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Abstract

Post‐acute sequelae of COVID‐19 (PASC) are long‐term consequences of SARS‐

CoV‐2 infection that can substantially impair the quality of life. Underlying

mechanisms ranging from persistent viruses to innate and adaptive immune

dysregulation have been discussed. Here, we profiled the plasma of 181 individuals

from the cohort study for digital health research in Germany (DigiHero), including

individuals after mild to moderate COVID‐19 with or without PASC and uninfected

controls. We focused on soluble factors related to monocyte/macrophage biology

and on circulating SARS‐CoV‐2 spike (S1) protein as a potential biomarker for

persistent viral reservoirs. At a median time of 8 months after infection, we found

pronounced dysregulation in almost all tested soluble factors, including both pro‐

inflammatory and pro‐fibrotic cytokines. These immunological perturbations were

remarkably independent of ongoing PASC symptoms per se, but further correlation

and regression analyses suggested PASC‐specific patterns involving CCL2/MCP‐1

and IL‐8 that either correlated with sCD162, sCD206/MMR, IFN‐α2, IL‐17A and IL‐
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33, or IL‐18 and IL‐23. None of the analyzed factors correlated with the detectability

or levels of circulating S1, indicating that this represents an independent subset of

patients with PASC. These data confirm prior evidence of immune dysregulation and

persistence of viral protein in PASC and illustrate its biological heterogeneity that

still awaits correlation with clinically defined PASC subtypes.
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1 | INTRODUCTION

The coronavirus disease 2019 (COVID‐19) caused by the zoonotic

severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a

systemic multiorgan disease with a broad severity spectrum ranging

from asymptomatic to fatal outcomes, especially in risk groups.1,2

While most individuals mount lasting SARS‐CoV‐2‐directed immune

responses3 and the rapid development of effective and safe vaccines

helped to prevent severe disease courses and mitigate the pandemic

progression, it is now clear that a substantial proportion of SARS‐

CoV‐2‐infected individuals do not fully recover but has persisting

health impairments beyond 4 weeks of symptom onset that can last

for months and significantly impact the quality of life.4,5 These post‐

acute sequelae of COVID‐19 (PASC), or post‐COVID‐19 conditions

as suggested by the World Health Organization (WHO), are reported

in 12.7%–87% of patients and encompass a wide range of systemic,

respiratory, neuropsychiatric, and cardiac manifestations including

fatigue, head and body aches, memory defects, dyspnea, palpitations

as well as sleep and anxiety disorders.4–9 Pre‐existing comorbidities

like obesity and diabetes, as well as age and severity of acute disease,

might represent risk factors, but lasting symptoms are also common

among young individuals with mild disease courses and after

vaccination.10,11

While the epidemiological and clinical characterization of PASC is

relatively advanced, mechanistic insights into the pathophysiological

underpinnings of this condition are still limited. A potential trigger of

ongoing sequelae is persistent immunogenic viral reservoirs. SARS‐

CoV‐2 RNA and spike or other proteins that might fuel ongoing and

generate de‐novo SARS‐CoV‐2‐specific or superantigenic T cell

responses10,12–14 have been detected in the respiratory tract, the

gut, the brain, the kidney, and circulating in the blood months after

acute disease.1,15–17 These findings might also mirror unrepaired

virus‐induced tissue damage that could account for some of the

organ‐specific symptoms in PASC.5,18–20 Autoimmunity represents

another potential driver of PASC. Adaptive immune responses during

acute COVID‐19 show imprints of autoreactivity and are character-

ized by the production of a variety of different autoantibodies that

are also found in post‐acute phases and in the SARS‐CoV‐2‐induced

postinfection multisystem inflammatory syndrome in children

(MIS‐C).6,21–24 In addition, dysbiosis of the microbiome that either

result in the persisting production of inflammatory mediators like

lipopolysaccharides that might promote inflammation or the long‐

term depletion of anti‐inflammatory modulators is discussed.25,26

We recently reported persisting elevation of a triad of

monocyte/macrophage‐related cytokines—interleukin‐1β (IL‐1β), IL‐

6, and tumor necrosis factor (TNF) 8–10 months after SARS‐CoV‐2

infection in patients with PASC.6 We hypothesized that these

cytokines are secreted by tissue‐resident macrophages that engage

into a self‐sustaining pro‐inflammatory loop that may fuel PASC.

