of South Asia, and 6th largest country of the world (popu-

lation 193.2 million) [14], is also facing serious health care issues. Estimates show that one in

five adults of middle age may have sub-clinical coronary artery disease [21]. Prevalence of cor-

onary artery disease in the local rural population has been reported to be 11.2% in one study
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[22]. Owing to the socio-demographic perspectives, consanguineous marriages are quite com-

mon in this region [23], which are possible cause of high prevalence of genetic disorders

including cardiovascular diseases [24]. In this scenario, this study aims to estimate the underly-

ing mutational burden of cardiovascular diseases in the Pakistani population. For this purpose,

we make use of publically available genomic data of Pakistani population (Punjabi from

Lahore; PJL) in the 1000 Genomes Project, and South Asians (SAS) in ExAC which predomi-

nantly contains samples from Pakistan as a cohort of the Pakistan Risk of Myocardial Infarc-

tion Study (PROMIS) [25]. For quantifying the mutational load, we applied two approaches,

i.e. filtration of variants already reported to be associated with cardiovascular diseases in Clin-

Var database, and by predicting the functionally deleterious variants using variant effect pre-

diction tools. In this analysis, we determined the concordance of mutational load of cardiac

diseases between the two data sets, i.e., 1000 Genomes Project PJL, and ExAC SAS. We com-

pared the allele frequencies of variants associated with these diseases to understand their rele-

vance for estimating cardiovascular genetic risk in the Pakistani population in comparison

with other continental populations.

Methodology

i. Preparation of genes lists

The genes reported to be associated with common, Mendelian, and congenital cardiovascular

diseases were obtained primarily from three data bases, Online Mendelian Inheritance in Man

(OMIM) [26], ClinVar [27], and Disease Ontology Annotation Framework (DOAF) [28]. The

complete list of diseases at these databases were accessed and filtered for cardiovascular dis-

eases using multiple terms related to CVDs such as ‘cardio’, ‘cardiac’, ‘heart’, ‘coronary’, ‘car-

diomyopathy’, ‘myocardial’, ‘aneurysm’, ‘arteriopathy’, ‘atherosclerosis’, ‘septal defect’, ‘septal

noncompaction’, ‘tetralogy of fallot’, ‘atrial’, ‘arterial’, ‘hypertension’, ‘QT syndrome’, ‘hyper-

cholesterolemia’, ‘hyper triglyceridemia’ and some manually selected cardiac diseases. These

terms were also compared with those in Human Phenotype Ontology [29] and WHO’s Inter-

national Classification of Diseases (ICD-10) database. After manual curation through litera-

ture survey and refinement through GeneCards database [30], three lists comprising of genes

relating to three categories of CVDs were prepared: one for common CVDs (n = 895 genes)

such as hypertension, atherosclerosis, coronary heart disease, and heart failure, second for

Mendelian CVDs (n = 320 genes) such as cardiomyopathies, cardiac arrhythmia, QT syn-

dromes, and atrial fibrillation, and third for congenital CVDs (n = 62 genes) such as congenital

heart disease, and atrioventricular septal defects. The lists of the selected genes associated with

common, Mendelian and congenital CVDs are given in S1 Table. There was overlapping of

few genes between these three categories of CVDs (Fig 1). The gene ontology terms to which

these finally short listed genes belong were determined by UniProt Gene Ontology Annotation

database for human version 2.0 [31] and plotted using the ‘BGI WEGO’ online Gene Ontology

Tool [32].

ii. Data set

Two data sets were used for estimating the mutational load of cardiovascular diseases in Paki-

stani population, i.e., the 1000 Genomes Project phase 3 data and ExAC release 0.3 data. The

variants data for Pakistani population PJL (n = 96 individuals) was extracted from 1000

Genomes project data using the VCFtools [33]. This data of healthy persons was used for esti-

mating mutational load of common, Mendelian and congenital CVDs. From ExAC database,

the genetic variations related to South Asians (n = 8,276) were extracted and used as Pakistani

data because it predominantly contained Pakistani individuals (n = 7,078) as part of the
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Pakistan Risk of Myocardial Infarction Study. This data was used for mutational load of Men-

delian and congenital CVDs only because it already contained cohort of common cardiac dis-

eases such as hypertension, hypercholesterolemia, and coronary artery disease apart from

healthy controls [25].

iii. Analysis pipeline

We developed a pipeline for computational analysis to determine the predicted deleterious

effects of genetic variants based on functional annotations and assessing their prevalence using

the common bioinformatics tools (Fig 2). The coordinates of the selected genes involved in

cardiovascular diseases were obtained from GENCODE release 19 (gencode.v19.annotation.

gtf), which is the final build of GENCODE mapped to the human GRCh37 reference assembly

[34]. To cover the promoter regions of these genes in the analysis, 2000 was subtracted from

the gene’s start position (the upstream region) and 2000 was added to the gene’s end position

(the downstream position). In order to subset the variants of relevant genes bcftools-1.2.1 was

used. For the current analysis, only the SNVs were used for prioritization. To determine the

functional impact of the subset variants on proteins’ structure and function, three widely used

tools were employed, i.e., the Combined Annotation Dependent Depletion (CADD) [35],

PolyPhen-2 [36], and Sorting Intolerant from Tolerant (SIFT) [37]. These tools make use of

machine learning approach to predict the effect of variants based on a number of factors

including protein multiple sequence alignment, sequence- and structure-based features, and

conservation across available homologous sequences [38]. Our approach was to prioritize mis-

sense (non-synonymous) variants preferably with low- and rare-allele frequency, because stud-

ies have shown that low- and rare-allele frequency variants are more in functional impact on

proteins, whereby these are associated with complex phenotypes/disorders by changing the

composition of proteins [39]. The annotation of the variants with CADD was performed using

an in-house perl script (Supporting Information Script 1), while annotation with SIFT and

