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Existing mathematical models for the glucose-insulin (G-I) dynamics often involve

variables that are not susceptible to direct measurement. Standard clinical tests for

measuring G-I levels for diagnosing potential diseases are simple and relatively cheap,

but seldom give enough information to allow the identification of model parameters

within the range in which they have a biological meaning, thus generating a gap

between mathematical modeling and any possible physiological explanation or clinical

interpretation. In the present work, we present a synthetic mathematical model to

represent the G-I dynamics in an Oral Glucose Tolerance Test (OGTT), which involves

for the first time for OGTT-related models, Delay Differential Equations. Our model

can represent the radically different behaviors observed in a studied cohort of 407

normoglycemic patients (the largest analyzed so far in parameter fitting experiments),

all masked under the current threshold-based normality criteria. We also propose a

novel approach to solve the parameter fitting inverse problem, involving the clustering

of different G-I profiles, a simulation-based exploration of the feasible set, and the

construction of an information function which reshapes it, based on the clinical

records, experimental uncertainties, and physiological criteria. This method allowed an

individual-wise recognition of the parameters of our model using small size OGTT data (5

measurements) directly, without modifying the routine procedures or requiring particular

clinical setups. Therefore, our methodology can be easily applied to gain parametric

insights to complement the existing tools for the diagnosis of G-I dysregulations. We

tested the parameter stability and sensitivity for individual subjects, and an empirical

relationship between such indexes and curve shapes was spotted. Since different G-I

profiles, under the light of our model, are related to different physiological mechanisms,

the present method offers a tool for personally-oriented diagnosis and treatment and to

better define new health criteria.
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INTRODUCTION

Disequilibriums in the glucose-insulin (G-I) dynamics, as in
diabetes, insulin resistance, glucose intolerance, among others,
are a widespread condition inmodern society (Cobelli et al., 2009;
Ajmera et al., 2013; Hu et al., 2015; Toniolo et al., 2018). For this
reason, the mathematical modeling of the G-I control system has
been frequently visited, as shown by the wide variety of models
presented in numerous reviews published to date (Bergman,
2005; Boutayeb and Chetouani, 2006; Makroglou et al., 2006;
Palumbo et al., 2013; Cobelli et al., 2014).

For modeling purposes, we may understand the G-I dynamics
as follows. The digestion of macronutrients generates glucose
(among others nutrients), which enterocytes absorb into the
bloodstream in the upper intestinal tract. The blood glucose
concentration increase caused by glucose absorption induces
pancreatic β-cells to secrete insulin in different timescales: early
insulin release, signaled by the incretin hormones (secreted from
intestinal enterocytes), is achieved by emptying the contents
of the vacuoles in the β-cells. After that source is depleted,
insulin production follows a saturable dynamics. Insulin signals
the uptake of glucose from peripheral tissues (mainly muscle
and adipose tissue), which metabolize it to obtain energy or to
synthesize storage macromolecules, and the decrease of glucose
release from the liver. If blood glucose levels are too low,
pancreatic glucagon-induced hepatic glucose release restores the
steady-state homeostatic level.

Some typical routine tests employed for the diagnosis of G-
I-related dysregulations are the Oral Glucose Tolerance Test
(OGTT) and the Meal Test (MT), which are widely used
given their clinical simplicity and low cost. In OGTT, a
fasting patient ingests a 75 g-controlled dose of liquid glucose
(Bartoli et al., 2011), while in MT a controlled meal with
known glycemic index (such as rice) is given to a patient. In
both tests, glycemia is measured at different times. Typically,
such measurements take place at time 0 (fasting) and 2 h
after the ingestion of glucose, but more temporal resolution
might be required, or other physiological variables measured,
depending on how strict clinical criteria are. Moreover, efforts
have been made to modify and standardize the temporal
resolution and duration of the tests (Bergman et al., 2018).
Besides the clinical interpretation of the OGTT and MT values,
some model-derived indexes can be obtained, as is the case of
the Insulin Sensitivity SI , derived from the very well known
Minimal Model (Bergman et al., 1979). The insulin sensitivity
SI quantifies the ability of insulin to increase the effect of
glucose on its own disappearance in a steady state. From
Bergman’s Minimal Model, mathematical models of the G-I
dynamics have evolved, increasing their complexity and aiming
to different objectives.

Stumvoll et al. (2000) presented an empirical approach based
on correlations to determine SI from OGTT curves. Mari et al.
(2001) proposed a parametric approach to obtain this index,
studying a population of 104 individuals with different clinical
classification. High correlations between results for SI calculated
from themodel vs. direct measurement for the full patient sample
suggested the applicability of the OGTT to obtain clinically

relevant parameters and perform large scale studies. Caumo et al.
(2000) and Dalla Man et al. (2002, 2004, 2006) focused their
efforts on modeling glucose absorption from the digestive system
into the bloodstream, making differences between OGTT and
MT. However, parametric identifiability in their models required
the a priori knowledge of average values of some parameters
of the sample, assumed equal and constant for all individuals.
The number of patients (88) in Dalla Man et al. (2004) allowed
to determine the non-Gaussian distributions of some of the
parameters. Later, Dalla Man et al. (2007) presented a nested
sub-systems model, fitting its parameters to a population of 204
clinically healthy individuals that underwent a MT. Reflecting on
its complexity, the authors suggested to use this model only as a
simulator. Following the trend of previous minimal models, this
model also leaves out equations for other regulatory hormones
such as glucagon, epinephrine, growth hormone, and incretins,
which regain importance in other works (Brubaker et al., 2007;
Silber et al., 2010; Mari et al., 2013).

