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Fusion transcripts are used as biomarkers in companion diag-
noses. Although more than 15,000 fusion RNAs have been iden-
tified from diverse cancer types, few common features have
been reported. Here, we compared 16,410 fusion transcripts
detected in cancer (from a published cohort of 9,966 tumor
samples of 33 cancer types) with genome-wide RNA–DNA inter-
actions mapped in two normal, noncancerous cell types [using
iMARGI, an enhanced version of the mapping of RNA–genome
interactions (MARGI) assay]. Among the top 10 most signifi-
cant RNA–DNA interactions in normal cells, 5 colocalized with
the gene pairs that formed fusion RNAs in cancer. Furthermore,
throughout the genome, the frequency of a gene pair to exhibit
RNA–DNA interactions is positively correlated with the probabil-
ity of this gene pair to present documented fusion transcripts
in cancer. To test whether RNA–DNA interactions in normal cells
are predictive of fusion RNAs, we analyzed these in a valida-
tion cohort of 96 lung cancer samples using RNA sequencing
(RNA-seq). Thirty-seven of 42 fusion transcripts in the validation
cohort were found to exhibit RNA–DNA interactions in normal
cells. Finally, by combining RNA-seq, single-molecule RNA FISH,
and DNA FISH, we detected a cancer sample with EML4-ALK
fusion RNA without forming the EML4-ALK fusion gene. Collec-
tively, these data suggest an RNA-poise model, where spatial
proximity of RNA and DNA could poise for the creation of fusion
transcripts.

fusion transcripts | RNA–DNA interactions | RNA-poise model

Fusion transcripts are associated with diverse cancer types and
have been proposed as diagnostic biomarkers (1–3). Com-

panion tests and targeted therapies have been developed to
identify and treat fusion-gene defined cancer subtypes (2, 4).
Efforts of detection of fusion transcripts have primarily relied
on analyses of RNA sequencing (RNA-seq) data (1, 3, 5–8). A
recent study analyzed 9,966 RNA-seq datasets across 33 cancer
types from The Cancer Genome Atlas (TCGA) and identified
more than 15,000 fusion transcripts (4).

Despite the large number of gene pairs in identified fusion
transcripts, it remains formidable to predict what unreported
pair of genes may form a new fusion transcript. Recent analyses
could not identify any distinct feature of fusion RNA form-
ing gene pairs (9). Here, we report a characteristic pattern of
the 2D distribution of the genomic locations of the gene pairs
involving RNA–DNA interactions that provides insights into
understanding the creation of fusion transcripts.

Chromatin-associated RNAs (caRNAs) provide an additional
layer of epigenomic information in parallel to DNA and histone
modifications (10). The recently developed mapping of RNA–
genome interactions (MARGI) technology enabled identifica-
tion of diverse caRNAs and the respective genomic interacting
locations of each caRNA (6). In this work, we developed an
improved MARGI experimental pipeline called iMARGI. Com-
pared with MARGI, iMARGI reduced the required amount of

input cells by 100-fold to ∼5 million cells. We used iMARGI
to map RNA–DNA interactions in human embryonic kidney
(HEK) and human foreskin fibroblast (HFF) cells. The detected
RNA–DNA interactions often appeared on the gene pairs
involved in cancer-derived fusion transcripts. The widespread
RNA–DNA interactions on the gene pairs involved in fusion
transcripts suggest a model wherein the RNA of gene 1 by inter-
acting with the genomic sequence of gene 2 is poised for being
spliced into gene 2’s nascent transcript and thus creating a fusion
transcript. Consistent with this model, we identified an RNA
fusion in a new cancer sample that does not involve the creation
of a fusion gene.