PolyPhen-2 was performed with ANNOVAR [40]. We kept the criteria a bit stringent for

Fig 1. Venn diagram showing the number and overlap of genes associated with common, Mendelian and

congenital cardiovascular diseases used in this analysis.

https://doi.org/10.1371/journal.pone.0192446.g001
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filtration of harmful variants, such that an SNV was considered ‘functionally deleterious’ for

which PolyPhen-2 HDIV score was > 0.957, SIFT score was< 0.05, and CADD phred-like

score was 15 or higher (i.e.� 1% percentile highest scores). We called such filtered SNVs as

‘predicted deleterious SNVs’ (dSNVs). The ancestral and derived states of deleterious variants

were retrieved from online CADD annotation tool, which utilizes human-chimpanzee ances-

tral genome from the Ensembl EPO multiple alignments [41].

iv. Comparison of the variants across the world populations

Population wise allele frequencies of predicted deleterious variants were retrieved by filter-

based annotation with ANNOVAR using the 1000 Genomes and ExAC data frequency files.

The comparison of allele frequencies for the two data sets (The 1000 Genomes and ExAC data)

was carried out independently due to the difference in their data structure. The derived allele

frequencies of predicted deleterious variants for cardiovascular diseases in Pakistani

Fig 2. Analysis pipeline to determine the deleterious variants related to cardiovascular diseases in Pakistani

population using 1000 Genomes Project PJL and ExAC SAS databases. (PJL = Punjabi in Lahore, Pakistan, ExAC

SAS = South Asian in Exome Aggregation Consortium).

https://doi.org/10.1371/journal.pone.0192446.g002
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individuals of the 1000 Genomes Project were compared with all five major population groups

i.e South Asian (SAS), European (EUR), Admixed American (AMR), African (AFR), East

Asians (EAS), and Southeast Asian population ‘Malay’ [42]. Likewise, the derived allele fre-

quencies of predicted deleterious variants in South Asian population of ExAC data were com-

pared with all four populations of the same data i.e Non-Finnish Europeans (NFE), Latino

(AMR), African/African American (AFR), and East Asian (EAS).

To find the populations wise genetic differentiation with respect to cardiovascular diseases,

pair-wise Weir and Cockerham FST [43] values were calculated for the 1000 Genomes data,

using the VCFtools. For this purpose, two approaches were employed, i.e FST calculation for

all the genes which harbored the predicted deleterious SNVs in this analysis, and for deleteri-

ous SNVs only which were prioritized. Likewise, the relatedness of the populations based on

the deleteriousness they harbored for cardiovascular diseases was assessed by Principal compo-

nent analysis (PCA) using the PLINK tool (v1.90b3.30) [44] and verified by EIGENSOFT’s

smartpca (version 3.0) [45].

v. Searching the variants in ClinVar database

Annotation of the variants in genes set related to cardiovascular diseases were carried out

using the ClinVar data release 20160104 [27]. The allele frequencies of ClinVar variants pres-

ent in Pakistani individuals were retrieved by ANNOVAR annotation for both the 1000

Genomes populations and ExAC populations as described above. For comparison of allele fre-

quencies among the populations, only those variants were selected with ClinVar significance

‘Pathogenic’, and ‘Likely_pathogenic’.

Results

i. Gene ontology

The grouping of genes under study according to their biological role was carried out using

UniProt Gene Ontology Annotation database [31], which showed that most of the genes were

primarily involved in binding, catalysis, and molecular transduction in a number of biological

processes such as biological regulation, anatomical structure formation, cellular compartment

organization and genesis, developmental process, metabolic process, and organismal process

etc. (S1 Fig). Gene ontology shows that many genes are also related to structural processes of

the heart representing the anatomical nature of cardiac diseases.

ii. The mutational load of CVDs

All the SNVs in intronic, exonic, and flanking regulatory regions of our genes under study, as

extracted from 1000 Genomes Project PJL and ExAC SAS data, were analyzed for mutational

load by applying our analysis pipeline (Table 1). We calculated the proportions of synony-

mous, nonsynonymous, deleterious nonsynonymous, and homozygous deleterious SNVs

from the two data sets. The proportions of nonsynonymous exonic SNVs (nonsynonymous

SNVs/exonic SNVs), and deleterious nonsynonymous SNVs (deleterious nSNVs/nonsynon-

ymous SNVs) was higher in ExAC SAS than in 1000 Genomes Project PJL (0.64 v.s. 0.51, and

0.26 v.s. 0.16 respectively). On the other hand, the proportion of synonymous SNVs and

homozygous deleterious SNVs was observed to be higher in 1000 Genomes Project PJL than in

ExAC SAS (0.45 v.s. 0.35, and 0.12 v.s. 0.04 respectively) (S2 Fig). After applying the prediction

tools as described in analysis pipeline, 561 combinedly predicted deleterious SNVs were priori-

tized for common, Mendelian and congenital CVDs from 1000 Genomes Project PJL data,

while there were 7374 combinedly predicted deleterious SNVs for Mendelian and congenital

Mutation load of cardiovascular diseases
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CVDs from the ExAC SAS data (Fig 3). Based on these findings from two data sets, the muta-

tional load was observed to be higher for common CVDs than for Mendelian and congenital

CVDs in Pakistani population. The highest number of deleterious variants contributing to

common CVDs in descending order included hypertension, atherosclerosis, heart failure,

aneurysm, and coronary heart disease, and for Mendelian and congenital CVDs cardiomyopa-

thies (dilated and hypertrophic), cardiac arrhythmias, and atrioventricular septal defects.

iii. Filtration of variants in ClinVar

The filtration of our set of variants based on pathogenicity in ClinVar database identified sev-

eral variants associated with Mendelian and congenital cardiovascular disorders. There were