Salinari et al. (2011) presented a model in which the
intestinal absorption of glucose is obtained as a solution
of a transport partial differential equation, where glucose is
progressively absorbed while passing through the intestine, and
stomach emptying is assumed to be exponential. Subsequently,
De Gaetano et al. (2013) presented an extension of the classic
minimal model, modeling the gastrointestinal tract as four
compartments, coupled with first-order kinetics. Besides, the
authors proposed fixed forms for hepatic glucose production
and incretin action, without clear physiological justification or
supporting background, and in disagreement with the state
of the art (Silber et al., 2010). The patient sample analyzed
in De Gaetano et al. (2013) comprised 78 patients with
different clinical classifications, and parameters were fitted to
whole groups of patients according to each clinical criterion,
reporting statistical differences for insulin sensitivity between
different groups.

The importance of the development of mathematical models
for the study of the G-I control system lies in the potential to
serve as support for clinical diagnostic tools in the detection of
type II diabetes, insulin resistance, glucose intolerance, among
other dysregulations of the G-I control system. However, at
present, these models do not manage to effectively capture the
differences that exist between patients in the way of achieving
glycemic control (reflected as morphological variations in OGTT
response curves), and do not represent it as a difference in
the involved parameters that can be interpreted according
to clinical criteria. Additionally, the more complex models
mentioned above have not been used to infer physiological
parameters for an individual patient from an OGTT, since
they have only been used to calculate average parameters in
a group of patients, or required special clinical setups to
obtain the data needed for fitting them. This is partly due
to the intrinsic complexity of the models and the number
of parameters involved, but also to the lack of a numerical
procedure for parameter fitting. Therefore, amathematical model
capable of accounting for different physiological states and
applicable as a tool for clinical diagnosis becomes necessary for
personalized medicine.
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In the present work, we present a synthetic mathematical
model to represent the G-I dynamics in OGTT using Delay
Differential Equations (DDE), in which each parameter describes
a single physiological phenomenon. To the best knowledge of
the authors, this is the first DDE model involved in describing
OGTT dynamics, including the mutual interrelation between
glucose and insulin. The structure of the model allowed for
representation of every observed qualitative dynamic behavior
in our cohort, regardless of the number, height or location of
the glucose and insulin peaks. Using a novel information-based
approach we achieved an individual-wise parameter fitting using
the five glycemia and insulinemia points of a routine OGTT
directly, for a cohort of 407 patients that underwent a 75-g
OGTT, which is the largest cohort analyzed so far for this
end. We also show that there are different controlling behaviors
within the clinical normality thresholds, accounting for different
physiological mechanisms to achieve glycemic control. Given
that parameter fitting is individual, it would be possible to classify
each patient within different groups, suggesting that different
dysregulated mechanisms require different corrections, thus
transforming the proposed model and fitting procedure into a
tool for preventive clinical diagnosis and personalized medicine.

MATERIALS AND METHODS

A cohort of 407 volunteers was used for testing the capabilities
of our model and our patient-wise parameter recognition
methodology. All volunteers gave their informed consent to use
their OGTT data in this study. All volunteers in this sample
were clinically healthy according to criteria used in Chile, in
strict clinical settings to characterize normoglycemic patients.
According to these criteria, a patient who has basal (stable
overnight) glycemia lower than 100 mg/dL, basal insulinemia
lower than 15 µU/mL, glycemia values not exceeding 160
mg/dL at any time and not persisting at values higher than
140 mg/dL over 2 h, and insulinemia not persisting at values
higher than 60 µU/mL for a continuous time period of 120
min, would be classified as normal. Approximately 80% of
the cohort corresponded to female patients, with ages ranging
between 18 and 65 years-old. Nevertheless, no statistical sex-
related difference was found within the cohort. Every patient
underwent an OGTT with five measurements for both glycemia
and insulinemia: fasting (basal state) and every 30 min, for
2 h. Further description of the data, as statistical properties,
histograms of the measurements at every time and of the age
distribution are presented in Supplementary Material (Table S1
and Figures S1, S2, respectively).

We identified many radically different G-I profiles among
the population. Examples of them are hypoglycemic individuals,
single/double peak patients, and those with practically invariant
G-I profiles, as shown in Figure 1. In Figure 1, the solid
lines correspond to a spline interpolation of the experimental
measurements, which are marked with solid diamonds of the
same color. These different OGTT profiles could account for
diverse physiological states related to gastric emptying, intestinal
absorption, or other components of the glycemic control system,

masking pre-disease conditions under the concept of normality.
Therefore, as currently defined, to identify the physiological
background behind a clinically healthy or unhealthy individual
seems to be an ill-posed inverse problem.

The implementation of the mathematical model and
resolution of the parameter-fitting inverse problem was
performed in Matlab version R2017a, using the Global
Optimization Toolbox. All scripts and routines for parameter
fitting were run on the Chilean National Laboratory for High-
Performance Computation (NLHPC) servers, using BASH-based
control scripts.