Results
Characteristics of Genome-Wide RNA–DNA Interaction Maps. To sys-
tematically characterize caRNAs and their genomic interaction
locations, we developed iMARGI, an enhanced version of the
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Fig. 1. Overview of iMARGI method and data. (A) Schematic view of iMARGI experimental procedure. (B) An example of interchromosomal read pairs
(horizonal lines), where the RNA ends (red bars) were mapped to the MALAT1 gene on chromosomal 11, and the DNA ends (blue bars) were mapped to
chromosome 14 near the KTN1 gene (blue bars). (C) Proportions of proximal, distal, and interchromosomal read pairs in a collection of valid RNA–DNA
interaction read pairs. M: million read pairs. (D) Ratios of inter- and intrachromosomal read pairs in HEK and HFF cells after removal of proximal read pairs.
(E) Heatmap of an RNA–DNA interaction matrix in HEK cells. The numbers of iMARGI read pairs are plotted with respect to the mapped positions of the
RNA end (row) and the DNA end (column) from small (blue) to large (red) scale, normalized in each row.
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MARGI assay (10). The main difference between iMARGI and
MARGI is that iMARGI carries out the ligation steps in situ
(Fig. 1A), whereas MARGI performs these ligation steps on
streptavidin beads. We applied iMARGI to HEK and HFF cells
to yield 361.2 million and 355.2 million 2 × 100-bp paired-end
sequencing read pairs, respectively. These resulted in 36.3 mil-
lion (HEK) and 17.8 million (HFF) valid RNA–DNA interaction
read pairs, in which ∼35%, 10%, and 55% were proximal, dis-
tal, and interchromosomal interactions, respectively (Fig. 1C and
SI Appendix, Fig. S1A). The proximal and distal interactions
were defined as the intrachromosomal interactions where the
RNA end and DNA end were mapped to within and beyond
200 kb, respectively. Following Sridhar et al. (10), we removed
proximal read pairs from further analysis because proximal inter-
actions likely represent interactions between nascent transcripts
and their neighboring genomic sequences. Hereafter, we refer
to the union of distal and interchromosomal interactions as
remote interactions. The rest of this paper deals only with remote
interactions.

Among the remote RNA–DNA interactions, both cell types
exhibited an ∼1:5 ratio of intra- and interchromosomal inter-
actions (Fig. 1D). The 2D map of RNA–DNA interactions
exhibited more interactions near the diagonal line (Fig. 1E and
SI Appendix, Fig. S1D). Within each chromosome, the number
of iMARGI read pairs negatively correlated with their genomic
distances (Fig. 2A, red and blue circles).

Comparison of iMARGI with MARGI. We compared iMARGI with
the MARGI technology previously described (10). iMARGI
requires only ∼5 million cells to start the experiment, whereas
MARGI requires ∼500 million cells. MARGI has two tech-
nical variations called pxMARGI and diMARGI, which differ
by the degree of chromatin fragmentation (10). We compared
the iMARGI, pxMARGI, and diMARGI datasets generated
from HEK293T cells. These datasets had roughly comparable
amounts of raw read pairs (SI Appendix, Table S1).

First, we compared the distribution of the read pairs. iMARGI
and pxMARGI produced similar amounts of valid interchro-
mosomal (∼19 million) and distal (1–4 million) read pairs
(SI Appendix, Table S1). diMARGI generated many fewer
valid interchromosomal (∼0.5 million) and distal (∼26,000)
read pairs.

Second, we compared by the numbers of discovered caR-
NAs. Under the smallest possible threshold (1 valid read pair),
iMARGI revealed a similar amount of caRNAs to that of
pxMARGI, with mRNA, lincRNA, pseudogene RNA, and anti-
sense RNA as the most abundant types of caRNAs (SI Appendix,
Fig. S2). diMARGI revealed severalfold fewer caRNAs in every
RNA type (SI Appendix, Fig. S2), consistent with its many fewer
usable read pairs.

Third, we compared by the “RNA attachment level” (10) on
every genomic segment. We segmented the genome into 100-kb
bins and counted the number of read pairs with the DNA end
mapped to each bin. iMARGI and pxMARGI exhibited a strong
correlation (Pearson correlation = 0.88, P value <2.2×10−16; SI
Appendix, Fig. S3A). The correlation increased with the bin size
(SI Appendix, Fig. S3 B and C). diMARGI data exhibited much
weaker correlation to iMARGI data (SI Appendix, Fig. S3 D–F),
likely also due to its very small amount of usable read pairs.

The Most Significant RNA–DNA Interactions Colocalized with the
Gene Pairs Forming Fusion Transcripts in Cancer. We set off to
identify the most significant distal RNA–DNA interactions
from the iMARGI data. Excluding extremely abundant noncod-
ing RNAs, such as XIST, the top gene pair with the largest
amount of interchromosomal and distal iMARGI read pairs
in HEK cells was FHIT-PTPRG (Fig. 2B and SI Appendix,
Fig. S4A). Investigating this gene pair, we found the report-
ing of FHIT-PTPRG fusion transcripts from kidney, liver, head
and neck, lung, and prostate cancers (7). The second largest
amount of interchromosomal and distal iMARGI read pairs
was from GPC5-GPC6 (Fig. 2B and SI Appendix, Fig. S4B).
Fusion transcripts from this second-ranked gene pair were
reported from liver and prostate cancers (7). Notably, 5 of
the top 10 gene pairs were reported as fusion transcripts in
cancers (1, 7). These findings led us to systematically analyze
the relationship between RNA–DNA interactions and fusion
transcripts.

