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Abstract
Transmembrane proteins are mostly nanochannels playing a highly important
role in metabolism. Understanding their structures and functions is vital for
revealing life processes. It is of fundamental interest to develop chemical
devices to mimic biological channels. Structural DNA nanotechnology has been
proven to be a promising method for the preparation of fine DNA nanochannels
as a result of the excellent properties of DNA molecules. This review presents
the development history and current situation of three different types of DNA
nanochannel: tile-based nanotube, DNA origami nanochannel, and DNA
bundle nanochannel.
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Introduction
DNA has been proven to be an excellent structural molecule  
besides being used for genetic information storage and transfer 
because the specificity of the base pairing allows target structures  
to be encoded in the base sequences of component oligonucle-
otides. After more than 30 years of development since Nadrian 
Seeman proposed that DNA could be used to construct junction 
structures in 19821, molecular self-assembly by DNA has ena-
bled the construction of arbitrary objects with nanometer- to 
micrometer-scale dimensions (for example, crystals, patterns, 
bricks, boxes, and curved shapes)2–4. These nanostructures either 
perform functions independently or simulate other biomolecules; 
among them, the DNA nanochannel is one of the finest examples 
that could mimic the biological nanochannels in both structure 
and function. Biological nanochannels are widely distributed in  
nature; they play important roles in various biological proc-
esses, regulating the transport of materials and signals through  
biomembranes5,6. An accurate understanding of the structures and 
functions of the nanochannels would help us unveil the life proc-
esses and has important guiding significance for drug design, 
disease diagnosis, and manufacturing of bio-inspired devices. In 
this  review, we will briefly introduce the development history and  
current situation of DNA nanochannels in three classifications: 
tile-based nanotube, DNA origami nanochannel, and DNA bundle 
nanochannel.

Tile-based nanotube
The approach of DNA tile-based structures was to use DNA  
to construct relatively simple tiles such as the double crossover 
(DX)7 or triple crossover8. Then, these preformed tiles could 
assemble into periodic lattices through DNA hybridization. The 
DNA tiles could be assembled into a variety of shapes; moreover, 
they could be used to implement algorithmic self-assembly, mak-
ing them a platform for DNA computing9. In 2004, two articles  
focusing on the DNA tile-based nanotube were published in the 
Journal of the American Chemical Society in the same issue10,11 
(Figure 1a). Both of these works take advantage of DX to  

construct the nanotubes. Owing to the periodic array of DX, the 
nanotubes were borderless in theory. In their experiments, both 
sets of investigators observed micrometer-scale nanotubes under 
atomic force microscope. In 2008, Yin et al. used a single-strand 
tile strategy to construct the DNA nanotube12. The tile in this strat-
egy, unlike the previous method, was only the DNA single strand. 
Another way to build the DNA nanotube was to use small circular 
DNA molecules as tiles and then introduce assisted staple strands to  
connect the circular DNA by forming crossover13. Owing to the 
designability and biological compatibility, the tile-based nano-
tubes were widely used as the one-dimensional templates14 and 
nanowires15. Nevertheless, it was difficult to control their shape and 
size because of the periodic array of the tile, which made it hard 
to mimic the biological nanochannel. However, the DNA origami 
provided a promising way to solve this problem.

DNA origami nanochannel
The concept of DNA origami was first proposed by Rothemund 
in 2006; it was assembled by folding a long single-stranded DNA  
into designed structures with the aid of multiple short staple  
strands16. It has been widely used as a bottom-up approach for 
the assembly of versatile nanostructures. In 2012, Keyser et al.  
constructed a funnel-shaped three-dimensional DNA origami 
nanochannel, which could be inserted into the silicon nitride  
nanopores17. The designed shape enabled the structure to fit into 
the solid pore size (Figure 1b1). When the DNA origami was 
trapped into the solid-state nanopore, it reduced the flow of ions 
and therefore a characteristic drop in conductance was observed. 
It had been proven that hybrid DNA origami-solid-state nanop-
ores could be used as the resistive-pulse sensor for λ-DNA. The  
following year, Simmel et al. published a syringe-shaped DNA  
origami nanochannel18. This nanochannel could penetrate and 
span a lipid membrane by modifying 26 cholesterols around the  
channel, making the structure more closely mimic the action of  
biological protein nanopores (Figure 1b2). It has also been proven 
that this nanochannel possessed the property of electrical con-
ductivity by single-channel electrophysiological experiments 