03 variants with ClinVar significance ‘Pathogenic’, and 02 variants with ‘likely Pathogenic’, sig-

nificance for CVDs in 1000 Genomes Project PJL population (S2 Table, sheet A). The three

pathogenic SNVs (rs201654872, rs115372595, and rs201680145) contribute to dilated cardio-

myopathy, atrioventricular septal defect, and cerebral autosomal dominant arteriopathy

respectively. The annotation with online VEP tool showed that two pathogenic missense SNVs

rs201654872 [Val/Met] and rs201680145 [Arg/Cys] are linked with CCCTC-binding factor

site (CTCF_binding_site). The CTCF_binding_sites are major determinants of long-range

interactions (looping) of chromatins which alter gene expression [46]. The third pathogenic

missense SNV rs115372595 [Ala/Val] is also linked with regulatory region (open chromatin

region). The open chromatin sites tend to be near the transcription start site and play a role in

gene expression coincident with CTCF binding sites [47]. The two ‘Likely Pathogenic’ variants

(rs193922669, and rs77613865) contribute to arrhythmogenic right ventricular cardiomyopa-

thy and hypertrophic cardiomyopathy respectively. The missense SNV rs193922669 causes

Arg/His substitution in desmoplakin protein, while rs77613865 is a splice region variant, and

is also linked with open chromatin region affecting the expression of myomesin 1 (MYOM1).
On the other hand, in ExAC South Asian data, 112 ‘Pathogenic’ SNVs, 42 ‘Likely Pathogenic’

SNVs were filtered (S2 Table, sheet B). As a whole, 73 (47.40%) of the filtered SNVs belonged

to various forms of cardiomyopathies, 38 (26.68%) were related to Long_QT syndrome, and

Table 1. The number of variants subsetted from two datasets within the coordinates of our genes-sets of CVDs.

The mutational load of deleterious SNVs per person was found to be higher for common CVDs than for Mendelian or

congenital CVDs.

Data Sets 1000 Genomes

PJL

ExAC

SAS

Sample size 96 8276

CVDs related genes analyzed here 1187 379

Subset of variants in these genes 363543 71816

Exonic variants 6941 44357

Upstream variants 4668 80

Downstream variants 4752 09

5’-UTR 1573 1075

3’-UTR 7541 1694

Predicted Consequences of Variants:

Non-synonymous SNVs 3521 28305

‘Combinedly predicted deleterious’ with SIFT, Polyphen-2, and CADD phred score

15 (dSNVs)

561 7374

Homozygous dSNVs 69 306

Loss of Function (LoF) variants in dSNVs 05 142

Per person dSNVs 5.84 0.89

https://doi.org/10.1371/journal.pone.0192446.t001
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8 (5.19%) to different forms of atrioventicular defects. It was also noted that 31 SNVs had mul-

tiple significances for more than one type of Mendelian or congenital CVDs. The allele fre-

quencies of filtered variants were compared which highlighted 11 variants having allele

frequency significantly higher in SAS than in other populations (Table 2). Functional conse-

quences with online VEP tool showed 13 variants with Loss of Function (LoF) effect, and 23

regulatory region variants (S2 Table, sheet B). We highlighted the genomic locations of genes

harboring the ClinVar variants associated with common, Mendelian and congenital CVDs in

Pakistani population (Fig 4). The loci of different genes such as SCN5A on chromosome 3,

KCNQ1 and MYBPC3 on chromosome 11, MYH6 and MYH7 on chromosome 14, and KCNE1
and KCNE2 on chromosome 21 were found enriched for clinically significant variants.

iv. Comparison of derived allele frequencies of predicted deleterious

variants across continental populations

Derived allele frequency spectrum of all the SNVs and deleterious SNVs in our genes-set of

CVDs filtered from 1000 Genomes Project PJL data and ExAC South Asian data, revealed that

majority of the deleterious variants were of rare allele frequency. The proportion of common

allele frequency deleterious SNVs (AF> 5%) was found to be 11.59% in 1000 Genomes Project

PJL for common, Mendelian and congenital CVDs, while it was found only 00.62% for Men-

delian and congenital CVDs from ExAC SAS (Fig 5). The comparison of derived allele fre-

quencies of predicted deleterious SNVs was carried out with other major population groups

within their respective data set. This comparison revealed two important findings: (a) The

extent of private and shared deleterious SNVs between the Pakistanis and other populations,

and (b) the number of deleterious SNVs with higher derived allele frequency in the Pakistani

population (or in South Asian in case of ExAC data) than in other populations. It was noted

that the extent of sharing deleterious SNVs was different with different populations groups.

Overall, 33.16% of the predicted deleterious SNVs were private to PJL in 1000 Genomes Proj-

ect data, the derived allele frequencies of which varied from 0.0052 to 0.0260, while 66.84%

SNVs were shared with derived allele frequencies ranging from 0.0052 to 0.7968. So, it was evi-

dent that among the predicted deleterious SNVs, the private proportion contained only rare

Fig 3. Venn-diagram indicating the number of SNVs predicted as deleterious by SIFT, Polyphen-2, and CADD in

genes associated with cardiovascular diseases in this study. Considering the phred-like (scaled) score of 15 as

deleterious, CADD predicts highest number of variants to be deleterious, due to the inclusion of non-coding variants.

https://doi.org/10.1371/journal.pone.0192446.g003
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variants (DAF< 0.5%), while the shared proportion contained both rare (47.50%) and com-

mon variants (52.50%) within this category. On the other hand from ExAC data analysis,

greater proportion of deleterious SNVs (i.e. 56.64%) was private to SAS, while 43.36% deleteri-

ous SNVs were shared with other populations. Among the shared deleterious SNVs, the pro-

portions of those having higher derived allele frequencies in Pakistani population were found

greater in all five comparisons conducted within 1000 Genomes Project populations. Whereas,

for ExAC data, the proportion of shared deleterious SNVs with higher derived allele frequency

in SAS was greater than Non-Finnish European only (Table 3). Interestingly it was noted that

the proportion of shared deleterious SNVs of Mendelian and congenital CVDs with other pop-

ulations (ExAC data) was less than the proportion of shared deleterious SNVs of common,