Nonuniform Distribution of the RNA Pairs Contributing to Fusion
Transcripts. We asked whether there is any global characteristic
of genome-wide distribution of the RNA pairs that contribute
to fusion transcripts. To this end, we subjected the previously
reported 16,410 fusion transcripts that were derived from 9,966
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Fig. 2. Summary of iMARGI data. (A) The number of genomic bin pairs with 10 or more iMARGI read pairs (y axis) is plotted against the genomic distance
between the pair of genomic bins (x axis) in HEK cells (red circles) and HFF cells (blue circles). For comparison, the number of fusion transcript-contributing
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samples across 33 cancer types from TCGA project to further
analysis (4). On average, there were two fusion transcripts per
sample (Fig. 3A). The 16,410 fusion transcripts corresponded to
15,144 unique RNA pairs. Hereafter we refer to these gene pairs
as fusion transcript-contributing RNA pairs (“Futra pairs”).
More than 95% (14,482 of 15,144) of Futra pairs occurred only in
1 sample of the 9,966 samples analyzed (Fig. 3B). These data con-
firmed the scarcity of recurrent gene pairs in fusion transcripts
(11, 12).

We visualized the frequency of Futra pairs in a 2D heatmap,
which we call a “fusion map” (Fig. 3C and SI Appendix, Fig. S5A).
The 2D distribution was not uniform, with more intrachromoso-
mal than interchromosomal gene pairs (odds ratio = 27.91, P
value <2.2 × 10−16, χ2 test). A total of 8,891 and 6,253 Futra
pairs were intra- and interchromosomal, respectively. Chromo-
somes 1, 12, and 17 harbored the largest amounts of intrachro-
mosomal gene pairs (SI Appendix, Fig. S5B). Chromosomes 1, 11,
12, 17, and 19 contribute to the largest amounts of interchromo-
somal gene pairs (SI Appendix, Fig. S5C). Higher density of gene
pairs appeared on the diagonal line of the fusion map, suggesting
enrichment of gene pairs within chromosomes or large chromo-
somal domains (Figs. 3C and 4A). We quantified the relative
distances between the Futra pairs. The number of intrachromo-
somal Futra pairs negatively correlated with their chromosomal
distance (Fig. 2A, purple circles). Taken together, Futra pairs

exhibited nonuniform distribution in the genome, characterized
by enrichment of intrachromosomal pairs and preference to
smaller genomic distances.

Differences Between the Genomic Locations of Futra Pairs and
Genome Interactions. We asked to what extent Futra pairs may
correlate with genome interactions. Forty-one percent (6,253
of 15,144) of Futra pairs were interchromosomal, whereas less
than 15% of chromosomal conformation capture-derived read
pairs were interchromosomal (13, 14). The intrachromosomal
Futra pairs exhibited enrichment in large chromosomal domains
(Figs. 3C and 4A and SI Appendix, Fig. S6A). These enriched
chromosomal domains ranged from approximately 1/10th to
1/3rd of a chromosome in lengths, which are ∼10–20 times
the typical sizes of topologically associated domains (TADs)
(15). Taken together, Futra pairs exhibited different global
distribution characteristics from those of genome interactions.

Genome-Wide Colocalization of Futra Pairs and RNA–DNA Interac-
tions. We asked to what extent Futra pairs may coincide with
genome-wide RNA–DNA interactions. We carried out a visual-
ized comparison of the 2D distribution of Futra pairs with that
of RNA–DNA interactions (Figs. 1E and 3C and SI Appendix,
Fig. S1D) and observed pronounced similarities (Fig. 4 A–C
and SI Appendix, Fig. S6 A–C). For example, a set of 34 Futra
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pairs was enriched in an ∼7-Mb region on chromosome 9 (chr9)
(32–39 Mb, Fig. 4 A and D). This Futra-pair–enriched region
colocalized with a chromosomal region enriched in RNA–DNA
interactions (Fig. 4 B–D). Such colocalizations were observed
in multiscale analyses using different resolutions, including 10-
Mb (SI Appendix, Fig. S6 A–C), 1-Mb (Fig. 4 A–C), and 100-kb
(Fig. 4D) resolutions, as well as at the resolution of individual
fusion pairs and read pairs (SI Appendix, Fig. S7). Four fusion
transcripts, KMT2C-AUTS2, KMT2C-CALN1, KMT2C-CLIP2,
and KMT2C-GTF2IRD, were formed between the KMT2C
mRNA near the 152-Mb location of chromosome 7 (chr7:
152,000,000) and four mRNAs that were approximately 80 Mb
away (chr7: 66,000,000–78,000,000) (Futra pairs; SI Appendix,
Fig. S7). Correspondingly, a total of 73 RNA–DNA iMARGI
read pairs were mapped to KMT2C and the four fusion partners
in HEK cells (iMARGI; SI Appendix, Fig. S7).

