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ABSTRACT: Artificial metalloenzymes (ArMs) are created by
embedding a synthetic metal catalyst into a protein scaffold. ArMs
have the potential to merge the catalytic advantages of natural
enzymes with the reaction scope of synthetic catalysts. The choice
of the protein scaffold is of utmost importance to tune the activity
of the ArM. Herein, we show the repurposing of HaloTag, a self-
labeling protein widely used in chemical biology, to create an ArM
scaffold for metathesis. This monomeric protein scaffold allows for
covalent attachment of metathesis cofactors, and the resulting
ArMs are capable of catalyzing ring-closing metathesis. Both
chemical and genetic engineering were explored to determine the evolvability of the resulting ArM. Additionally, exploration of the
substrate scope revealed a reaction with promising turnover numbers (>48) and conversion rates (>96%).
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New methods for catalysis are of increasing importance in
synthetic chemistry. Enzymatic catalysis is becoming

more central to organic synthesis in both academia and
industry.1,2 The advantages of enzymes are multifold and
include selectivity, activity at ambient temperature and
pressure, aqueous catalysis, and access to catalytic cascades
that can be challenging to realize with synthetic catalysts.
Artificial metalloenzymes (ArMs) are hybrid catalysts that

are created by embedding a metal catalyst into a protein
scaffold.3 The resulting hybrid catalysts have the potential to
impart the advantages of enzymes and retain the reaction
versatility of synthetic catalysts. Because of these advantages,
ArMs represent potential tools for novel biocatalysis. Thus,
identifying a suitable scaffold protein is essential for improving
ArMs.4 Multiple scaffolds have been explored for ArMs,
including heme proteins,5,6 (strept)avidin,7 human carbonic
anhydrase,8 glycosylated albumin,9 lactococcal multidrug
resistance regulator (LmrR),10 an oligopeptidase,11 FhuA,12

and so on.13 Increasing the number of viable scaffolds will
eventually enable chemists to use ArMs as a plug-and-play
strategy, in which several scaffolds can be screened to identify
the best catalytic starting point. Accordingly, the exploration of
more scaffold proteins is critical to advancing the versatility of
the field.
For ArMs, an important factor for the design is the

anchoring method of the synthetic catalyst to the scaffold
protein. This anchoring can be achieved by three methods: (i)
supramolecular interaction, (ii) dative coordination, and (iii)
covalent binding. Each of these methods has distinct
advantages. Although covalently linked ArMs have the
potential to create the most stable bioconjugates, only a few

examples of covalently linked ArMs have been reported.11,13−15

Thus, we sought to explore a new scaffold for covalent
anchoring of catalysts. To this end, we examined a small
monomeric protein, HaloTag (version 7, Promega, HT
hereafter), as a novel scaffold for ArM engineering.
HT is a 34-kDa protein that contains a reactive aspartic acid

residue deep within the protein (Figure 1).16 This aspartic acid
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Figure 1. Use of HT as a scaffold for ArMs. A substitution reaction at
an aspartic acid residue buried within HT generates a covalent linkage
upon reaction with a haloalkane chain. The reactive haloalkane chain
can be equipped with a synthetic metal cofactor to create an ArM.
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residue can react with haloalkanes via nucleophilic substitution
between the electrophilic haloalkane and the nucleophilic
aspartate side chain. The result of this substitution reaction is a
stable ester bond. Various haloalkanes can be used in this
reaction, including bromoalkanes, chloroalkanes, and haloal-
kanes of varying chain lengths.16−18 Additionally, the
haloalkane chain can be terminally functionalized to add
cargo, most commonly a fluorophore16,19,20 but also other
cargo such as a metal complex, used for magnetic resonance
imaging.21 On the basis of this work, we posited that by
functionalizing a haloalkane chain with a metal catalyst, we
could create a stable ArM. An HT-based ArM could have
several advantages: (i) the distance between the catalyst and
protein surface could be easily optimized by changing the
alkane linker length; (ii) the bioconjugation reaction is
biocompatible, which would allow for whole-cell catalysis;
and (iii) the monomeric nature offers engineering advantages.
To assess the potential of HT as an ArM scaffold, we were
interested in exploring a reaction that has no known equivalent
in biology. As an archetypal bio-orthogonal reaction, meta-
thesis has been often used as a test reaction for ArMs.9,12,22−29