Such macrophage imprinting has been previously reported to be

potentially induced through engulfment of spike protein by tissue‐

resident macrophage in early disease phases.27,28

Since these data corroborate the role of classical pro‐

inflammatory monocytes/macrophages in PASC, we designed a

refined liquid biomarker panel with more focus on nonclassical

pro‐fibrotic monocytes/macrophages as well as monocyte/

macrophage–T cell interactions to be run on biosamples from the

DigiHero study cohort. These analyses also addressed the relation of

these markers to persisting viral antigens as a potential trigger for

systemic dysregulation. Our data illustrate the pronounced dysregu-

lation of monocyte/macrophage‐related Type 1 and/or Type 2

cytokines in some individuals with PASC and the long‐term

circulation of spike protein in others. Together, these data further

refine the molecular underpinnings of PASC and suggest the

existence of different PASC subtypes.

2 | MATERIALS AND METHODS

2.1 | The population‐based cohort study for digital
health research in Germany (DigiHero)

The here analyzed individuals essentially reflect the discovery cohort

of the COVID‐19 module of the DigiHero study.6 This subcohort

encompasses 181 participants from the DigiHero discovery cohort

who were interviewed with an online questionnaire on the clinical

course of their SARS‐CoV‐2 infection, its postinfection sequelae, and

SARS‐CoV‐2 vaccination status. Interviews and blood sampling were

performed until 9th of October 2021. The study was approved by the

institutional review board (approval numbers 2020‐076) and was

conducted in accordance with the ethical principles stated by the

Declaration of Helsinki. Informed written consent was obtained from
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all participants or legal representatives. Plasma samples were isolated

by centrifugation of whole blood for 15min at 2000g, followed by

centrifugation at 12,000g for 10min. Samples were stored at −80°C

until further use.

2.2 | Biological samples and data from the biobank
of the Halle COVID cohort (HACO)

Plasma samples from acute nonhospitalized COVID‐19 (n = 15 mild to

moderate severity) were used as a control group. Included patients

were 18 years or older and had self‐reported symptoms for maximum

of 4 weeks and a positive antigen or antibody test. Samples were

collected between April and December 2020, where the ancestral

SARS‐CoV‐2 strain was the dominant variant. Informed written

consent was obtained and the study was approved by the

institutional review board (approval number 2020‐039) and con-

ducted in accordance with the ethical principles stated by the

Declaration of Helsinki. The collected plasma samples were isolated

as described above.

2.3 | Profiling of human plasma for monocyte/
macrophage‐related soluble factors, anti‐SARS‐CoV‐2
antibodies, and circulating SARS‐CoV‐2 spike protein

Plasma levels of IL‐5, IL‐9, IL‐17F, IL‐18, IL‐22, IL‐23, IL‐33, and

CCL2/MCP‐1 were measured using the respective LEGENDplex

capture beads and corresponding detection antibodies from the

LEGENDplex Human Inflammation Panel (Cat. No. 740809) and

HumanTh Panel (Cat. No. 741027) (BioLegend). For quantification of

soluble CD206 (MMR), the Human MMR ELISA (RayBiotech, Cat. No.

ELH‐MMR) was used, for quantification of soluble CD163, the

Human CD163 Quantikine ELISA Kit (R&D Systems, Cat. No.

