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Abstract
Cells need to strictly control their internal milieu, a function which is performed
by the plasma membrane. Selective passage of molecules across the plasma
membrane is controlled by transport proteins. As the liver is the central organ
for drug metabolism, hepatocytes are equipped with numerous drug
transporters expressed at the plasma membrane. Drug disposition includes
absorption, distribution, metabolism, and elimination of a drug and hence
multiple passages of drugs and their metabolites across membranes.
Consequently, understanding the exact mechanisms of drug transporters is
essential both in drug development and in drug therapy. While many drug
transporters are expressed in hepatocytes, and some of them are well
characterized, several transporters have only recently been identified as new
drug transporters. Novel powerful tools to deorphanize (drug) transporters are
being applied and show promising results. Although a large set of tools are
available for studying transport  and in isolated cells, tools for studyingin vitro
transport in living organisms, including humans, are evolving now and rely
predominantly on imaging techniques, e.g. positron emission tomography.
Imaging is an area which, certainly in the near future, will provide important
insights into "transporters at work" .in vivo
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Role of drug transporters in drug disposition
Mammals, including humans, have evolved an elaborate array of 
organs, which are interconnected by the circulatory system. All 
organs are composed of cells, which can be considered as minimal  
functional units of organs. Cells need to strictly control their  
internal milieu and this is achieved by the plasma membrane, which 
acts as a barrier against the external milieu. The selective crossing 
of this barrier is mediated, among others, by transport proteins.

Drug disposition involves absorption, distribution, metabolism, and 
elimination of a drug. In order to enter the systemic circulation, 
orally administered drugs need to cross the epithelial barrier in the 
intestine and any drug in the systemic circulation needs to cross 
more than one cell membrane in order to be metabolized and/or 
eliminated1. Given the barrier function of cell membranes, it is 
plausible that solutes including drugs and their metabolites need 
specific transport systems to cross this barrier in either direction2. 
It should, however, be pointed out that this issue remains somewhat 
controversial3. In addition, it is very likely that most, if not all, drug 
transporters are also involved in the handling of endogenous solutes 
and as such may serve in inter-organ communication1.

The liver is the major site of drug metabolism and accounts for about 
70% of drug elimination in humans4. Consequently, this overview 
focuses on hepatocellular transporters. Overviews of hepatocellu-
lar drug transporters are found in4–6. From an overview perspec-
tive, drug transporters can be divided into two large super families: 
the solute carrier (SLC) superfamily mediates the cellular uptake 
of drugs in general, while members of the ATP-binding cassette 
(ABC) superfamily mediate the cellular efflux of drugs and their 
metabolites7. As many of these transporters (in particular the 
SLC transporters involved in hepatocellular drug uptake, such as 
organic anion transporting polypeptides [OATPs], organic anion 
transporters [OATs], and organic cation transporters [OCTs]) are  
multi-specific, drug-drug interactions at these transporters may 
lead to altered pharmacokinetics and subsequently to adverse drug 
actions and/or to therapeutic failure8,9.

Consequently, there are numerous approaches used to develop  
models and tools for predicting drug-drug interactions and to incor-
porate this information into the process of drug development10. 
While the crystal structures of human cytochrome P450 (CYP) 
enzymes were determined a while ago11, such information on 
human drug transporters is lacking to date12. This makes the in vitro 
prediction of pharmacokinetic drug-drug interactions challenging 
at best. Hence, currently, alternate approaches for studying drug-
drug interactions are actively being pursued. One includes innova-
tive cell culture approaches often termed “organ-on-a-chip”13,14.

Traditionally, drug-drug interaction studies early in drug develop-
ment are performed in vitro. If, for example, an interaction at the 
cellular uptake level is to be considered, cell lines stably express-
ing drug transporters can be used. However, such experiments may 
be difficult owing to the complex kinetic properties of most drug 
transporters. For illustration, many OATPs transport their differ-
ent substrates via different substrate-binding sites15. Hence, testing 

for interactions of commonly used drugs with model substrates of 
OATP1B1 has yielded severalfold differences in the IC

50
 values 

for the same drug because different substrates were used in these 
tests16,17.

Once a new chemical entity (NCE) is clinically tested, the assess-
ment of drug-drug interactions is a crucial part of such studies. 
Such studies are increasingly being supported by quantitative  
in silico predictions of altered pharmacokinetics of an NCE18. Such 
approaches rely heavily on parameters determined in vitro. As an 
alternative method, imaging methodologies for studying drug (or 
solute) transport in vivo are rapidly emerging19–21. These approaches 
should also become useful for determining drug-drug interactions 
at the level of (uptake) transporters22.