RESULTS

Synthetic OGTT Glycemia-Insulinemia
Model
The synthetic model proposed in this work considers five main
variables. Four of them represent the amount or concentration of
glucose in different compartments: in the stomach S, in the upper
intestinal tract J (jejunum) and L (ileum), and in the bloodstream
(glycemia) G. The last variable accounts for the insulinemia I.
These different variables interact as illustrated in the box diagram
of Figure 2, in ways that will be further detailed in this section.
We follow the notation of De Gaetano et al. (2013), but ourmodel
also considers the contributions of other works (Dalla Man et al.,
2007; Salinari et al., 2011; De Gaetano et al., 2013), together with
our own developments.

Figure 2 shows the interdependence of the different variables
of the model. The gastrointestinal sections are decoupled from
the blood G-I dynamics, which, as we will see, are connected in a
very non-linear fashion. To obtain the G-I profiles of a particular
individual, given all the parameters involved, it is necessary to
solve the system of differential equations that we propose to
model it. All the proposed constitutive equations may be found
in this section, together with their physiological background and
the reasons behind its mathematical formulation. A summary of
the model is presented in the last subsection and a detailed list of
its parameters and variables can be found in Tables S2, S3.

Gastrointestinal System
To mathematically represent the stomach emptying for a liquid
bolus, we assume its rate vs =

dS
dt

to be directly proportional to
the content of glucose at every time, S(t), as Equation (1) shows:

dS

dt
= −kjsS, S(0) = D, (1)

where kjs is a first-order kinetic constant, D the ingested glucose
bolus in an OGTT (75 g), and the minus sign accounts for the
disappearance of glucose, hence the emptying of the stomach.
The glucose that leaves the stomach appears in the jejunum J,
being a source term in the rate (Equation 2).

As absorption of glucose may take place in this section of
the small intestine, we may close the mass balance noting that
the glucose that is not absorbed will continue its way, being
transported to the ileum L.
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FIGURE 1 | Some of the different G-I profiles encompassed under the clinical normality criterion. Continuous curves are spline interpolations of the diamond marked

experimental trends. Note that similar glycemia curves are not necessarily associated with similar insulinemia curves, and a single-peak profile in glycemia is not

necessarily associated with a single-peak insulinemia profile. Upper clinical normality criteria are represented as red limits for the basal and last points and for the entire

OGTT time span.

FIGURE 2 | Box diagram of the proposed model and the interactions between the different compartments and variables. The gastrointestinal tract, namely variables

S, J, and L, are decoupled from the blood G-I dynamics.
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dJ

dt
= kjsS

︸︷︷︸

Stomach delivery

− kgjJ
︸︷︷︸

Absorption into the bloodstream

− kjlJ
︸︷︷︸

Delivery to L

, J(0) = 0 (2)

The structure of our model, from this point and further, is
significantly different from the one presented in De Gaetano
et al. (2013). De Gaetano et al. (2013) suggested that to
represent the effect of intestinal transit between jejunum
and ileum, a virtual compartment R can be added in
between, where absorption does not occur. Nevertheless,
the equations proposed to reach such objective are not
entirely appropriate for representing different curve shapes,
especially those curves with delayed 2-peak dynamics with
equal peak height and width or a higher second peak
(see Figure 1).

Here we decided to follow the formalism presented by
Salinari et al. (2011) to represent intestinal transit. Taking
into account the peristalsis-driven intestinal transit mechanism,
we can assume there is no mixing in the axial axis.
Hence, we model the flow through the intestine as a
plug-flow reactor with uniform velocity U. To represent
the distribution of glucose transporters along the small
intestine, we assume that absorption occurs in two separated
areas of the intestine, the jejunum and the ileum, located
at a distance l, so the time it takes for the ileum to
receive glucose transiting from the jejunum is τ := l/U.
Consequently, instead of having a spatial partial differential
equation for intestinal absorption, we have two ordinary
differential equations, one for the jejunum (Equation 2) and one
for the ileum, the last one having a τ−delayed forcing function
(Equation 3).

dL

dt
= kjlϕ(t)

︸ ︷︷ ︸

Delayed contribution from J

− kglL(t)
︸ ︷︷ ︸

Absorption into the bloodstream

, ϕ(t) =

{

0, if t < τ

J(t − τ ), if t ≥ τ
(3)

where kjl and kgl are first-order kinetic constants, respectively,
accounting for the rate of jejunal glucose delivery and the glucose
absorption into the bloodstream.

Blood Glucose Dynamics
To represent variations in glycemia, our model contemplates
the following control mechanisms. As source terms in the
glycemia equation, we considered the intestinal absorption
of glucose adjusted by glucose bioavailability (η), following
the form presented in Dalla Man et al. (2002), and the
hepatic contribution to glucose homeostasis (Gprod), which
indirectly accounts for the action of glucagon. The sink
terms in the equation represent glucose uptake by insulin-
insensitive tissues and renal excretion, which is proportional
to G, and insulin-driven consumption of glucose, taking
place in insulin-sensitive tissues, which is proportional to GI.
Equation (4) represents mathematically the glycemia dynamics.

dG

dt
= −kxgG

︸ ︷︷ ︸

Basal uptake

− kxgiGI
︸ ︷︷ ︸

Insulin-sensitive uptake

+ Gprod
︸ ︷︷ ︸

Hepatic delivery

+ η
(

kgjJ + kglL
)

︸ ︷︷ ︸

Intestinal absorption

, G(0) = Gb (4)

where kxg is the insulin-independent glucose uptake rate, kxgi is
the uptake rate of insulin-sensitive tissues, η is the bioavailability
of the intestinal absorbed glucose, and Gprod is the rate of hepatic
glucose production.