We quantified the overlaps between Futra pairs and iMARGI-
identified RNA–DNA interactions. Among the 6,253 interchro-
mosomal Futra pairs, 3,014 (48.2%) overlapped with RNA–
DNA interactions in either HEK or HFF cells (odds ratio =

14.1, P value <2.2 × 10−16, χ2 test). Among the 8,891 intra-
chromosomal Futra pairs, 7,427 (83.5%) overlapped with RNA–
DNA interactions in either HEK or HFF cells (odds ratio =
35.44, P value <2.2 × 10−16, χ2 test). These data pointed to
a common feature of cancer-derived Futra pairs, which is their
colocalization with RNA–DNA interactions in normal cells.

Cancer-Derived Futra Pairs That Colocalize with RNA–DNA Interac-
tion in Normal Cells Do Not Form Fusion Transcripts in Normal Cells.
A model that may explain the colocalization of RNA–DNA
interactions and Futra pairs is that RNA–DNA interactions in
the normal cells poise for creation of fusion transcripts. Rec-
ognizing that this model cannot be tested by perturbation due
to the very small likelihood for a fusion transcript to occur
in a cancer sample, we carried out two other tests. First, we
tested whether the cancer-derived Futra pairs were detectable
in normal cells. We reanalyzed the merged RNA-seq datasets
of more than 75 million 2 × 100-bp paired-end read pairs
from HEK293T cells (16) and ran STAR-Fusion (17) on these
datasets, which reported a total of 8 Futra pairs. None of the
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previously derived 15,144 Futra pairs from TCGA RNA-seq data
were detected in HEK293T cells. In addition, we specifically
tested for EML4-ALK fusion transcripts, which were reported
in nonsmall cell lung carcinoma (NSCLC) (18), and there were
RNA–DNA interactions between EML4 RNA and the ALK
genomic locus in HEK and HFF cells (see Fig. 6A). Neither
PCR nor quantitative PCR analysis detected EML4-ALK fusion
transcripts in HEK293T cells (SI Appendix, Fig. S8), whereas
both assays detected fusion transcripts in a NSCLC cell line
(H2228) (SI Appendix, Fig. S8). Taken together, these data sug-
gest that, although cancer-derived Futra pairs colocalized with
RNA–DNA interactions in normal cells, the fusion transcripts
found in cancer are not present in the normal cells.

RNA–DNA Interactions in Normal Cells Are Predictive of Fusion
Transcripts in New Cancer Samples. Next, we tested whether the
RNA–DNA interactions in normal cells are predictive of fusion
transcript formation in cancer. To this end, we analyzed a valida-
tion cohort comprising 96 new lung cancer samples from patients
who were not part of the TCGA cohorts. We also analyzed
a NSCLC cell line (H2228). RNA was extracted and targeted

RNA-seq was carried out with Illumina’s TruSight RNA Pan-
Cancer Panel. Of these 96 samples, 27 did not yield sufficient
RNA for sequencing, whereas the other 69 samples produced a
sequencing library and yielded on average 3.9 million uniquely
aligned read pairs per sample (Fig. 5A). STAR-Fusion (17) was
applied to this dataset and it reported a total of 42 fusion tran-
scripts from these 69 samples (Fig. 5 B and C). These 42 fusion
transcripts included EML4-ALK and FRS2-NUP107 fusions,
which were also reported from the 9,966 TCGA cancer samples,
as well as 40 new fusion transcripts that were not previously doc-
umented. The small amount of recurring Futra pairs between
these additional cancer samples and TCGA samples is expected
from the small fraction of recurring Futra pairs across the TCGA
samples (Fig. 3B).

Among these 42 Futra pairs detected from the validation
cohort, 37 (88.1%) colocalized with RNA–DNA interactions in
the assayed normal cells, supporting the idea that RNA–DNA
interactions in the already assayed normal cells are predictive
of Futra pairs in cancer (odds ratio = 106.51, P value <2.2 ×
10−16, χ2 test). We asked whether only intrachromosomal Futra
pairs colocalized with RNA–DNA interactions. Nineteen of the
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42 (45%) detected Futra pairs were interchromosomal (Fig. 5C),
comparable to the proportion (41%) of interchromosomal Futra
pairs detected from TCGA samples. Eighty-three percent (19 of
23) of intrachromosomal and 95% (18 of 19) of interchromoso-
mal Futra pairs overlapped with RNA–DNA interactions (Fig. 5
D and E), suggesting that the colocalization of RNA–DNA inter-
actions and Futra pairs was not restricted to intrachromosomal
interactions. Taken together, the colocalization of Futra pairs
and RNA–DNA interactions, the lack of cancer-derived fusion
transcripts in normal cells, and the predictability of additional
Futra pairs in new cancer samples support the model where
RNA–DNA interactions in normal cells poise for creation of
fusion transcripts in cancers. Hereafter, we refer to this model as
the RNA-poise model. We call the gene pairs with RNA–DNA
interactions in normal cells fusion-susceptible pairs.