Thus, we sought to create metathesis-catalyzing ArMs with
HT as scaffold, two cofactors were synthesized for Ru-
catalyzed metathesis (Figure 2A).30 Both cofactors were based

on a Hoveyda−Grubbs II type catalyst (HG-II). The catalysts
differed in the placement of the HT linker, which was
appended at either the para-position of one mesityl group
(Mes8) or the NHC core (N8). The difference in linker
placement was designed to allow for different orientations
upon binding to HT. The resulting cofactors both bind HT
(Figures 2B and S2). Catalyst N8 resulted in higher yield of
the ArM within the incubation time, suggesting that the
position of catalyst N8 may fit better into the cleft of HT.
Additionally, cofactors with shorter linker length were also
tested but did not bind adequately to HT (Figure S2).
With the two ArMs at hand, the catalytic activities of the

protein−cofactor conjugates (N8-HT and Mes8-HT) were
examined. A pro-fluorescent substrate (Np7HC) system was
used to characterize rapidly the metathesis activity of the
ArM.31 Upon reaction with the synthetic catalysts or ArM,
Np7HC can be converted into a fluorescent product, 7-
hydroxycoumarin, and naphthalene (Figure 3A). Because the
elimination step is essentially spontaneous, the production of
7-hydroxycoumarin can be monitored by fluorescence spec-
troscopy, as a readout for ring-closing metathesis (RCM)
activity. The production of naphthalene can be further

confirmed by GC-MS. The product concentrations and
turnover numbers (TON) were determined by comparing
the fluorescence intensity with a calibration curve (Figure S3).
Using Np7HC in buffer, we found that the ArM produced a

higher TON than the catalyst alone (Figures 3B and S4). The
results were confirmed for both reaction products: 7-
hydroxycoumarin and naphthalene. The benefit of the ArM
is pH-dependent, with the ArM improving the TON more at
pH 7.0 than pH 5.0 (Figure S5). This pH dependence could
result from protonation changes in HT, low protein stability at
pH 5.0, or improved free-cofactor activity at low pH, a
frequently reported phenomenon.24,27 Comparison between
the cofactors suggests that each cofactor alone has similar
activity. Under the bioconjugation conditions used in Figure 3,
the N8-HT yields slightly higher TONs than the Mes8-HT.
However, when the purified ArMs were examined, both Mes8-
HT and N8-HT exhibited similar activity (Figure S4),
indicating that more complete bioconjugation increases the
TON. Although the TONs were lower than conventional HG-
II cofactors in organic solvent, they were comparable to those
previously reported for other metathesis-catalyzing
ArMs.9,12,15,22−27

Upon confirming that the ArM was competent for catalysis
in buffer, we subsequently examined if mutagenesis and
directed evolution could produce a more active catalyst, either
by increasing the ArM activity or improving the bioconjuga-
tion. Both crystallographic data of HT (Figure 4A) and
homology modeling (Figure S1) were used to identify suitable
residues for mutagenesis.32−34 Residues lining the opening of
the alkane binding cavity were the primary targets for
mutagenesis. Of these residues, however, some were conserved
in the family of dehalogenases from which HT is derived
(Figure S1). These conserved residues were not selected for

Figure 2. Cofactors and bioconjugation assay. Two metathesis
cofactorsN8 and Mes8based on HG-II derived catalysts were
synthesized (A). Binding analysis at varying ratios of HT to cofactor:
(white with black outline) 50 μM HT: 50 μM cofactor; (blue) 50 μM
HT: 110 μM cofactor; and (yellow with dots) 40 μM HT: 160 μM
cofactor. All of the reactions were conducted in 20 mM MOPS, pH
7.0 at room temperature for 2 h (B).