DC1630). Profiling of antibodies directed against the spike (S1)

protein and the nucleocapsid protein (NCP) of SARS‐CoV‐2 were

performed using the anti‐SARS‐CoV‐2‐ELISA IgG (Cat. No. EI 2606‐

9601G) and anti‐SARS‐CoV‐2‐NCP (Cat. No. EI 2606‐9601‐2G)

ELISA kits from Euroimmun (Lübeck, Germany). Circulating S1 protein

was measured using the RayBio COVID‐19 S‐Protein (S1RBD) ELISA

kit (RayBiotech, Cat. No. ELV‐COVID19S1). All kits were used

according to the manufacturer's instructions. Read‐out of the

LEGENDplex system was performed on a BD FACSCelesta;

enzyme‐linked immunosorbent assays (ELISAs) were read on a Tecan

Spark Microplate reader.

2.4 | Statistical analysis

All bar/dot plots, as well as logistic regression and Spearman rank‐

order correlation analysis for plasma levels over time, were generated

using GraphPad PRISM 8.3.1 (GraphPad Software). Differences in

plasma cytokine levels were studied by unpaired t‐test with Welch's

correction and Welch´s ANOVA. Correlations were calculated using

the R package corrplot. Ranges of p values are indicated with

asterisks: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

3 | RESULTS

3.1 | Characteristics of post‐acute
COVID‐19 cohort

To study post‐COVID‐19 perturbations in monocyte/macrophage‐

related soluble factors, we randomly selected 181 individuals from

the discovery cohort of DigiHero6 for profiling. The subcohort

consisted of 91 individuals with ongoing PASC at the time of blood

sampling (65 females, 26 males), 62 individuals who never reported

PASC (26 females, 36 males), and 28 individuals without prior

COVID‐19 (17 females, 11 males) (Figure 1A). All participants were

recruited until October 2021. Median time from infection to

sampling was 8 months for individuals with ongoing PASC (range

1–17 months) and 7.5 months for individuals without PASC (range

4–17 months) (Figure 1B), the median age was 51 for both post‐

COVID‐19 groups and 50 for the never COVID‐19 group

(Figure 1C). Most individuals in the analyzed groups had received

at least one vaccination (73% of individuals without PASC, 77% of

individuals with ongoing PASC, and 83% of individuals without

prior COVID‐19). All vaccinations were performed post‐COVID‐19

(median 6 months, range 4–12). Notably, postinfection vaccination

in this cohort was not associated with the resolution of PASC

symptoms,6 which is in line with recent data.11,29,30

3.2 | Plasma soluble factors associated with pro‐
inflammatory and pro‐fibrotic macrophages are
increased in post‐acute COVID‐19

We selected soluble plasma factors for profiling that are associated

with distinct activation states or phenotypes of monocytes/macro-

phages in COVID‐19. Our panel included both pro‐inflammatory

cytokines (e.g., IL‐17, IL‐18, IL‐23) and more pro‐fibrotic cytokines

(e.g., IL‐5, IL‐9).31–33 We also included the shedded forms of two

characteristic monocyte/macrophage surface molecules, namely the

soluble mannose receptor (sMMR/sCD206/sMRC1) and the soluble

haptoglobin‐hemoglobin receptor (sCD163),34 which are rather

associated to macrophages responding to Type 2 cytokines.

We observed markedly increased plasma levels of IL‐5, IL‐9, IL‐

17F, IL‐18, IL‐22, IL‐23, IL‐33, CCL2/MCP‐1, and sCD163 but only

marginally increased levels for sCD206/sMMR in post‐COVID‐19

disease phases as compared to individuals who never had COVID‐19

(Figure 2). The mean levels of IL‐5, IL‐9, IL‐17F, IL‐22, IL‐23, and IL‐

33 tended towards higher values in individuals with ongoing PASC as

compared to individuals who never reported PASC, while this trend

was reversed for IL‐18 and CCL2/MCP‐1 (Figure 2). Notably, we did

not observe sex‐specific patterns.
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To explore potential clusters of dysregulated soluble factors, we

performed a large correlation analysis also, including IL‐1β, IL‐4, IL‐6, IL‐8,

IL‐13, IL‐17A, TNF, LTA (TNF‐β), and IFN‐α2 from our previously

published report since these factors have been found increased in

postinfection biosamples.6 This analysis revealed a characteristic pattern

of correlating cytokines in post‐COVID‐19 samples relatively indepen-

dent of PASC (Figure 3A,B), but not in uninfected individuals (Figure 3C).