Drug transporters and imaging
Imaging of the liver involves magnetic resonance imaging, positron 
emission tomography (PET), and scintigraphy and implies the 
use of labeled molecules23. Dynamic imaging (i.e. with agents) of 
the liver may be aimed at obtaining insights into organ function,  
e.g. before performing major liver resections24, or to study the 
uptake of solutes into the liver, e.g. for studying drug transport20. 
PET studies have the advantage that they are performed under 
microdosing conditions and hence PET substrates are unlikely to 
exhibit pharmacological or even toxicological effects. In recent 
years, PET tracers for several drugs such as statins, metformin, 
telmisartan, or glyburide were developed and tested in animal  
models20. (15R)-11C-TIC-Me was developed to visualize prostacyc-
lin receptors by PET and was used in healthy volunteers for moni-
toring hepatobiliary transport22. One of the major classes of solutes 
handled by the liver are the bile salts. Cholylsarcosine is a synthetic 
bile salt analogue25 and can be modified to become a PET tracer26. 
This makes the molecule an ideal tool for non-invasively studying 
transport processes in hepatocytes involving bile salt transporters. 
In pigs, [N-methyl-11C]cholylsarcosine was used to determine hepa-
tobiliary secretion kinetics27. [N-methyl-11C]cholylsarcosine was 
found to be concentrated 4000-fold from blood to bile. Importantly, 
no accumulation of cholylsarcosine was found in hepatocytes, dem-
onstrating the concerted action of the basolateral uptake systems 
for bile salts, which in humans are represented by the sodium- 
taurocholate cotransporting polypeptide (NTCP), three OATPs, 
and the canalicular bile salt export pump BSEP28. The canalicular 
efflux of cholylsarcosine was 180 times higher than the backflux 
from hepatocytes into the sinusoids, demonstrating the efficiency of  
transcellular bile salt flux under normal physiological conditions.

Transport proteins may have altered expression in various forms 
of liver diseases29. Consequently, changes in the hepatocellular 
uptake of imaging tracers may indicate an altered expression of the 
respective uptake or efflux transporters. It should, however, be kept 
in mind that liver disease may also alter the energetics of hepato-
cytes, which in turn can affect driving forces for transporters and 
consequently impact the uptake of imaging tracers. For example, 
hepatobiliary scintigraphy can be used to assess the liver functional 
volume before liver resections30,31. Classically, indocyanine green 
clearance has been used for assessing dynamic liver function before 
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liver surgery and has been reported to be superior to the Child-Pugh 
classification32. One of the parameters used for Child-Pugh scoring 
is the total serum bilirubin level. It is known that bilirubin uptake 
into hepatocytes shares common (drug) transporters with indocya-
nine green33, supporting the role of drug transporters in imaging.

New drug transporters
As briefly outlined above, several members of the SLC families,  
in particular OATs and OCTs of the SLC22A and OATPs of 
the SLCO families, are well-characterized drug transporters34. 
Some of these transporters are routinely included in drug-drug  
interaction tests for NCEs5,35. However, it is not yet known defini-
tively whether additional transporters, especially transporters that 
have been characterized with respect to their normal physiological 
roles in maintaining solute movement across the hepatocyte mem-
brane, are also involved in drug transport in and out of hepatocytes. 
For example, once characterized as the major hepatocellular uptake 
system for conjugated bile acids, NTCP was shown in 2006 to be 
able to transport rosuvastatin36 and potentially account for up to 
35% of rosuvastatin uptake in isolated human hepatocytes. In 2007, 
Shin and coworkers37 identified and characterized a novel mem-
ber of the SLC22A family, namely OAT7 (SLC22A9), as a liver- 
specific OAT that is expressed at the sinusoidal membrane and 
was able to transport estrone-3-sulfate and dehydroepiandroster-
one sulfate. In addition, transport of these sulfates was inhibited by  
several sulfated but not glucuronidated xenobiotics, and short-chain 
fatty acids were identified as potential physiological substrates of 
this transporter37. Recently, in an attempt to better characterize the 
expression and function of OAT7, pravastatin was identified as the 
first drug substrate of OAT738. It was previously shown that besides 
several OATPs34, OAT3 is also able to transport pravastatin and 
rosuvastatin39. Thus, we cannot rule out that additional transporters 
within a given family that have so far not demonstrated to be drug 
transporters could also be new drug transporters. Hence, new drug 
transporters may still be waiting to be discovered in hepatocytes.