RNA–DNA Interaction Between EML4 and ALK Correlates with an
RNA Fusion Without Fusion Gene in Tumor. We tested whether
genome rearrangement is a prerequisite step for the creation
of fusion transcripts from fusion-susceptible pairs by choosing
EML4-ALK fusion transcripts for this test because EML4-ALK

is a fusion-susceptible pair (Fig. 6A), EML4-ALK fusion tran-
scripts are detected in one of our new tumor samples (sample no.
44) (Fig. 6B), and there is an FDA-approved diagnosis kit (Vysis
ALK Break Apart FISH) based on DNA FISH detection of the
EML4-ALK fusion gene. Break Apart assays were performed
by Knight Diagnostic Laboratories at the Oregon Health &
Science University according to standardized protocols. We sub-
jected the remaining tissue from sample no. 44 to DNA FISH
analysis. None of our eight attempts yielded any DNA FISH sig-
nal in the remaining tissue from either control or ALK probes.
We therefore could not ascertain whether there was genome
rearrangement in the only sample with detectable EML4-ALK
fusion transcripts.

To identify other cancer samples that express EML4-ALK
fusion transcripts, we reanalyzed our collection of 96 lung can-
cer samples with FuseFISH, a single-molecule fluorescence in
situ hybridization (sm-FISH)–based method for the detection of
fusion transcripts (19, 20). We carried out quantum dot-labeled
sm-FISH (21) by labeling EML4 and ALK transcripts with quan-
tum dots at 705 nm and 605 nm, respectively (SI Appendix,
Fig. S9). The FISH probes were designed to hybridize to the
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consensus exons shared among all 28 variants of EML4-ALK
fusion transcripts that have been identified to date (22). Follow-
ing prior literature (19, 20), fusion transcripts were detected by
the colocalized sm-FISH signals targeting EML4 and ALK tran-
scripts. In a positive control test, an average of 12 colocalized
sm-FISH signals per cell were detected in a total of 22 H2228
cells (SI Appendix, Fig. S9) that were known to express EML4-
ALK fusion transcripts (SI Appendix, Fig. S8) (23). In contrast,
HEK293T cells exhibited on average zero colocalized signals
per cell from 19 cells (SI Appendix, Fig. S9), consistent with the
lack of such a fusion transcript in HEK293T cells (SI Appendix,
Fig. S8).

In our collection of 96 tumor samples, only 57 had remain-
ing tissues for FuseFISH analysis. These 57 samples included
39 that yielded RNA-seq data and 18 that did not yield RNA-
seq data (Fig. 6B). The FuseFISH analysis detected EML4-ALK
fusion transcripts in 2 samples, including sample no. 44 which
was also analyzed by RNA-seq and sample no. 37 which did not
yield RNA-seq data (Fig. 6 B and C). To test whether sample
no. 37 had ALK-related fusion genes, we subjected it together
with 6 other randomly selected samples (nos. 18, 51, 56, 57,
63, and 65) to DNA recombination analysis using Vysis ALK
Break Apart FISH. None of these 7 samples exhibited ALK-
related fusion genes. More specifically, 1 sample (no. 57) failed
to generate DNA FISH signals from four attempts and 1 sample
(no. 56, negative for EML4-ALK fusion transcripts by RNA-seq
and FuseFISH analyses) exhibited a partial deletion of the ALK
gene, but no sign of ALK-related fusion genes (Fig. 6B, ∗). The
other 5 samples, including sample no. 37, exhibited integral ALK
genes (Fig. 6 B and D). Taken together, the lung cancer sample
no. 37 expressed EML4-ALK fusion transcripts without having an
EML4-ALK fusion gene. These data suggest that genome rear-
rangement is not a prerequisite step for the creation of fusion
transcripts from fusion-susceptible pairs. In other words, the
RNA-poise model does not require alterations of the DNA.