Hepatic Glucose Production Function
We implicitly incorporated the effect of glucagon into a
hepatic glucose production function, which is an always
positive term that contributes to the equation of blood
glucose dynamics. Previous works model this contribution with
exponential functions (De Gaetano et al., 2013; Erlandsen
et al., 2018), without a solid physiological background but
rather a mathematical convenience. However, when analyzing
the functional nature of such expressions, we realize that the
differential mechanism is not entirely clear since the function
derivative cannot be written as a function of itself. Therefore, no
reliable physiological mechanism supports the form of such rate
functions. We propose Gprod as the complement of a Monod-like
equation, which is typically used to model problems of saturable
growth, production, enzymatic reaction and receptor/ligand
interaction or transport:

Gprod =
kλ

k2 + G
, (5)

As defined above, Gprod is also the solution of the mechanism
given by Equation (6), which represents a logistic hyperbolic

production with an asymptotic maximum rate (see derivation in
Supplementary Material).

dGprod

dG
= −

Gprod

G

(

1−
k2

kλ

Gprod

)

, (6)

By imposing steady-state conditions Gprod(Gb) = G0
prod,

k2 can be written as a function of the other variables,
resulting in Equation (7), i.e., a saturable Michaelis-
Menten-like kinetics much more representative of the
physiological background of cellular processes. Noticeably,
even though the rate Equation (6) does not include
any set point, the integrated steady-state hepatic glucose
production (Equation 7) explicitly depends on the difference
between glycemia and its base level (see derivation in
Supplementary Material).
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Gprod =
kλ

kλ

G0
prod

+ (G− Gb)

. (7)

Blood-Insulin Dynamics
For the blood-insulin system, following the model in De Gaetano
et al. (2013), we propose aHill’s dynamics for pancreatic secretion
(Goutelle et al., 2008), and an I-proportional degradation term.
Noteworthy, these dynamics exhibit a saturation behavior since it
is formulated exclusively for OGTT circumstances. However, we
corrected the mathematical form of the incretin action suggested
in De Gaetano et al. (2013). De Gaetano et al. (2013) assumed
that incretin secretion is proportional to glucose levels within
the intestinal lumen. Nonetheless, it has been shown that it
rather depends on the rate of absorption of glucose from the
intestinal lumen (Silber et al., 2010). Therefore, we corrected this
in Equation (8):

G̃ = G+ fgj(kgjJ + kglL). (8)

Equation (8) makes sense from a physiological point of view since
intestinal epithelial cells are not able to sense the absolute amount
of glucose in the intestine due to the lack of glucose sensor
proteins, but their internal metabolic rates are directly dependent
on the steady-state cytoplasmic concentration of glucose, which
is proportional to glucose membrane transport through the cell.
In this equation, fgj is a conversion factor that indirectly links
glucose absorption rate to insulin secretion rate through incretin
action, thus representing the relative power of incretin action vs.
direct glycemic action on the pancreas. Under these assumptions,
Equation (9) gives the final expression for the insulin dynamics:

dI

dt
= kxiIb






βγ + 1

βγ
(
Gb

G̃

)γ

+ 1
−

I

Ib




 (9)

where kxi is a first-order kinetic constant for the insulin
degradation in target tissues, β and γ are parameters for half
saturation and acceleration of the insulin production, which
account for first and second phase pancreatic secretion, G̃ the
apparent G, enhanced by incretin action, and Gb, Ib the steady-
state value of such variables.

Insulin Action on Glycemia and Insulin Sensitivity
Former mathematical models including insulin action were
divided in models that considered a direct action of blood
insulin on tissues to regulate glucose uptake and more complex
models that considered an additional intermediate compartment.
Such compartment represented the interstitial fluid in peripheral
tissues, into which insulin was absorbed from the bloodstream
following a first-order kinetics, and only then could exert its
action. Mathematically, the effect of this formulation in the
more complex models was the introduction of a small delay
and a proportionality constant between concentrations in the
bloodstream and the interstitial fluid, which caused a small
decrease in peak height and slight broadening of peak width
for insulin in the intermediate compartment compared to the

bloodstream. Application of these models to experimental data
demonstrated a minimal delay, in the range of a few minutes,
between concentrations in the bloodstream and the intermediate
active compartment. Taking into account that usual OGTT
experiments take measures every 30 min and the registered G-
I dynamics occur in the order of hours, this small delay was
not included in the formulation of our model, because the time
resolution might result too coarse to accurately calibrate such
parameters. In this way, we only consider a direct action of blood
insulin on target tissues. From amathematical and practical point
of view, this decision also resulted in a more compact model with
fewer parameters to fit experimental data.

Insulin sensitivity SI , formally introduced by Bergman et al.
(1979) and mathematically defined by Equation (10), accounts
for the quantitative influence of insulin to increase the effect of
glucose on its own disappearance, in steady state.

SI =
∂E

∂I
, E = −

∂
(

dG/dt
)

∂G
(10)

In our mathematical model, we adopted the term kxgiGI and
kxgG of De Gaetano et al. (2013) to represent the glucose-
mediated effect of insulin on glucose disappearance from the
bloodstream and glucose uptake by insulin-independent tissues,
respectively. However, contrary to the equations of De Gaetano
et al. (2013), in our model parameter kxgi is a true insulin
sensitivity value. This was achieved by the redefinition of Gprod,
resulting in such a way that no additional terms appeared in the
mathematical calculation of the insulin sensitivity according to
Equation (10).