There were only very few significant correlations that were evident in the

PASC setting, but not in post‐COVID‐19 patients without PASC. Two

factors that were remarkable in this respect were CCL2/MCP‐1 and IL‐8.

Both showed no specific correlations in individuals without prior COVID‐

19 or without PASC, but a clear positive correlation with each other and

additional factors in individuals with PASC (Figure 3A–C). CCL2/MCP‐1

was strongly correlated with IL‐18 and IL‐23; IL‐8 was correlated with the

shedded macrophage molecules sCD206/MMR and sCD163, as well as

IL‐17A, IFN‐α2, and IL‐33. This pointed to potential PASC subgroups.

3.3 | Some perturbations persist longer in patients
with PASC compared to individuals without PASC

Recent data suggest that clinical and biological markers decline in most

COVID‐19 survivors over time, although with different kinetics.10,14,35,36

To address this question in our cohort, we asked if individuals with PASC

showed slower normalization of the strong perturbations in monocyte/

macrophage‐related factors than individuals without PASC. Since no

repetitive sampling was performed in the DigiHero cohort, this analysis

was restricted to interpatient group comparisons (Figure 1B). To close the

gap of early postinfection samples that were unavailable in the DigiHero

cohort, we quantified the set of soluble factors in additional plasma

samples from individuals with mild to moderate acute COVID‐19 (nine

females, six males; median age 68 [range 23–85]; median sampling on

Day 15 after symptom onset [range 1–23]) collected as part of the

independent Halle COVID‐19 (HACO) cohort.37 Despite the limitation of

this cross‐sectional approach using two cohorts, the selection of these

two cohorts from the same pandemic wave, including individuals with

similar acute COVID‐19 courses in an outpatient setting and identical

sample preparation and quantification, ensured correction for technical

confounders as well as selection and survivorship biases. Linear regression

and Spearman rank‐order correlation analysis revealed a relatively clear

negative correlation between sampling time point and plasma levels for

many of the dysregulated soluble factors in individuals without PASC

(Figure 4A). In patients with PASC, such over‐time normalization was less

evident for some of the measured factors (Figure 4B). While Spearman

correlation analysis showed a quite clear negative time correlation for IL‐5

and IL‐17F in individuals without PASC, this was not observed in

individuals with PASC (Figure 4B). This suggested that individuals with

PASC might show prolonged perturbations of the analyzed soluble

factors.

3.4 | Plasma levels of circulating spike protein are
detectable in a substantial proportion of patients after
COVID‐19, especially in those with PASC

Persistent immunogenic viral antigens like the SARS‐CoV‐2 S1 spike

protein are potential drivers of PASC that might also fuel systemic

cytokine and chemokine perturbations. To study this hypothesis, we

(A) (B) (C)

F IGURE 1 Clinical and epidemiological characteristics of the post‐COVID‐19 cohort. (A) Sex distribution in the analyzed cohort comprised
individuals with ongoing PASC (n = 91), individuals with prior COVID‐19 who never reported PASC (n = 62), and individuals without prior
COVID‐19 (n = 28). (B) Violin plot of median blood sampling time point (continuous line) relative to positive polymerase chain reaction or antigen
test for the post‐COVID‐19 groups. Dotted lines separate quartiles. (C) Median age of indicated groups. PASC, post‐acute sequelae of
COVID‐19.
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profiled our cohort for levels of circulating S1. Since the S1 antigen has

been detected in plasma after vaccination,38,39 we restricted this analysis

to individuals without prior vaccination. Around 35% of individuals with

prior COVID‐19 but no PASC showed measurable levels of circulating S1

protein (Figure 5A). In the ongoing PASC group, circulating S1 was

detected in around 64% of individuals (Figure 5A). This group also

showed numerically higher circulating S1 levels as compared to

individuals without PASC (Figure 5B). However, the detectability or level

of circulating S1 did not show a clear correlation with any of the soluble

factors dysregulated in individuals with ongoing PASC (Figure 5C).