Discussion
Abundance of Genome Rearrangement-Independent Fusion Tran-
scripts. Our RNA FISH and DNA FISH analyses revealed a
cancer sample that contained a fusion transcript without the cor-
responding fusion gene. Such an example, although not often
seen in the literature, may not be a rare case (11). The lack of
reports is likely attributable to the research attention paid to
the other side of the coin, i.e., the fusion transcripts created by
fusion genes (2). Indeed, ∼36–65% of fusion transcripts derived
from cancer RNA-seq data were attributable to genome rear-
rangement (Low Pass bars, figure S1A of ref. 1). However, this is
likely an overestimate because when low-quality whole-genome
sequencing (WGS) data were removed, only ∼30–45% of fusion
transcripts had corresponding WGS reads (High Pass bars, fig-
ure S1A of ref. 1). These published results are consistent with the
notion that fusion genes do not account for all observed fusion
transcripts and suggest the occurrence of fusion transcripts inde-
pendent of genome rearrangement. However, we recognize that
to date, the sheer amount of validated fusion RNAs indepen-
dent of genome rearrangement remains limited, which warrants
future investigation.

The RNA-Poise Model Allows for Splicing Errors. Fusion transcripts
can be created by two processes. The better-recognized pro-
cess is through transcription of a fusion gene that was cre-
ated by genome rearrangement. The less-recognized process is
by RNA splicing errors, where two separate transcripts were
spliced together (transsplicing) (24). Transsplicing does not
involve genome rearrangement. A theoretical gap in the splicing
error model is that transsplicing can happen only to two RNA
molecules that are close to each other in 3D space; however,
except for neighboring genes (11), the chances for two RNA

molecules transcribed from distant chromosomal locations to
meet in space are small. Therefore, it remains difficult to per-
ceive a biophysical process in which fusion transcripts are created
by splicing errors.

The RNA-poise model fills this theoretical gap. The prein-
stallation of gene 1’s transcripts on gene 2’s genomic sequence
positions gene 2’s nascent transcripts spatially close to gene
1’s transcripts, allowing for the possibility of transsplicing. Fur-
thermore, the majority of splicing events are cotranscriptional.
The availability of transcripts of gene 1 during gene 2’s tran-
scription allows for the opportunity to perform cotranscriptional
transsplicing.

Breaking Down the RNA-Poise Model by RNA–DNA Interactions.
Remote RNA–DNA interactions could be created by at least two
means. First, the caRNA can target specific genomic sequences,
which could be mediated by tethering molecules (RNA targeting,
Fig. 7). Second, the spatial proximity of the genomic sequences
in 3D space could bring the nascent transcripts of one gene
to the genomic sequence of another gene (RNA confinement,
Fig. 7). Both means of RNA–DNA interactions provide spatial
proximity between two RNA molecules and thus allow for splic-
ing errors. In addition, the spatial proximity of two genes in the
RNA confinement model could enhance the chances of genome
rearrangement of the spatially close genomic sequences and thus
create fusion genes (25). Thus, the RNA-poise model can be
regarded as a union of two submodels, depending on the pro-
cess of RNA–DNA interaction. One submodel (targeting-poise
model, Fig. 7) could create fusion transcripts only by transsplic-
ing. The other submodel (confinement-poise model, Fig. 7) could
create fusion transcripts by either transsplicing or creation of
fusion genes.

Materials and Methods
Reference Genome and Gene Annotations. Human genome assembly
hg38/GRCh38 and Ensembl gene annotation release 84 (GRCh38.84) were
used throughout all data analyses.

Public RNA-Seq Data. HEK293T RNA-seq datasets were downloaded from
the NCBI BioProject database (accession nos. SRR2992206–SRR2992208
under project no. PRJNA305831) (16). The three datasets were merged.

RNA 1
RNA 1RNA-DNA interaction

Fusion RNA biogenesis

Trans-splicing  DNA re-arrangement

Fusion RNA

RNA 1
RNA 2
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RNA 2
RNA 1

Pol II Spliceosome

RNA Targeting RNA Confinement

RNA-poise model Targeting-poise Confinement-poise

Fig. 7. RNA-poise model. In this model, the transcripts of one gene (RNA
1, red bar) can exhibit spatial proximity to another gene (RNA 2, purple
bar) due to tethering (RNA targeting) or spatial proximity of the two genes
(RNA confinement). Both cases could enhance splicing errors (gray arrows),
whereas the proximity of genomic sequences may also facilitate gene fusion
(gray arrow on the right), which subsequently produces fusion RNA.
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TCGA Derived Fusion Transcripts. The TCGA RNA-seq–derived fusion tran-
scripts were downloaded from the Tumor Fusion Gene Data Portal
(www.tumorfusions.org) (26). Tier 1 and tier 2 fusion transcripts were used
in our analyses. Genomic coordinates were converted to hg38 by liftOver.
Following Davidson et al. (8), Futra pairs within 200 kb on hg38 were
removed. The data of Futra pairs were mainly processed using R (27) with
Bioconductor packages GenomicRanges (28) and InteractionSet (29).