Mendelian and congenital CVDs (1000 Genomes Project data) except for the comparison with

the European population (S3 Fig). This comparison also revealed that there was comparatively

less difference in derived allele frequencies of most of the deleterious SNVs between 1000

Genomes Project PJL and rest of 1000 Genomes Project South Asian populations, however, in

some cases a significant difference up to 5.2 times higher was observed. The maximum differ-

ence of derived allele frequency of shared deleterious SNVs with Americans was 22.32 times

higher in PJL, for Europeans 41.67 times higher in PJL, whereas, great frequency difference

was observed with Africans and East Asians where the maximum derived allele frequency dif-

ference was calculated to be 72.19 times higher in PJL (Fig 6) (S3 Table, sheet A). The median

DAF was found to be higher in PJL as compared with SAS, EAS, AMR, and AFR populations,

while it was lower in PJL when compared with EUR populations (S4 Fig). Likewise, for com-

parisons of derived allele frequency of ExAC SAS, the highest difference was observed with

NFE i.e. 1098 timers higher in SAS. The maximum difference for other ExAC populations was

858 times than EAS, 347 times than AFR, 290 times than AMR, and 64 times than FIN popula-

tions (S3 Table, sheet B).

v. Functional consequences of deleterious variants

We then grouped the deleterious variants of both data sets according to their functional conse-

quences to point out LoF variants, including ‘stop_gained’, ‘stop_lost’, ‘start_lost’, ‘frameshift

Table 2. ClinVar’s Pathogenic and Likely pathogenic variants associated with CVDs having significantly higher percent allele frequency in SAS than in other

populations.

CHR POS ID REF ALT Gene Clinical

Significance

ExAC_AF AFR_AF AMR_AF EAS_AF FIN_AF NFE_AF SAS_AF Disease

1 3329208 rs397514743 A G PRDM16 Pathogenic 0.0264 0 0 0.0375 0 0 0.3118 Left_ventricular_noncompaction_8

1 3347452 rs201654872 G A PRDM16 Pathogenic 0.3529 0.0103 0.0087 0.0116 0 0.0030 2.5630 Dilated_cardiomyopathy_1LL

3 38592408 rs137854619 C T SCN5A Pathogenic 0.0305 0 0 0 0 0.0060 0.1999 Long_QT_syndrome_2/3|

Congenital_long_QT_syndrome

3 38622640 rs199473183 A G SCN5A Pathogenic 0.0282 0 0 0 0 0 0.2183 Congenital_long_QT_syndrome

3 46899901 rs145520567 C T MYL3 Likely

Pathogenic

0.0264 0 0.0086 0 0 0.0090 0.1514 Cardiomyopathy

6 7542236 rs121912998 G A DSP Pathogenic 0.1608 0.0542 0.1018 0 0.0773 0.3291 0.5701 Arrhythmogenic_right_ventricular_

cardiomyopathy\x2c_type_8

6 7583050 rs193922669 G A DSP Likely

Pathogenic

0.0239 0 0 0 0 0.0045 0.1575 Arrhythmogenic_right_ventricular_

cardiomyopathy

8 11615928 rs56208331 G A GATA4 Pathogenic 0.2117 0 0.0173 0 0.0151 0.0375 1.3687 Atrial_septal_defect_2| Tetralogy_of_Fallot

11 47354209 rs199669878 C T MYBPC3 Likely

Pathogenic

0.0405 0.0118 0.0306 0 0 0.0372 0.1447 Cardiomyopathy

14 23894554 rs376754645 C T MYH7 Likely

Pathogenic

0.0222 0 0.0086 0.0231 0 0.0045 0.1272 Familial_hypertrophic_cardiomyopathy_1

18 3149140 rs77613865 T G MYOM1 Likely

Pathogenic

0.3879 1.616 0.0866 0 0 0.0090 1.7470 Hypertrophic_cardiomyopathy

https://doi.org/10.1371/journal.pone.0192446.t002
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change’, and ‘splice donor or acceptor variants’ which possess the most damaging effect to pro-

teins structure and function [48], by using the online Variant Effect Predictor tool [49]. The

analysis divulged 03 LoF variants in 1000 Genomes Project PJL individuals, out of which 2

were in homozygous state. These include homozygous ‘rs2228570’ (start lost), heterozygous

‘rs371316552’ (stop gain), and homozygous ‘rs117054298’ (splice acceptor variant). The

derived allele frequency of ‘rs2228570’ was found to be quite high in the PJL population i.e.

79.68%. Comparison of derived allele frequency of this variant with global populations showed

that this is prevalent in almost all populations with higher frequencies ranging from 51.73% in

Americans to 81.09% in Africans. This variant lies within vitamin D receptor (VDR), whose 6

out of 9 transcripts were found to be affected with LoF mutation, and is associated with many

disease conditions including the hypertension [50, 51]. The ‘rs371316552’ SNP belongs to

cathepsin B (CTSB), whose increased expression has been reported to pose a risk for athero-

sclerosis and myocardial infarction in rat models [52]. The third LoF SNP ‘rs117054298’

Fig 4. Genomic positions of genes harboring the variants associated with CVDs as filtered from the ClinVar database. One colour of circles beside

the chromosomes denotes one gene. The size of circle corresponds to the number of associated variants in that gene. The loci on chromosomes 3, 11,

14, & 18 are richer in variants with clinical significance for CVDs.