Nevertheless, it should be noted that for three individuals with detectable

plasma S1, the levels of TNF, IL‐1β, IL‐6, and/or IL‐8 were in the upper

range of values detected in the ongoing PASC group. Of note, levels of

circulating S1 showed a trend toward a positive correlation with S1 and

NCP antibody levels, suggesting that persistent viral proteins may sustain

the immune response (Figure 5C).

4 | DISCUSSION

In this work, we provide evidence for the long‐term and surprisingly

strong dysregulation of monocyte/macrophage‐related cytokines,

chemokines, and other soluble factors in individuals with a history of

COVID‐19. While individuals with PASC tended to show more

dysregulation, the correlation patterns of these factors were

remarkably independent of ongoing symptoms with a few exceptions.

We also observed circulating SARS‐CoV‐2 S1 spike protein in a

substantial proportion of individuals with a history of COVID‐19 even

many months after infection—especially in the subset of individuals

with PASC. While the soluble “immune” factors showed strong

correlations with each other, we did not find a strong correlation with

the detectability or level of circulating S1. This was a relevant finding

that we interpreted as indicative of distinct subgroups of PASC that

may result from divergent underlying mechanisms. Unfortunately, the

F IGURE 2 Profiling of plasma monocyte/macrophage‐related soluble factors from individuals with ongoing PASC, without PASC, and
without SARS‐COV‐2 infection. Mean plasma cytokine/chemokine/soluble factor levels of individuals with no prior COVID‐19 (n = 28),
individuals who never reported PASC postinfection (n = 62), or with ongoing PASC (n = 91). Error bars indicate ±SD. Statistical analysis: Welch's
analysis of variance for comparison of all three groups and two‐sided Welch corrected t‐test for comparison of the no prior COVID‐19
versus never PASC, no prior COVID‐19 versus ongoing PASC, and never PASC versus ongoing PASC groups. PASC, post‐acute sequelae of
COVID.
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presumable PASC subsets suggested by our analyses—individuals

with predominant macrophage dysregulation versus individuals with

persistent viral proteins or reservoirs—were rather small subgroups.

Therefore, no reliable correlation analysis of these molecular patterns

with the clinical characteristics registered in the context of the

DigiHero trial could be performed.

Our screening effort in this well‐characterized cohort of patients

focused strongly on the monocyte/macrophage compartment and its

network of soluble factors. Monocytes and macrophages represent

one of the most important cellular immune subsets that are

associated with the heterogeneous courses and severity of acute

COVID‐1940,41 and are discussed as central for PASC.14,27,28,42–45

The here reported cytokine and chemokine data not only corrobo-

rate this hypothesis and the importance of pro‐inflammatory and pro‐

fibrotic monocytes and macrophages,6 but also suggest a complex

role of monocyte/macrophage‐centered factors known to regulate

the TH1/TH2 balance in PASC. This is in line with the reported

differential activation of classical and nonclassical monocytes in

PASC.14,46 One of the most emblematic cytokines in this respect is

IL‐33, which has been originally described as a pro‐inflammatory

member of the IL‐1 family but can also induceTH2 responses and act

as damage‐associated molecular pattern (DAMP). IL‐33 was sug-

gested to drive the acute severity of COVID‐19 in concert with

granulocyte‐macrophage colony‐stimulating factor, to mediate TH2

(A) (B)

(C)