Drug transporters and regulatory guidance
Given the established role of transporters in drug disposition and 
pharmacokinetic drug-drug interactions, both the Food and Drug 
Administration (USA) and the European Medicines Agency as well 
as the Pharmaceuticals and Medical Devices Agency (Japan) have 
established guidelines on the investigation of the role of a specific 
set of transporters when developing NCEs40. These guidelines 
require the determination of kinetic properties of transporters, e.g. 
the determination of IC50 values for NCEs. Unfortunately, the setup 
of transport assays will impact the numeric values of transporter 
parameters. This has been illustrated by a recent study, which used 
a common set of inhibitors for the multidrug resistance protein 1 
(ABCB1) in 23 laboratories for the determination of the IC50 values 
of these compounds. The outcome of this study is rather sobering in 
that the largest difference in IC50 values between the different labo-
ratories for one inhibitor was 796-fold41. As such, IC50 values are 
one of the parameters to be considered for the prediction of poten-
tial drug-drug interactions; aberrant IC50 values may lead to false 
negative or false positive predictions42. The importance of proper 

experimental conditions has also been documented in a recent study 
where the effects of the unstirred water layer on the apparent K

m
 

values for OCT2- and MATE1-mediated substrate transport were 
investigated43. The authors concluded that increasing the expression 
levels of the expressed transporters in mammalian cells to increase 
the signal-to-noise ratio actually might lead to an overestimation of 
the apparent K

m
 values by 2- to 10-fold.

Such results clearly demonstrate a need for (some) harmonization 
of experimental conditions when kinetic parameters of transporter 
systems are being determined. Currently, such attempts are still 
at the beginning44–46. In addition to following standard rules for 
kinetic experiments, it is crucial for obtaining reproducible results 
to perform the transport experiments under conditions of initial  
linear uptake rates47. If the latter condition is not fulfilled, estimated 
kinetic parameters may be invalid48.

Deorphanizing SLC transporters
Up to 10% of all human genes may have transport- or transporter-
related functions7. Currently, 456 SLC transporters, which belong 
to 52 subfamilies, are known in the human genome49. Many of these 
SLC transporters are only marginally or not characterized at all. 
Although OATPs are normally called drug transporters, this notion 
is mainly because of the fact that the liver-expressed OATP1B1 and 
OATP1B3 are able to mediate the uptake of numerous drugs when 
expressed in vitro and polymorphisms in these two transporters 
are known to affect the pharmacokinetics of the drugs they trans-
port. Besides these two best-characterized OATPs, there are nine 
additional genes in the human genome encoding OATPs and one  
pseudogene50. Several of the encoded OATPs have been more or 
less well characterized and are known to be able to transport endo-
biotics as well as xenobiotics15,50. Among the better characterized 
are the multi-specific OATP1A2 and OATP2B1, and the trans-
porters with a narrower substrate specificity like OATP1C1 or the  
prostaglandin transporter OATP2A134. There are fewer reports  
characterizing the function of OATP3A1, OATP4A1, and 
OATP4C1, while for OATP5A1 and OATP6A1 no function has 
been reported so far and therefore OATP5A1 and OATP6A1 can be  
considered orphan transporters. Given that there are several reports 
that document OATP5A1 and OATP6A1 expression in cancer51–53, 
the elucidation of their function could be an important step towards 
better diagnosis or therapy for cancers expressing these OATPs. 
A recent study describes the biochemical characterization and 
expression of OATP5A1 in mature dendritic cells and whereby 
OATP5A1 seems to affect cell proliferation54. However, no trans-
port function was identified, and as long as no other biological func-
tion is associated with OATP5A1, it still needs to be deorphanized.