Summary of the Model
Collecting the different expressions derived in the previous
sections for the constitutive compartments of our model, we can
summarize it in the following system of differential equations:

dS

dt
= −kjsS, S(0) = D

dJ

dt
= kjsS− kgjJ − kjlJ, J(0) = 0

dL

dt
= kjlϕ(t)− kglL(t), ϕ(t) =

{

0, if t < τ

J(t − τ ), if t ≥ τ

dG

dt
= −(kxg + kxgiI)G+ Gprod + η

(

kgjJ + kglL
)

, G(0) = Gb

dI

dt
= kxiIb






βγ + 1

βγ
(
Gb

G̃

)γ

+ 1
−

I

Ib






Parameter Fitting Strategy
During a 5-point OGTT, five experimental measures of both
glucose and insulin are captured, generating vectors Gexp and
Iexp. By protocol, measurements are taken at 0, 30, 60, 90, and
120 min after glucose ingestion, giving a time vector Texp =
[0 30 60 90 120 ]. The model detailed in the previous sections
was used to represent and interpolate these points continuously.
Let Gnum(Eθ), Inum(Eθ) be its solution for the G-I dynamics, with
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parameters Eθ . The traditional way of formulating the parametric
fitting problem is by minimization of a cost function Jexp
that accounts for the difference between the modeled curve
and experimental measurements. Generally, this function is
proportional to the mean squared errorMSE,

Jexp(Eθ ,α) =
1

5 (Gmax − Gmin)
2

5
∑

i=1

(

Gexp(i)− Gnum(Ti)
)2

+
α

5 (Imax − Imin)
2

5
∑

i=1

(

Iexp(i)− Inum(Ti)
)2
,

(11)

where α is a constant that connects the contribution of the
insulin curve to MSE and (Gmax − Gmin)

2 is a scaling factor.
This problem consists of finding the values of all 13 parameters
of the model from 10 experimental measures obtained during
a routine 5-point OGTT for a given patient, which is a
slightly underdetermined problem. However, we can exploit the
knowledge we have about the nature of the physiological G-I
response, accumulated in more than 40 years of routine testing
and modeling, to gain in robustness and identifiability of the
parameter set for each patient. We identified and used the
following strategies for improvement:

• Increasing data density through the use of interpolators, to
favor smoothness and regularity of the solutions, and to
penalize nonphysiological oscillations.

• Simulation-based regularization for clusters of similar curves.
• Nested sub-problems and sequential approximations to build

a robust initial guess.
• Incorporation of information in the cost function and the

delimitation of the feasible set.
• Algorithm choice for the parameter recognition problem and

final shaping of the feasible set.

Increasing Data Density
Given the nature of the equations presented in our model, non-
physiological high-frequency oscillatory solutions might appear.
Taking into account (a) the nature of the physiological G-
I control system, (b) the oscillations measured experimentally
in the literature, and (c) the 30-min apart measurements
taken during a 5-point OGTT, we know that high-frequency
oscillations –relative to the sampling time– should not be
observable in our solution. Therefore, we propose to favor those
solutions that only have low-frequency oscillations, somehow
forcing the it to resemble the experimental data in a smooth way.
For this, we propose to increase the density of putative measured
points using a soft interpolant to connect the experimental
measurement points. Without loss of generality, for G, the
interpolant Ĝ used to increase the data density is defined by
Equation (12):

Ĝ = φGspline + (1− φ)Gpol, (12)

that is a convex combination between a cubic spline and a low-
degree polynomial interpolator. We can define a new component
of the error function, Jspline, based on the MSE between Ĝ and

Gnum, following the structure of Equation (11). It is important
to point out that this contribution has no greater effect than
favoring those solutions that are smooth and regular. Introducing
this component into the curve fitting procedure adds information
because the optimizer would not only look for those solutions
whose numerical profiles match the experimental data points, but
for those whose profiles also do not drift considerably from the
expected trend.

Simulation-Based Regularization for Clusters of

Similar Curves
Taking into account the physiological andmolecular mechanisms
involved in the G-I dynamics and the experimental values
obtained in typical OGTT measurements, we determined
plausible lower and upper bounds (θi,min and θi,max, respectively)
for each parameter θi. In a first stage, we may define the feasible
set F0 considering such thresholds,

F0 =

13
⊗

i=1

[

θi,min, θi,max
]

, (13)

where the operator ⊗ represents the Cartesian product between
the intervals defined by the lower and upper thresholds of each
parameter. We performed a simulation stage to explore the

nature of F0, in which we simulated 108 values of Eθ∗ ∈ F0,

and studied the Gnum(Eθ∗) and Inum(Eθ∗) profiles obtained. If such
profiles fulfilled the clinical normality criteria, they were assigned
to groups of experimental profiles based on their similarities,
aiming to build a set of initial guesses for the parameters
corresponding to such individuals. Once we had enough Eθ∗

for each group of curves, a fourth component for the global
cost function (Equation 16) was added, accounting for the
contribution of local regularization near Eθ∗j characteristic of the
j’th group.

Nested Sub-problems and Sequential

Approximations
We followed a staged approach for the construction of
initial guesses for the inverse problem, summarized in the
following algorithm:

Steps one and two aim to build an appropriate initial guess for
the parameter fitting problem, solved in step three. This step does
not include further assumptions on the nature of the solutions,
but only the model equations.