Visualization of Futra Pairs. Heatmaps of the count matrix were plotted
using Bioconductor package ComplexHeatmap (30). Genomic plots of Futra
pairs were created with GIVE (31).

Constructing iMARGI Sequencing Libraries.
Nuclei preparation and chromatin digestion. Approximately 5 × 106 cells
were used for the construction of an iMARGI sequencing library. Cells were
cross-linked in 1% formaldehyde at room temperature (RT) for 10 min with
rotation. The cross-linking reaction was quenched with glycine at 0.2 M
concentration and incubated at RT for 10 min. Cells were pelleted, washed
using 1× PBS, and aliquoted into ∼5 × 106 in each tube. To prepare nuclei,
cross-linked cells were incubated in 1 mL of cell lysis buffer (10 mM Tris·HCl,
pH 7.5, 10 mM NaCl, 0.2% Nonidet P-40, 1× protease inhibitor) on ice for
15 min and homogenized with dounce homogenizer pestle A for 20 strokes
on ice. Nuclei were pelleted and weighed to estimate the pellet volume
(10 mg of nuclei pellet was estimated to be about 10 µL). The nuclei pel-
let was incubated with SDS buffer (0.5× Cutsmart buffer, 0.5% SDS) at
1:3 vol ratio and 62 ◦C for 10 min with mixing and immediate quenching
with a final 1% of Triton X-100. To digest chromatin, the washed nuclei
pellet was resuspended in an AluI chromatin digestion mix [2.3 units/µL
AluI (NEB), with 0.3 unit/µL RNasinPlus (Promega) and 1× Cutsmart buffer]
and incubated at 37 ◦C overnight with mixing. After chromatin digestion,
1 µL of RNase I (1:10 diluted in 1× PBS) was directly added to the reaction
mixture and incubated at 37 ◦C for 3 min to fragment RNA. Nuclei were
pelleted and washed twice using PNK wash buffer (20 mM Tris·HCl, pH 7.5,
10 mM MgCl2).
Ligations. To prepare the RNA and DNA ends for linker ligation, nuclei
were incubated in 200 µL RNA 3′-end dephosphorylation reaction mix
[0.5 unit/µL T4 PNK (NEB), 0.4 unit/µL RNasinPlus, 1× PNK phosphatase
buffer, pH 6.5] at 37 ◦C for 30 min with mixing. Nuclei were washed twice
with PNK buffer, resuspended in 200 µL DNA A-tailing mix [0.3 unit/µL
Klenow Fragment (3′→ 5′ exo-) (NEB), 0.1 mM dATP, 0.1% Triton X-100,
1× NEB buffer 2] and incubated at 37 ◦C for 30 min with mixing. The same
linker sequence as described in the previous MARGI paper was used (10). For
in situ RNA-linker ligation, nuclei were resuspended in 200 µL ligation mix
[38 µL adenylated and annealed linker, 10 units/µL T4 RNA ligase 2-
truncated KQ (NEB), 1× T4 RNA ligase reaction buffer, 20% PEG 8000, 0.1%
Triton X-100, 0.4 unit/µL RNasinPlus] and incubated at 22 ◦C for 6 h and
then 16 ◦C overnight with mixing. After ligation, the nuclei were washed
five times with PNK buffer to remove excess free linker. For in situ RNA–
DNA proximity ligation, nuclei were resuspended in 2 mL of proximity
ligation mixture [4 units/µL T4 DNA ligase (NEB), 1× DNA ligase reaction
buffer, 0.1% Triton X-100, 1 mg/mL BSA (NEB), 0.5 unit/µL RNasinPlus] and
incubated at 16 ◦C overnight.
Library construction. To reverse cross-linking, nuclei were washed twice
with 1× PBS, resuspended in 250 µL of extraction buffer [1 mg/mL Pro-
teinase K (NEB), 50 mM Tris·HCl, pH 7.5, 1% SDS, 1 mM EDTA, 100 mM
NaCl] and incubated at 65 ◦C for 3 h. DNA and RNA were extracted by
adding an equal volume of phenol:chloroform:isoamyl alcohol (pH 7.9,
Ambion) followed by ethanol precipitation. The subsequent steps including
removal of biotin from nonproximity ligated linkers, pulldown of RNA–DNA
chimera, reverse transcription of RNA, DNA denaturation, circularization,
oligo annealing and BamHI (NEB) digestion, and sequencing library gener-
ation were performed as previously described (10). iMARGI libraries were
subsequently subjected to paired-end 100-cycle sequencing on an Illumina
HiSeq 4000. The circularization and library construction strategy can phase
RNA and DNA ends into Read 1 and Read 2 as shown Fig. 1A, which is
the same as with MARGI library configuration (10). Since AluI restriction
enzyme recognizes “AGCT” sequence and leaves “CT” at the 5′ end of the
cut, we expect the first two bases of DNA end (Read 2) to be enriched
with CT.