Figure 3. Activity of the cofactors and corresponding ArMs. A
reaction that produces the fluorescent 7-hydroxycoumarin was
selected for facile characterization (A). The TON for the cofactors
N8 and Mes8 were determined by GC-MS, UPLC-MS, and
fluorescence analysis (B). The bioconjugation reactions were
conducted at 65 μM cofactor and 55 μM HT (Supporting
Information, section 11). The metathesis reactions were conducted
in 20 mM MOPS, 100 mM MgCl2, pH 7.0 at 25 °C. Each reaction
contained 2 μM cofactor, 2 μM HT, and 100 μM substrate.
Formation of 7-hydroxycomarin was determined by fluorescence (λex
= 330 nm and λem = 450 nm) and UPLC-MS; formation of
naphthalene was determined by GC-MS (Figure S3).
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mutagenesis to reduce the chances that mutagenesis would
alter the substitution reaction required to form the ArM.
On the basis of these considerations, seven positions were

identified for mutagenesis, and a library of 84 single mutants
was designed and screened for TON (Figure 4B). Some of the
single mutants displayed up to 120% of wild-type (wt) ArM
activity. However, neither recombination of the best mutants
nor random mutagenesis further improved activity (Figure S6).
The modest improvements suggest that these ArMs may not

be ideally suited for directed evolution. We identified two
possible reasons for this observation: (i) the linker length
projects the cofactor too far from the protein surface or (ii) the
protein provides minimal interaction with the transition state,
limiting the effect of the second coordination sphere provided
by HT on the catalytic event. Cofactors with shorter linkers
were evaluated, but these did not bind efficiently to HT
(Figure S2), lending more support to the lack of transition
state stabilization.
To examine further the catalytic activity of the wt ArM, the

N8-HT was evaluated with several RCM substrates (Figure 5).
Characterization of the TON for these substrates was
completed by UPLC-MS or 1H NMR (Figures S7−S10). A

comparison of these reactions suggests that the N8-HT is
capable of catalyzing RCM with multiple substrates. Catalysis
with the N8-HT yield both five-membered (pyrrole or
cyclopentene) and six-membered rings (naphthalene from
Np7HC). However, when provided with a substrate that can
undergo RCM to form either a five- or six-membered ring, the
ArM yields exclusively the five-membered ring (TenDA) at
34% conversion. The five- and six-membered rings are the
kinetically and thermodynamically favored products, respec-
tively.35 The N8-HT was most effective with the substrates
BzDA and EnDA. Notably, conversion with the alkyne-based
EnDA substrate was near complete (Figure S10). This trend in
reactivity is similar to the previously reported ArM using
albumin as the scaffold.9

In summary, we have identified a new scaffold system for
creation of artificial metalloproteins. We have shown that these
artificial metalloproteins can act as ArMs for metathesis in
aqueous systems at pH 7.0. Additionally, we have shown that
chemical optimization and enzyme engineering lead to
improvements in the ArM activity. Finally, we have shown
that the ArM is capable of catalyzing RCM with diverse
substrates. On the basis of these findings, we are currently
exploring the HT scaffold as a scaffold for additional reaction
types and loop designs to provide stabilization of the transition
state.
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Figure 4. Genetic engineering of the ArM. (A) Analysis of amino
acids for mutagenesis based on crystallography (PDB: 5vnp).34 Seven
sites were targeted for saturation mutagenesis and activity profiling:
E133, E143, F144, M175, P243, V245, and L271. Mutations at five of
these sites increased the catalytic performance marginally. The best
hits are displayed in panel B. The wt HT samples were completed as
biological replicates, and the variants are replicates from the same
protein purification batch. The bioconjugation and metathesis
reactions were conducted as described for Figure 3.

Figure 5. Substrate scope for metathesis reactions. The reaction TON
and percent conversion were determined for wt HT with the N8
cofactor.
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