Incorporation of Information in the Cost Function
Given that the a priori identifiability of the model is not
guaranteed (De Gaetano et al., 2013), we corrected the cost
function presented in the previous section to incorporate more
information. Without making any assumption concerning the
parameters, we incorporated information from clinical records
and from the test itself. In particular. we added terms that account
for: (i) experimental errors, associated with sampling time and
laboratory techniques, and (ii) expected extreme values (maxima
and minima), inferred from the experimental measurements and
based on clinical criteria.
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Algorithm 1: Sequential approximation to the initial guess

Data:
Eθ∗j : Initial guess, built from the simulation-based

parametric pool of group j;
Gnum, Inum : Model derived G-I profiles, with temporal
resolution tnum;

Ĝ, Î : Interpolation of the experimental G-I profiles at tnum;

Result: Initial guess Eθ0 for the parametric recognition
inverse problem of a particular patient

foreach individual in the cohort do

Find the most similar simulated curve, and set Eθ0 = Eθ∗j .

Fit the glycemia-related parameters, using I = Î
(Equation 12) as a known forcing function on
Equation (4), minimizing Jexp(Eθ , 0).;

Update the glycemia-related components of Eθ0.
Fit the insulinemia-related parameters, using G = Ĝ
(Equation 12) as a known forcing function on
Equation (4), minimizing Jexp(Eθ ,α), considering only
insulinemia (α → ∞).;

Update the insulinemia-related components of Eθ0.
Set Eθ0 as initial guess for the parameter fitting inverse
problem.

end

Regarding the first term, associated with experimental
errors in both time and measurement, such 2− D variability
transformed each data point into an ellipse in the (t,G) or (t, I)
space, centered on the experimentally determined value Gexp

or Iexp, at time Texp. We used a constant 1t = ±3min as a
scale for the temporal uncertainty (horizontal semi-axis of the
ellipse), meanwhile a proportional contribution (to the Gexp or
Iexp values) was chosen for the vertical axis. The weight of this
error source in the total cost function was calculated based on
a polar probability density of ρ(r, θ), as described in algorithm 2.
Note that when considering together Jexp and Jerror, the algorithm
can be significantly simplified, as the calculations for the case d =
0 may be skipped only giving a greater weight to the contribution
of Jexp.

Regarding the second term, its derivation was—in
a mathematical sense—more complicated. Given the
characteristics of the 5-point OGTT considered on this
work, it seems reasonable to expect that the maximum value of
the modeled glycemia curve should be of the same order of the
maximum of the experimental profile. Consequently, we will
have an idea of the time t∗ ∼ Texp(i) when our model reaches
such value. Furthermore, considering a sequence of experimental
measurements Hi recorded at times Ti, which approximate a C

1

function h(t). If for certain i0 it is fulfilled that

(

Hi0 −Hi0−1
) (

Hi0+1 −Hi0

)

< 0, (14)

there exists a time t∗ ∈
[

Ti0−1, Ti0+1
]

where h′(t∗) = 0. Note that
this can happen more than once for a sequence of experimental

Algorithm 2: Incorporation of experimental errors in the
cost function
Data:
xexp : experimental glycemia or insulinemia value at time
texp;
texp : sampling time, element from Texp;
λ : penalizing factor, λ > 1;
Result: Jerror
Set Jerror = 0;
foreach texp ∈ Texp, x = {G, I} do

Calculate E, ellipse centered in (texp, xexp(texp)), with
semi-axes a = 21t , b = 21x.;
Calculate c = xnum([texp − 1t , texp + 1t]), image of the
major semi-axe through function xnum.;
Calculate d, the distance between E and c.;
if d = 0 then

Calculate d′, the distance between c and the center of
E;
Find θ ′, angle of the point of minimum distance;
Calculate r(θ ′), ellipse radius at θ = θ ′;

Update Jerror = Jerror + λ

(
d′

r(θ ′)

)

;

else

Update Jerror = Jerror + λ(d + 1);
end

end

measurements so that we may have more equations of the form
h′(t∗j ) = 0. For our case, as the OGTT data consists of five
glucose and five insulin measurements, the maximum number of
additional equations we can have is 6.

The classical way of solving the direct problem of finding
maximum/minimum values of a function h(t) is finding a time
t∗ in which h′(t∗) = 0 and a sign change occurs in the same
point. Then, hopt = h(t∗). This same reasoning can be applied

to glycemia, using Equation (4) and imposing dG
dt

= 0 to obtain
Equation (15):

Gopt =
G∗
prod + η

(

kgjJ
∗ + kglL

∗
)

kxg + kxgiI∗
, (15)

where Gopt is the maximum glycemia, and I∗, G∗
prod, J

∗, L∗

are, respectively, the insulin concentration, hepatic glucose
production rate, and the amount of glucose in the jejunum and
ileum at time t∗ (whenGopt is reached). Note that the formulation
is general, and it serves for any point of derivative equal to
zero (which we can estimate from the clinical exam trends).
We can indeed follow and apply the same idea for the insulin
equation (Equation 9). If we do this for all critical points we
will have n linearly independent equations, since the times t∗

and optimal values of G, I will be different. We can think of
each equation as the i− th component of a function F(Eθ) =
∑n

i=1 fiEei. Note that around Eθ∗ where F(Eθ∗) = 0, the parameters
can be expressed as implicit functions of the known variables

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 March 2020 | Volume 8 | Article 195

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Contreras et al. Patient-Wise Inference of Glycemic Control Parameters

FIGURE 3 | Scatter plot of model-predicted glycemia and insulinemia vs. experimental measurements for the entire cohort of 407 patients. The data cloud lies in the

identity zone, without significant deviations from it, accounting for a good fit.