Analysis of iMARGI Sequencing Data.
Mapping iMARGI read pairs. The detailed iMARGI data-processing meth-
ods can be found in our GitHub repository (https://github.com/Zhong-Lab-
UCSD/iMARGI methods). Briefly, they include three main steps. First, the
read pairs were cleaned by in-house scripts. According to the library con-

struction design, read pairs were filtered out if the 5′-most two bases of
their DNA end (Read 2) were not CT. In addition, the first two bases of
the RNA end (Read 1) were removed as they are random nucleotides. Then,
the cleaned read pairs were mapped to the human genome (hg38), using
bwa mem (version 0.7.17) with parameters “-SP5M” (32). Finally, pairtools
(version v0.2.0, https://github.com/mirnylab/pairtools) and in-house scripts
were used to parse, deduplicate, and filter the mapped read pairs. The valid
read pairs that were mapped to genomic locations within 200 kb of each
other were defined as proximal interactions, which were excluded from our
analysis. GenomicRanges (28) and InteractionSet (29) were used for further
analysis of iMARGI data.
Visualization of iMARGI read pairs. Heatmaps of the count matrix were
plotted using Bioconductor package ComplexHeatmap (30). Genomic plots
of iMARGI read pairs were created with Bioconductor package Gviz (33) and
GIVE (31).
Intersection of iMARGI read pairs and Futra pairs. An iMARGI read pair was
regarded as overlapping with a Futra pair when the RNA end was strand-
specifically mapped to the gene body of one gene in the Futra pair and the
DNA end was mapped to the gene body ±100 kb flanking regions of the
other gene in the Futra pair.

FuseFISH Analysis.
Probe design. Oligonucleotide probes were designed to hybridize to exons
2–6 of EML4 RNA and exons 20–23 of ALK RNA. These exons were chosen
because they were present in all of the observed variations of EML4-ALK
fusion genes. These probes were 35–40 nt in length, with similar GC contents
and melting temperatures.
Conjugation of quantum dots to oligonucleotide probes. Oligos were mod-
ified on the 5′ end with a primary amino group and a spacer of 30
carbons to minimize steric hindrance of probe–RNA hybridization. These
probes were conjugated with quantum dots through the amino group
using EDC reaction (34). The probes were subsequently purified with
0.2 µm membrane filtration and 100,000 molecular weight cutoff (MWCO).
The retentate of the 100,000 MWCO was subjected to dynabeads MyOne
SILANE purification to remove any remaining unconjugated probes. A
subsequent 0.2-µm membrane filtration was used to remove any final
aggregates.
Hybridization of adherent cell lines. Probe hybridization in H2228 cells
was carried out as previously described (19, 21). Briefly, probes were
added to the hybridization solution and incubated with the cells at
37 ◦C overnight. Cells were washed and resuspended in 1× PBS for
imaging.
Hybridization of tissue samples. Probe hybridization in tissues was carried
out as previously described (35). Briefly, a hybridization solution with probes
was added to the surface of the parafilm to form droplets. A tissue slice (5–
10 µm in thickness) fixed on a glass coverslip was gently placed over the
hybridization solution. The mixture was incubated at 37 ◦C overnight. The
tissue was subsequently washed with wash buffer and resuspended in 1×
PBS for imaging.
Imaging and analysis. Cells or tissues were imaged in 1× PBS through wide-
field fluorescence imaging using an Olympus IX83 inverted microscope at
60× oil immersion objective (N.A. = 1.4). Image processing was carried out
as previously described (36). Briefly, single transcripts were detected using
an automated thresholding algorithm that searches for robust thresholds,
where counts do not change within a range. Fusion transcripts were deter-
mined by searching for colocalization of detection transcripts by overlap
between predicted centers within a radius.

RNA Sequencing and Analysis. RNA was extracted with Trizol from an
H2228 cell line and lung cancer tissue samples of the approximate size
3 mm×3 mm× 30 µm per sample. RNA sequencing was carried out
using the TruSight RNA Pan-Cancer Panel (Illumina) following the man-
ufacterer’s protocol. All of the RNA-seq data, including HEK293T pub-
lic data, the H2228 cell line, and lung cancer sample sequencing data,
were mapped to the human genome (hg38) using STAR (v2.5.4b) with
default parameters (37). Fusion transcripts were called using STAR-Fusion
(v0.8.0) (17), requiring both numbers of supporting discordant read pair
and junction-spanning read larger than zero and the sum of them larger
than 2.
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