Similar to the OATP family with two orphan transporters, there are 
several orphan transporters in the SLC10A family that contain the 
hepatocellular sodium-dependent bile acid uptake transporter NTCP 
(SLC10A1), the apical sodium-dependent bile acid transporter 
ASBT (SLC10A2) expressed in the ileum, kidney, and cholan-
giocytes, and the sodium-dependent organic anion transporter 
SOAT (SLC10A6)55. While these three transporters have been well 
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characterized, this family contains four additional proteins, namely  
P3 (SLC10A3), P4 (SLC10A4), P5 (SLC10A5), and P7 (SLC10A7), 
with mostly unknown function. To try to understand the function 
of SLC10A4 (a “transporter” expressed in humans in the devel-
oping ventral mesencephalon56 and in rats in cholinergic and 
monoaminergic neurons57), mice lacking SLC10A4 protein were 
recently characterized58–60. No direct transporter function could be 
demonstrated for SLC10A4, but its absence reduced dopamine,  
noradrenaline, serotonin, and acetylcholine content in certain brain 
regions. These knockout mice also showed characteristics that are 
similar to symptoms of neurodegenerative disease and, as a conse-
quence, SLC10A4 might become a novel target for neurological 
and mental diseases. An additional example is SLC32F2, which 
was known to be highly expressed in tumors61, but only recently 
it was demonstrated that this transporter may mediate cellular 
uptake of the anticancer drug YM15562. Furthermore, SLC38A9 
was only recently identified as an important component of the  
lysosomal amino acid sensing machinery and to be involved in the 
control of the mammalian target of rapamycin complex 163. These 
few examples highlight the pressing need for “deorphanizing” the 
SLC transporters completely. Possible methods may include the  
generation of knockout mice as described for SLC10A458,60, the use 
of haploid genetic screens, which was successful in the identifica-
tion of a function for SLC35F262, and possibly siRNA screens when 
a transporter for a given function needs to be identified.

Outlook
There is clearly a need for obtaining more information on the  
role of SLC transporters in drug transport as well as for deor-
phanizing SLC transporters49. The identification of substrates for  
transporters may not be straightforward, e.g. SLC10A4 is, to the 
best of our knowledge, a transporter whose substrates have not been 
identified conclusively yet. While one group reported that protease 
activation of SLC10A4 makes this protein a bile acid transporter64, 
another group could not reproduce this finding and also did not 
find evidence for a transport activity of neuromodulators65. One  
possible explanation for these different findings is the use of dif-
ferent experimental systems. Alternatively, the fact that NTCP was 
found to form homodimers and heterodimers66 might indicate that 
SLC10A4 may need an interacting protein to function properly. So 
far, very limited information on the impact of homodimer and het-
erodimer formation on transport activity and substrate specificity of 
transport proteins is available. With the development of very power-
ful tools for the determination of protein interactomes67 including 
membrane proteins68, a non-targeted search for interacting partners 
for orphan transporters might become a feasible option in the near 
future. In support of this, the determination of the interactome of 
yeast ABC transporters has yielded a wealth of information for 
the physiological role and regulation of these transporters69. Rat  
multidrug-resistance-associated protein 6 (MRP6) (Abcc6) was 
cloned in 2000 and BQ123 was identified as the only substrate70. 

In the same year, mutations in ABCC6 were found to cause  
pseudoxanthoma elasticum71,72. Human ABCC6 was found to  
transport glutathione conjugates and leukotrienes73. However, 
a physiological substrate for MRP6 remained enigmatic74. An  
elegant metabolomics approach using vesicles derived from  
HEK293 cells overexpressing MRP6 led to the identification of 
ATP as a potential physiological substrate for MRP675,76. This  
finding demonstrates the power of metabolomics in identifying  
substrates for drug and orphan transporters.

The channeling of substrates for energy production through 
complexes of sequential metabolic enzymes has been known for 
quite some time77,78. The role of transporter-metabolizing enzyme  
interactions in pharmacokinetics as well as in drug-drug  
interactions is starting to gain attention18,79. The clinical relevance 
of this approach is illustrated by a study in which rifampicin was 
tested as an OATP inhibitor as well as an inducer of CYP3A4. As 
an OATP inhibitor, rifampicin increased the trough concentration 
for the victim drug bosentan, while as an inducer of CYP3A4 it 
decreased the AUC for bosentan80.

Information on transporter expression levels is an important  
prerequisite for the prediction of pharmacokinetics and drug-drug 
interactions occurring at hepatocellular transporters81. Absolute 
quantification of transporters by proteomics resulted in first  
data82,83. From the data published so far, it seems that under normal 
physiological conditions a considerable interindividual variability 
of transporter levels exists. This variability often exceeds a 10-fold 
range. To what extent technical issues, e.g. the condition of  
liver biopsies used for transporter quantification, contribute to this 
observation remains to be determined. Furthermore, it should be 
kept in mind that many forms of (liver) disease have an impact on 
transporter expression levels29,84.

Abbreviations
ABC, ATP-binding cassette; CYP, cytochrome P450; MRP,  
multidrug resistance-associated protein; NCE, new chemical entity; 
OAT, organic anion transporter; OATP, organic anion transporting  
polypeptide; OCT, organic cation transporter; PET, positron  
emission tomography; SLC, solute carrier.
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