FIGURE 4 | Probability histograms of relative errors of the model predictions for the cohort of 407 patients and five data points per patient. Given the Gaussian nature

of the residues of both variables, we can safely discard the presence of bias.

(such as Gi,max and Ii,max). These equations will define different
loci for the fitted parameters. The problem that appears directly
after this definition is that known variables, in reality, are only
approximately known within a confidence interval Ic,i. Then,
when incorporating them, we will have manifolds (of loci). More
specifically, we say that Eθ satisfies the equation i, if there are
G∗
i,max, I

∗
i,max, t

∗ ∈ Ic,i such that fi(Eθ) = E0. We then build an
information function, which conditions the shape of the feasible

min
Eθ∈F0|F(Eθ)=E0
︸ ︷︷ ︸

Information function

λ1Jexp(Eθ ,α)
︸ ︷︷ ︸

Experimental data

+ λ2Jspline(Eθ ,α)
︸ ︷︷ ︸

Interpolator

+ λ3Jerror(Eθ ,α)
︸ ︷︷ ︸

Experimental errors

+ ǫ‖Eθ − Eθ∗j ‖
︸ ︷︷ ︸

Local regularization

, (16)

set, tagging as unfeasible the solutions Eθ such that F(Eθ) =
∑n

i=1 fi(Eθ)Eei 6= E0. Thus, we will have a new feasible set for our
solutions and a new approach to the problem.

Settings of the Inverse Problem: Functions,

Algorithms, and Thresholds
Finally, including all the contributions mentioned above, the
parameter-fitting problem can be formulated as:
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FIGURE 5 | Sensitivity and stability analysis of fitted parameters for patient 180. The figure shows the glycemia and insulinemia profiles of the patient in the frame of

patients that have similar glycemic curves (upper and lower left plots, respectively). A volcano plot, as described in the text, is presented in the upper right plot, and a

representation of the width of the 95% confidence interval for each parameter is presented in the lower right plot. In this example, even though some parameters have

a low slope over the studied interval, the variability of their values, expressed as the width of the 95% confidence interval, is almost negligible.

FIGURE 6 | Sensitivity and stability analysis of fitted parameters for patient 144. The figure shows the glycemia and insulinemia profiles of the patient in the frame of

patients that have similar glycemic curves (upper and lower left plots, respectively). A volcano plot, as described in the text, is presented in the upper right plot, and a

representation of the width of the 95% confidence interval for each parameter is presented in the lower right plot. In this example, the variability of the kλ parameter is

considerably higher than in the case of Figure 5, probably because of differences in the experimental profiles.
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FIGURE 7 | Sensitivity and stability analysis of fitted parameters for patient 31. The figure shows the glycemia and insulinemia profiles of the patient in the frame of

patients that have similar glycemic curves (upper and lower left plots, respectively). A volcano plot, as described in the text, is presented in the upper right plot, and a

representation of the width of the 95% confidence interval for each parameter is presented in the lower right plot. In this example, the variability of some parameter

values is not negligible.

with ǫ arbitrarily small, and which solution is the set of
parameters that characterize the glycemic-insulinemic control for
each patient. The resolution of the minimization problem 16 at
every stage was achieved by combining deterministic methods
(gradient search) and heuristic methods such as simulated
annealing and pattern search, available in the Matlab Global
Optimization Toolbox. Parameters were obtained for the whole
studied cohort.

DISCUSSION

Goodness of Fit
Applying the parameter recognition procedure presented in
previous sections, it was possible to fit our model to the
experimental OGTT glycemia and insulinemia profiles of
the whole studied cohort, thus obtaining the physiological
parameters that control the observed trends for each patient.

To evaluate the performance of our model and the proposed
parameter recognition procedure, we studied the quality of
their predictions for both glycemia and insulinemia. Figure 3
shows the scatter plots of experimental vs. predicted values
for glycemia and insulinemia for all 407 patients, where both
predicted variables follow the expected trend. The data point
cloud lies in the identity zone, without significant deviations, and
the variables show high correlation. The probability-normalized
residues histogram of both variables had a Gaussian nature, as
depicted in Figure 4, with low variance. In sum, prediction errors
are normally distributed and unbiased, while predictions are

highly correlated to experimental measures, which demonstrates
the goodness of fit of our model and method.

Sensitivity Analysis
Parameter sensitivity was evaluated for each patient by analyzing
how variations in parameter values affected the error between
predicted and experimental values (the cost function defined
by Equation 16). Some particular examples are shown by the
volcano plots in Figures 5–7. In these figures, the greater the
slope around the central point, the more sensitive the patient
is to variations of that parameter. Therefore, a more sensitive
parameter suggests higher confidence in its fitted value. We
also performed ten different parameter fitting experiments for
each patient, starting from different initial values and using
the deterministic and heuristic procedures described above.
With these results, we calculated a 95% confidence interval
for the parameters of each patient, as shown in Figures 5–7.
Following our former reasoning, all parameters with high slopes
around the central point in the volcano plot have very narrow
confidence intervals, but unexpectedly some parameters with low
sensitivity in volcano plots have also very narrow confidence
intervals in fitting experiments. This observation demonstrates
that parameter accuracy following our fitting method is higher
than expected from analyzing parameter sensitivity around a
central point.