https://doi.org/10.1371/journal.pone.0192446.g004
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belongs to insulin-like growth factor (IGF) binding protein-1 (IGFBP1), whose splice site of

one transcript ENST00000457280 is disrupted and contributes to atherosclerosis [53]. Like-

wise, 30 LoF variants were found in ExAC South Asians, out of which 2 were in homozygous

state (S4 Table).

vi. Differentiation of deleterious variants

Data from whole genome/exome sequencing projects can be used to find out the extent of dif-

ferentiation among populations based on the differences in allele frequencies of nonsynon-

ymous variants. The presence of variants with highly differentiated frequencies among the

populations provides a direction to fine-map signals of local adaptation as well as susceptibility

to diseases [54]. In this study, the differentiation was determined by calculating the Weir and

Cockerham FST in two ways: (1) FST calculation for PJL versus other South Asian (SAS) popu-

lations of 1000 Genomes Project using all the SNVs in genes harboring the filtered deleterious

Fig 5. Allele frequency spectrum (AFS) of all and deleterious SNVs in genes related to CVDs. A. All SNVs in 1000 Genomes PJL, B.

Deleterious SNVs in 1000 Genomes PJL. C. All SNVs in ExAC SAS, D. Deleterious SNVs in ExAC SAS. There are more deleterious SNVs in

common DAF bins (>5%) in 1000 Genomes PJL than in ExAC SAS.

https://doi.org/10.1371/journal.pone.0192446.g005
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SNVs for cardiovascular diseases, and (2) FST calculation for PJL versus all other populations

in 1000 Genomes Project. The FST calculated for PJL versus SAS populations showed mean

FST value of 0.00134, while the mean FST for deleterious SNVs was calculated as 0.00638, which

is 4.76 times higher than the mean FST of all SNVs. Two deleterious SNVs (rs560826688 and

rs563254260) were found moderately differentiated (FST value 0.05–0.15) from other South

Asian populations ranking well above top 1% within all SNVs i.e., at top 0.11% and 0.29%

respectively (Fig 7). The derived allele frequency of rs560826688 is 0.031, and belongs to LRP5
involved in hypertension [55], and derived allele frequency of rs563254260 is 0.026 and lies in

SERPINF1 which relates to obesity and hypertension [56]. In addition to these, one highly dif-

ferentiated (FST value 0.15–0.25) SNV rs539962979 with FST value 0.16597 was also observed

Table 3. The proportion of shared deleterious SNVs (sdSNVs) with other populations of 1000 Genomes Project

and ExAC. The proportion of sdSNVs with a higher DAF in PJL was greater in all pairwise population comparisons.

On the other hand, from the comparison of ExAC_SAS with other populations, the proportion of sdSNVs with higher

DAF in SAS was greater than NFE (Non-Finnish Europeans) only, while, it was less than AMR (Americans), AFR

(Africans), EAS (East Asians), and FIN (Finnish) populations.

1000

Genomes

PJL

Total

dSNVs

Private

dSNVs

deleterious

SNVs shared

with different

populations

Proportion

(shared with

pop/total shared

dSNVs)

SNVs with

higher

DAF in

PJL

SNVs

with

lower

DAF in

PJL

Proportion

(higher DAF

SNVs/shared in

pop)

561 185 shared

with

SAS

376 1.000 282 94 0.750

shared

with

EUR

199 0.529 108 91 0.543

shared

with

AMR

171 0.455 99 72 0.579

shared

with

AFR

157 0.418 119 38 0.758

shared

with

EAS

127 0.338 84 43 0.661

ExAC SAS Total

dSNVs

Private

dSNVs

deleterious

SNVs shared

with different

populations

Proportion

(shared with

pop/total shared

dSNVs)

SNVs with

higher

DAF in

SAS

SNVs

with

lower

DAF in

SAS

Proportion

(higher DAF

SNVs/shared in

pop)

7374 4170 shared

with

NFE

2480 0.774 1883 597 0.759

shared

with

AMR

1211 0.378 473 738 0.391

shared

with

AFR

1202 0.375 445 757 0.370

shared

with

EAS

893 0.279 268 625 0.300

shared

with

FIN

478 0.149 123 355 0.257

https://doi.org/10.1371/journal.pone.0192446.t003
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in DMPK which has been reported to be involved in cardiomyopathy [57]. Likewise, the F-sta-

tistics performed for PJL versus all other populations of 1000 Genomes Project, showed com-

paratively higher differentiation than with the SAS populations, where the mean FST of 0.0031

for all SNVs, and 0.0392 for deleterious SNVs was calculated. The proportions of moderately,

highly, and severely differentiated SNVs was calculated within the pools of deleterious SNVs

and all SNVs separately. This comparison showed that deleterious pool had higher proportion

of moderately differentiated SNVs (S5 Fig). Besides this, 08 highly differentiated and 02

severely differentiated deleterious SNVs were also observed (S5 Table).

The observed difference in allele frequencies and calculated FST values of functionally pre-

dicted deleterious SNVs between PJL and rest of the global populations gave a clue for stratifi-

cation of the world populations based on mutational burden for cardiovascular diseases. So,

principal component analysis was performed for the deleterious SNVs and all the SNVs of our

genes-set from 1000 Genomes Project data. The analysis with all the low and rare allele fre-

quency SNVs of our genes-set (DAF� 5.0%) showed all the populations grouped together

while African populations making distinct group (Fig 8A). The analysis with low and rare dele-

terious SNVs showed all populations grouped at one place while PJL scattering from them (Fig

8C). Likewise, the PCA with all common allele frequency SNVs (DAF> 5.0%) of our genes-

set suggested three distinct groups of world populations in which South Asian, European, and

American populations appeared as one group. The African populations and East Asian popu-

lations grouped separately in this analysis (Fig 8B). In the PCA with deleterious common allele

frequency SNVs, the afore-mentioned groups appeared to be merging together (Fig 8D).