F IGURE 3 Correlation analysis of plasma soluble factors. (A–C) Correlation matrix of all analyzed soluble factors for individuals with ongoing
PASC (n = 91) (A), individuals who never reported PASC postinfection (n = 62) (B), or individuals with no prior COVID‐19 (n = 28) (C). PASC,
postacute sequelae of COVID.
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polarization, and induce chronic pulmonary fibrosis. In addition, it

may also mediate the differentiation of monocytes to alternatively

activated macrophages that may regenerate damaged bronchial

epithelial tissue.47,48

An evolving body of evidence suggests that the wide spectrum of

PASC symptoms mirrors the existence of different pathological

subgroups.35,46,49 In line with this notion, we identified two PASC‐

specific correlation patterns consisting of IL‐8 and CCL2/MCP‐1 with

either sCD162, sCD206/MMR, IFN‐α2, IL‐17A, and IL‐33, or IL‐18

and IL‐23, which might hint towards distinct disease mechanisms.

The correlation of IL‐17A with IFN‐α2 and IL‐8 is notable given the

importance of type I interferons for SARS‐CoV‐2 clearance and the

pathogenic role of tissue‐resident TH17 cells that interact with pro‐

inflammatory and pro‐fibrotic macrophages in the lung of SARS‐CoV‐

2‐infected individuals leading to IL‐8 secretion.50 In contrast, the

correlation of CCL2/MCP‐1, IL‐8, IL‐18, and IL‐23 in a subset

of participants might be interpreted as a transition from

pro‐inflammatory TH1‐like responses in the acute phase towards a

more pronounced TH2 response in PASC that is associated with

macrophage‐dependent lung fibrosis potentially driven by an

(A)

(B)

F IGURE 4 Association of plasma soluble factors with sampling time point postinfection. (A, B) Linear regression of plasma cytokine levels
and sampling time point postinfection in individuals without PASC (n = 62) (A) and with ongoing PASC (n = 91) (B). Both cohorts also
comprise cytokine data from individuals with mild/moderate acute COVID‐19 (n = 15). The dotted red lines indicate the mean plasma level
determined in individuals without prior COVID‐19 (n = 28). Correlation coefficient R2, Spearman correlation coefficients (rS), and p values
are indicated. PASC, post‐acute sequelae of COVID.
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exacerbated reaction to Type 2 cytokines. This is also in line with the

lower levels of CCL2/MCP‐1 and IL‐8 in individuals with ongoing

PASC as compared to individuals without PASC after SARS‐CoV‐2

infection that was also observed by others.44 CCL2/MCP‐1, IL‐8, IL‐

18, and IL‐23 have all been described as pro‐fibrotic in lung, liver,

and/or heart51–54 and might indicate ongoing tissue damage in

PASC.55,56 Interestingly, IL‐8 was found in all PASC‐associated

cytokine signatures underscoring its importance for long‐lasting

sequelae.

Persistent viral antigens, especially the S1 spike and NCP

proteins, have been detected in multiple tissues postinfection and

might provide a reservoir sustaining immune responses.1,15–17 We

also observed persisting circulating S1 in postinfection samples with a

higher frequency of detection and increased levels in individuals with

ongoing PASC. Notably, S1 levels did numerically correlate with

SARS‐CoV‐2 antibody titers but not with any of the analyzed soluble

immune factors. Nevertheless, a few individuals with circulating S1

had relatively high plasma levels of TNF, IL‐1β, IL‐6, and/or IL‐8,

supporting the superantigenic features of the spike protein.13 In line

with a recent publication analyzing 31 PASC patients,17 these data

suggest that individuals with PASC that have circulating S1 represent

a different disease subset independent of monocyte/macrophage

reprogramming. In addition, there are individuals with circulating S1

postinfection who do not develop PASC. Given the small number of

involved samples in both data sets, the pathological relevance of

circulating S1 needs further validation in larger cohorts.

Overall, these data are indicative of a variety of molecular

subtypes in PASC that need to be dissected in future studies with a

clear theragnostic aim.
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