Analyzing differences between patients, our results show that
this sensitivity analysis differs for each case, since different curve
shapes suggest different physiological ways to achieve glycemic
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FIGURE 8 | Parameter stability in response to small perturbations in the experimental glucose measurements. Random noise of at most 10% of the reported

measurement was added to the original values, and the inverse problem was solved. Results show that, even for the maximum percentage of variation, the difference

between the original and final values remained non significant.

control. Hence, the relative importance of each parameter on
the control mechanism, and the reliability of their values, can
be considered proportional to their sensitivity or the extension
of their confidence interval. As the most sensitive parameters
are those that determine the shape of the control profile,
understanding their individual and collective meaning may give
valuable information about the health status of each patient,
highlighting the physiological background of the observed trend.

We present some examples of these observations in
Figures 5–7, which feature a special kind of graph that we will
address as a volcano plot. In a volcano plot, we analyze the
impact that small variations in the parameters, relative to their
optimal value, have on the value of the error functional JT . The
x-axis represents the percent variation of the optimal value of the
parameter, and the y-axis, the variation of the error, normalized
by its minimum value, which is the optimal. Therefore, the point
(100, 100) is the center and global minimum of all curves in
the plot.

Figure 5 shows the sensitivity and stability analysis of the
parameters for patient 180. Out of the whole set, the parameter
kλ shows the more significant variability, which is very small and
almost negligible. On the other hand, Figure 6 shows the same
analysis for patient 144, which has a very similar glycemic profile,
but whose kλ is somehow unreliable. Despite sharing almost the
same glycemic profile, they have essential differences in their
insulinemic trends. The above demonstrates the importance of
analyzing both glycemia and insulinemia for having a reliable
indicator of the health status of an individual, given that glycemia
alone might not be enough. Furthermore, patient 31, who shares
little or no properties with the glycemic and insulinemic profile
of the other two patients studied above (see Figure 7), has a
different sensitivity footprint, proving the relationship between
curve shape and parameter reliability.

Stability of the Solutions in Response to
Experimental Errors
After obtaining final values for every parameter, we evaluated
their stability in response to small perturbations in the fitted

experimental measures. Starting from the experimental OGTT
points for a fixed individual (Gexp, Iexp), we simulated a
set of virtual patients with OGTT curves (Gsim, Isim) whose
measurements resulted of adding random noise to (Gexp, Iexp),
and solved the parameter fitting problem, considering as a
starting point the parameters fitted to the original patient.
Different amounts of noise were added to the experimental
points in all patients. The effects of these variations on all
parameter values are shown in Figure 8 for one patient example.
All parameters in all generated variations show no significant
differences in comparison to the original data, showing that the
model allows margins of error associated to both experimental
error or time lags at the moment of taking samples without
compromising the accuracy of the solution. This invariability is
related to the inclusion in the fitting procedure of a component
accounting for experimental error, acting as a mathematical
buffer, which demonstrates the utility of this approach for
individual parameter fitting.

CONCLUSIONS

We presented a new synthetic mathematical model for the G-
I dynamics in an Oral Glucose Tolerance Test. Our model
only includes parameters with a coherent physiological meaning
and, to the best knowledge of the authors, is the first approach
which involves Delay Differential Equations (DDE) presented in
the literature. The new model can represent radically different
G-I behaviors observed in the studied population, including
hypoglycemiant individuals, single/double peak patients, and
those with practically invariant G-I profiles. In this way,
we demonstrate that these unexpected G-I profiles are not
experimental errors, but are the result of particular combinations
of physiological processes.

We have proposed and numerically implemented a novel
strategy for the resolution of the curve-fitting problem, exploiting
existing knowledge about the function of the G-I control
system, leading to the correct recognition of the individual
parameters for the studied cohort of 407 individuals. Our
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methodology showed to be robust, as the dimensionality of
the problem can be dramatically decreased by reshaping the
feasible set with the incorporation of an information function
and splitting the problem into sequential approaches, thus
allowing a correct fitting of the model parameters for each
patient. As suggested by the simulations, and afterwards verified
by our results, we observed consistency between differences
in glycemic and insulinemic OGTT curves and differences
in parameter values. The parameters obtained for each and
every patient showed to be stable under small perturbations
of the experimental measurements, and their sensitivity varied
from one patient to another, giving physiological and patient-
wise insights of the mechanistic background of the observed
trends. This can be asserted particularly by the fact that
each parameter in the proposed model represents a unique
physiological phenomenon.

Finally, since our model can represent the different forms of
control observed so far, to characterize them through parameters
with a physiological meaning, and to identify those parameters
using a robust methodology for the inverse problem solving,
we propose it as a tool for patient evaluation, review of health
criteria, and re-definition of clinical normality. Understanding
that under the current clinical normality definition there are
different ways to achieve glycemic control, parametric analysis
of patients would allow the development of individual-oriented
treatments, contributing significantly to the preventive and
personalized diagnosis of relevant pathophysiological events in
the control system. In accordance to this, our future work
will include a thorough analysis of parameter values in normal
and pathological patients under current definitions and their
statistical distributions in broader patient samples, in order to
define clinical meaning, normality and pathological criteria for
each parameter, which falls out of the scope and length of the
present work.
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