Fig 6. Based on the shared predicted deleterious SNVs, the comparative distribution of allele frequencies in Pakistani

population versus all five groups of 1000 Genomes Project. The variants at diagonal line have almost equal DAF in both the

populations being compared, whereas, the variants to the right of diagonal line have higher DAF in PJL, and variants to the left of

diagonal line have higher DAF in the other population being compared.

https://doi.org/10.1371/journal.pone.0192446.g006
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Using the same set of genes, the burden of common and Mendelian, and congenital cardio-

vascular diseases was also determined for one population from each of five major population

groups of 1000 Genomes Project i.e., Yoruba in Ibadan (YRI) in Africa, Southern Han Chinese

(CHS) from East Asian, Gujarati Indian from Houston (GIH) in South Asia, Puerto Ricans

(PUR) from America, Finnish (FIN) in Finland, and Malay of East Asia which is not part of

1000 Genomes Project. This empirical estimation showed excess of deleterious derived rare

variants (singletons) in YRI and Malay populations, while FIN and PJL populations harbored

the least number of deleterious derived singletons (Fig 9A). Furthermore, the proportion of

homozygous deleterious derived SNVs was observed to be second highest in PJL after the

Finnish population (PJL 12.30%, Finnish 12.79%, Fig 9B).

Discussion

In this study, we have quantified the mutational burden for common, Mendelian, and congen-

ital cardiovascular diseases in Pakistani population and compared it with other populations of

the world. This quantification of mutational load by assessing the functionally deleterious

SNVs gave a clue for high prevalence of common CVDs in this region [58]. The observed

higher mutational load for common CVDs than for Mendelian and congenital CVDs can be

explained that common CVDs are polygenic where large number of deleterious variants with

modest-to-weak effect contribute to them, whereas Mendelian CVDs are monogenic or oligo-

genic where few rare variants pose greater effect in the phenotype [6]. These modest-to-weak

effect deleterious variants spread in the populations and raised in allele frequencies along with

neutral variants during the rapid population expansion [59]. However, the allele frequencies of

deleterious genetic variants contributing to certain human diseases may be different among

populations, according to their historical modes of expansion, role of evolutionary forces, and

Fig 7. Manhattan plot for pair wise FST values between the PJL and other South Asian populations of 1000 Genomes Project. The plot is for

selected genes which harbored the deleterious SNVs for cardiovascular diseases, as filtered in this analysis. The horizontal lines at 0.05, and 0.15

positions of y-axis represent boundaries of less differentiated (FST <0.05), moderately differentiated (FST 0.05–0.15) and highly differentiated (FST 0.15–

0.25). The two deleterious SNVs, which are moderately differentiated in PJL, are highlighted red.

https://doi.org/10.1371/journal.pone.0192446.g007
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bottlenecks. Highly deleterious variants are purged by purifying selection from the population

and are rare [6, 58, 60]. So, more deleterious variants were observed in common DAF bins

(>5%) for 1000 Genomes Project PJL than for ExAC SAS (Fig 5). This was further evaluated

by calculating the proportions of rare-, low- and common-DAF deleterious SNVs for both

data sets. The proportion of common-DAF deleterious variants was found to be 11.03% in

1000 Genomes PJL, while it was only 0.54% in ExAC SAS (S6 Fig). The higher proportion of

common-DAF deleterious SNVs in 1000 Genomes Project PJL can also be explained by previ-

ous findings that the variants with very small detrimental effect for complex disorders can sur-

vive in populations for thousands of years without undergone purifying selection [61], or these

contribute to late onset of diseases. Further, the genes contributing to Mendelian disorders are

being under tight selection, while those contributing to complex disorders show interplay of

negative and positive selection due to some balancing effect [62]. For example, the high fre-

quency deleterious SNV rs2228570 (start lost of VDR) has been reported to contribute to

hypertension [50, 51], and also protects from intervertebral disc degeneration [63]. This com-

parison also revealed that the proportion of rare-DAF SNVs was higher in deleterious pool

than in total SNVs pool for both the data sets (S6 Fig). The comparatively higher proportion of

rare SNVs in deleterious pool (62.80% in 1000 Genomes Project PJL and 98.63% in ExAC

SAS) is consistent with earlier studies [64], and can be inferred in the light of population

Fig 8. Principal Components Analysis (PCA) based on genes involved in CVDs. A. PCA based on all variants in our genes

set with AF�5.0%, B. PCA based on all variants in our genes set with AF> 5.0%. C. PCA based on deleterious variants with

AF� 5.0%, D. PCA based on deleterious variants with AF> 5.0%. PJL appears to be diverging out from other populations of

the world based on low and rare allele frequency deleterious variants (AF�5.0%) (Panel C) when compared to the analysis

with all low and rare allele frequency variants in our genes-set (Panel A). For common allele frequency variants (AF>5.0%),

populations appeared in three distinct groups based on all variants (Panel B), while they appeared to be merging when

analyzed with deleterious variants only (Panel D).

https://doi.org/10.1371/journal.pone.0192446.g008
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demography i.e., the genes involved in cardiovascular diseases have acquired such rare delete-

rious SNVs in the Pakistani population because of rapid population expansion in recent times

[65]. The effect of neutral forces is further strengthened by the larger proportion of private del-

eterious SNVs (Table 3), because the most recently emerged SNVs also tend to be private in a

population, and those population specific rare variants are even more likely to be deleterious

for certain diseases [66].

The presence of ClinVar’s pathogenic and likely pathogenic variants of CVDs in 1000

Genomes Project PJL and ExAC SAS also represents the underlying burden of these diseases

in Pakistani population. The variants filtered in PJL and SAS were found to be associated with

Mendelian and congenital CVDs only. The major proportion of filtered variants was related to

cardiomyopathies (47.8%), long_QT syndrome (23.9%), cardiac arrhythmia (8.8%), and atrio-

ventricular septal defects (5.0%). Among the 11 SNVs with higher allele frequency in SAS than

in other populations (Table 2), 8 were related to cardiomyopathies. In addition to SNVs, we fil-

tered a 25-bp deletion (rs36212066) in intron 32 of MYBPC3 (cardiac myosin binding protein

C), which was reported to be related with cardiomyopathies and present in populations of

Indian origin with MAF ~4% [67]. In this analysis, this deletion was found with MAF 3.1% in

both the 1000 Genomes PJL, and ExAC SAS. In PJL, it was present in heterozygous form,

while in ExAC SAS, 11 were in homozygous state and 495 in heterozygous state.

Owing to the current understanding that genetic burden of common diseases may be differ-

ent for populations according to their past histories [58], we hypothesized that deleterious vari-

ants imparting their role in cardiovascular diseases in Pakistani population may had

differentiated from South Asian populations in a more recent time. But our results from the

pair-wise calculated FST values were persistent with previous findings that variants

Fig 9. Comparison of site frequency spectrum for PJL, 5 other populations of 1000 Genomes Project, and one Southeast Asian population

‘Malay’, using the data of same number of individuals (n = 96) of each population for normalization. A. Comparison of low frequency deleterious

SNVs in genes set of cardiovascular diseases. B. Percent homozyous deleterious SNVs in each population.

https://doi.org/10.1371/journal.pone.0192446.g009
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contributing to common diseases are not well differentiated [68]. The two deleterious SNVs,

rs560826688 (DAF 0.0312) and rs563254260 (DAF 0.0260) which are moderately differenti-

ated from other South Asians, are also severely differentiated form all populations of 1000

Genomes Project. These correspond to LRP5 (which encodes Low Density Lipoprotein Recep-

tor-Related Protein 5) and SERPINF1 (which encodes Pigment Epithelium Derived Factor

(PEDF) belonging to Serpin Peptidase Inhibitors superfamily) respectively; and both contrib-

ute to hypertension [55, 56]. Their evolution to comparatively higher frequencies in Pakistani

population may be due to genetic drift having some bona fide effect masking their role in

hypertension in this region [69]. The severely and highly differentiated SNVs from all 1000

Genomes Project populations (S5 Table) is also in accordance with the calculated higher bur-

den of CVDs in Pakistan i.e., hypertension, atherosclerosis, heart failure, cardiomyopathy, and

septal defects. Overall, comparatively less differentiation of deleterious SNVs was observed

from South Asian, European and American populations (S5 Fig) representing the less evolu-

tion of genetic factors responsible for the susceptibility of cardiovascular diseases, while the

observed high differentiation with African and East Asian populations represents their diver-

sity or differential susceptibility to cardiac diseases, which is persistent with the influence of

geography, language and ethnicity on genetic variation in those regions [70]. The PJL was also

found grouped together with other South Asians, Europeans and Americans based on the

genetics of cardiovascular diseases as carried out in this analysis (Fig 8). This paradigm also

correlates with the route of expansion of modern humans after the migration from Africa. In

future, the prioritized variants can be assessed and validated empirically by DNA sequencing

of these genes in large cohort of relent cardiac patients.

Web resources

The URLs for data used and tools presented herein are:

International Classification of Diseases: http://apps.who.int/classifications/icd10/browse/

2010/en

1000 Genomes Project phase 3 data: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/

20130502/

ExAC release 0.3 data: ftp://ftp.broadinstitute.org/pub/ExAC_release/release0.3/

UniProt Gene ontology annotations dataset: ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/

HUMAN/

Gene Ontology Tool: http://wego.genomics.org.cn/cgi-bin/wego/index.pl

bcftools-1.2.1 http://www.htslib.org/download/

Online CADD annotation tool: http://cadd.gs.washington.edu/score

Online VEP tool: http://asia.ensembl.org/Tools/VEP

Supporting information

S1 Script. Perl script to annotate the variants with CADD scores.

(PL)

S1 Fig. Categorization of genes involved in CVDs based on cellular, molecular, and biolog-

ical processes.

(TIF)

S2 Fig. Proportions of synonymous SNVs, nonsynonymous SNVs, deleterious non-synony-

mous SNVs (as determined by SIFT, Polyphen-2, and CADD) and homozygous deleterious

SNVs in the two data sets.

(TIF)
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S3 Fig. Sharing of deleterious SNVs of 1000 Genomes PJL and ExAC SAS with other conti-

nental populations of their respective datasets. In both cases, sharing was observed in a

descending order EUR>AMR>AFR>EAS>FIN. Notably, the proportion of sharing deleteri-

ous SNVs with European populations was greater for Mendelian and congenital CVDs than

for common CVDs.

(TIF)

S4 Fig. Violin plots to compare the density of predicted deleterious SNVs between Paki-

stani population versus all five groups of 1000 Genomes Project. The thickness of violins is

proportional to the number of variants corresponding to that derived allele frequency (DAF).

The box plots inside the violins showing the median values of DAF.

(TIF)

S5 Fig. Based on Weir and Cockerham FST values, comparison of the proportions of mod-

erately (FST 0.05–0.15), highly (FST 0.15–0.25), and severely (FST > 0.25) differentiated

deleterious SNVs and all the SNVs in genes harboring these deleterious SNVs. The propor-

tion of moderately differentiated SNVs is higher for deleterious SNVs when compared Paki-

stani population with all 25 populations of 1000 Genomes Project.

(TIF)

S6 Fig. Comparison of the rare (AF < 0.5%), low (0.5%� AF� 5.0%), and common

(AF > 5.0%)-allele frequency SNVs within the deleterious SNVs pool and total SNVs pool

in genes of CVDs. The difference in the proportions of ‘rare variants’ within two categories

i.e. total and deleterious, can be observed in each data set.

(TIF)

S1 Table. The genes of common, Mendelian, and congenital CVDs analyzed in this study.

(XLSX)

S2 Table. ClinVar’s pathogenic, and likely pathogenic variants found in two datasets i.e.,

1000 Genomes Project PJL and ExAC SAS.

(XLSX)

S3 Table. Predicted deleterious variants shared with other continental populations.

(XLSX)

S4 Table. Loss of Function variants found from ExAC SAS dataset.

(XLSX)

S5 Table. Deleterious SNVs of Pakistani population which are highly and severely differen-

tiated from global populations of 1000 Genomes Project. It is note-worthy that two severely

differentiated SNVs (rs560826688 and rs563254260) are both related to hypertension.

(DOCX)
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58. Henn BM, Botigué LR, Bustamante CD, Clark AG, Gravel S. Estimating the mutation load in human

genomes. Nature Reviews Genetics. 2015; 16(6):333–43. https://doi.org/10.1038/nrg3931 PMID:

25963372

59. Peischl S, Excoffier L. Expansion load: recessive mutations and the role of standing genetic variation.

Molecular Ecology. 2015; 24(9):2084–94. https://doi.org/10.1111/mec.13154 PMID: 25786336

60. Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and functional

impact of rare coding variation from deep sequencing of human exomes. Science. 2012; 337(6090):64–

9. https://doi.org/10.1126/science.1219240 PMID: 22604720

61. Subramanian S. Temporal trails of natural selection in human mitogenomes. Molecular Biology and

Evolution. 2009; 26(4):715–7. https://doi.org/10.1093/molbev/msp005 PMID: 19150805

62. Blekhman R, Man O, Herrmann L, Boyko AR, Indap A, Kosiol C, et al. Natural selection on genes that

underlie human disease susceptibility. Current Biology. 2008; 18(12):883–9. https://doi.org/10.1016/j.

cub.2008.04.074 PMID: 18571414

63. Pabalan N, Tabangay L, Jarjanazi H, Vieira LA, dos Santos AA, Barbosa CP, et al. Association Between

the FokI and ApaI Polymorphisms in the Vitamin D Receptor Gene and Intervertebral Disc Degenera-

tion: A Systematic Review and Meta-Analysis. Genetic Testing and Molecular Biomarkers. 2017; 21

(1):24–32. https://doi.org/10.1089/gtmb.2016.0054 PMID: 27797588

64. Coventry A, Bull-Otterson LM, Liu X, Clark AG, Maxwell TJ, Crosby J, et al. Deep resequencing reveals

excess rare recent variants consistent with explosive population growth. Nature Communications.

2010; 1(131):1–6.

65. Fu W, O’Connor TD, Jun G, Kang HM, Abecasis G, Leal SM, et al. Analysis of 6,515 exomes reveals

the recent origin of most human protein-coding variants. Nature. 2013; 493(7431):216–20. https://doi.

org/10.1038/nature11690 PMID: 23201682

66. Marth GT, Yu F, Indap AR, Garimella K, Gravel S, Leong WF, et al. The functional spectrum of low-fre-

quency coding variation. Genome Biology. 2011; 12(9):R84. https://doi.org/10.1186/gb-2011-12-9-r84

PMID: 21917140

67. Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS, Nallari P, et al. A common MYBPC3 (car-

diac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nature Genet-

ics. 2009; 41(2):187–91. https://doi.org/10.1038/ng.309 PMID: 19151713

68. Lohmueller KE, Mauney MM, Reich D, Braverman JM. Variants associated with common disease are

not unusually differentiated in frequency across populations. The American Journal of Human Genetics.

2006; 78(1):130–6. https://doi.org/10.1086/499287 PMID: 16385456

69. Casals F, Hodgkinson A, Hussin J, Idaghdour Y, Bruat V, de Maillard T, et al. Whole-exome sequencing

reveals a rapid change in the frequency of rare functional variants in a founding population of humans.

PLoS Genetics. 2013; 9(9):e1003815. https://doi.org/10.1371/journal.pgen.1003815 PMID: 24086152

70. Ayub Q, Tyler-Smith C. Genetic variation in South Asia: assessing the influences of geography, lan-

guage and ethnicity for understanding history and disease risk. Briefings in Functional Genomics &Pro-

teomics. 2009; 8(5):395–404.

Mutation load of cardiovascular diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0192446 February 8, 2018 22 / 22

https://doi.org/10.1038/nrg3931
http://www.ncbi.nlm.nih.gov/pubmed/25963372
https://doi.org/10.1111/mec.13154
http://www.ncbi.nlm.nih.gov/pubmed/25786336
https://doi.org/10.1126/science.1219240
http://www.ncbi.nlm.nih.gov/pubmed/22604720
https://doi.org/10.1093/molbev/msp005
http://www.ncbi.nlm.nih.gov/pubmed/19150805
https://doi.org/10.1016/j.cub.2008.04.074
https://doi.org/10.1016/j.cub.2008.04.074
http://www.ncbi.nlm.nih.gov/pubmed/18571414
https://doi.org/10.1089/gtmb.2016.0054
http://www.ncbi.nlm.nih.gov/pubmed/27797588
https://doi.org/10.1038/nature11690
https://doi.org/10.1038/nature11690
http://www.ncbi.nlm.nih.gov/pubmed/23201682
https://doi.org/10.1186/gb-2011-12-9-r84
http://www.ncbi.nlm.nih.gov/pubmed/21917140
https://doi.org/10.1038/ng.309
http://www.ncbi.nlm.nih.gov/pubmed/19151713
https://doi.org/10.1086/499287
http://www.ncbi.nlm.nih.gov/pubmed/16385456
https://doi.org/10.1371/journal.pgen.1003815
http://www.ncbi.nlm.nih.gov/pubmed/24086152
https://doi.org/10.1371/journal.pone.0192446