Figure 1. DNA nanochannels. (a) Tile-based nanotube. (b) DNA origami nanochannel. (c) DNA bundle nanochannel.
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using an integrated chip-based setup. In addition to allowing 
small ions to pass through, the DNA origami nanochannel could 
modulate molecule transport. In 2016, Krishnan et al. reported a 
bigger T-shaped DNA origami nanochannel incorporated into a  
membrane19. This nanochannel was composed of a double-layered 
top plate and a 27 nm-long stem attached to the center of the plate. 
The stem was formed by 12 helices arranged in a square with a 
side length of 4.2 nm. The plate provides a large area for mem-
brane interactions. Furthermore, Krishnan et al. had investigated 
an alternative strategy for inserting and anchoring DNA nano-
channels into lipid membranes, which uses biotinylated lipid mol-
ecules. The specific interaction of biotinylated lipid-streptavidin 
and biotinylated anchor strands on DNA origami provided a dif-
ferent approach for interaction and methods to avoid the aggrega-
tion of DNA nanochannels. Coincidentally, Keyser et al. created a 
larger funnel-shaped DNA origami nanochannel the same year20.  
The cross-section of the DNA nanochannel was 6 nm. Nineteen 
cholesterol anchors were used to facilitate insertion into a lipid 
membrane. Fan et al. constructed a DNA origami nanochannel 
with a diameter of 22 nm as the addressable bioreactor21. They 
incorporated a couple of cascade enzymes into the nanochannel  
lumen. Compared with the free state in the solution, the nano-
channel could notably enhance the cascade reaction efficiency.  
In 2015, Kostiainen et al. reported a modularity nanochannel based 
on the DNA origami strategy22. They could controllably com-
bine separate DNA nanochannel units equipped with a couple of  
cascade enzymes and demonstrate an efficient enzyme cascade  
reaction inside the nanochannel. The following year, Liu et al. 
reported a smart DNA nanochannel with a shutter at the end, which 
could be reversibly switched open and closed, using a DNA chain 
exchange reaction23. They could regulate the transport of molecules 
into the nanochannel in nanoscale by controlling the state of the 
shutter.

DNA bundle nanochannel
Unlike DNA origami, which requires a long chain template, the 
DNA bundle nanochannel was very simple; it was formed by only 
a few oligonucleotides. This kind of nanochannel was  composed 
of a bundle of six interconnected DNA duplexes, with an aper-
ture of about 2 nm. The DNA bundle channel was inserted into 
the lipid membrane by decoration of the outer layer with hydro-
phobic residues24. Howorka et al. used the hydrophobic ethyl- 
phosphorothioate (ethyl-PPT) DNA backbone instead of the  
conventional phosphate DNA backbone to construct the  
nanochannel25. This way, the barrel featured a hydrophobic belt 
composed of 72 ethyl groups, which endowed the nanochannel  
with the ability of spanning the lipid membrane (Figure 1c1).  
The authors proved that this nanochannel could be inserted into lipid 
bilayers and support a stable ionic current by single-channel current 
analysis. Furthermore, this DNA bundle nanochannel could inter-
act with cellular membranes and exert a cytotoxic effect26. Besides 
the capping of ethyl around the phosphate backbone, nucleoside 
modification was reported as a possible way to enable the inser-
tion of the DNA nanochannels into lipid membrane. In particular, 
tetraphenylporphyrin (TPP) tags were introduced to the similar six- 
duplex bundle nanochannel, which could anchor the channel 

into the lipid bilayer, via the Sonogashira reaction between an  
acetylene-TPP derivative and a deoxyuridine nucleoside27. Because 
the hydrophobicity of TPP is much stronger than that of the ethyl 
groups, only two TPP molecules were enough to insert the channel 
into the lipid membrane. In addition, the TPP possessed fluores-
cence emission, allowing the direct visualization of the anchored 
nanochannel once incubated with giant unilamellar vesicles. In 
2016, Howorka et al. reported a gating nanochannel based on a  
similar six-bundle nanochannel28. A lock DNA could hybridize 
with the channel to close it, and additional key DNA would replace 
the lock DNA from the channel and as a result the channel opened  
(Figure 1c2). Once this gating nanochannel is inserted into the  
giant unilamellar vesicles with the assistance of three cholesterols, 
the switch of the nanochannel could regulate the release behavior  
of small molecules in the vesicles. Besides reporting the six-DNA  
bundle nanochannel, Keyser et al. reported a nanochannel   
composed of only four DNA bundles, which were arranged on a 
square lattice29. In this arrangement, the diameter of the central 
channel in the middle of the four helices was only about 0.8 nm. 
Similarly, two cholesterols here were used to assist the channel to 
be inserted into the lipid membrane.

Conclusions and prospect
In this review, we have outlined the development history and  
current situation of the nanochannel based on the structural DNA 
nanotechnology. So far, three different types of DNA nanochan-
nel have been reported: the tile-based nanotube, the DNA origami 
nanochannel, and the DNA bundle nanochannel. It has been proven 
that the DNA nanochannel was promising in the area of bio- 
mimic channel and molecule transport regulation of nanoscale. 
Furthermore, the DNA nanochannel could tune membrane fluidity 
and trigger a cytotoxic effect. However, this is an emerging field 
that in many respects is still in its infancy: one of the major chal-
lenges with the DNA nanochannels is to improve their stability for 
the purpose of avoiding the ionic leakage caused by fluctuations of 
the nanochannel in the membrane. In addition, at present, there is 
only one kind of responsiveness for the DNA nanochannel, and how 
to introduce more responsiveness into the nanochannel to better 
mimic the native protein channel is still a big challenge. We believe 
that more and more intelligent DNA nanochannels, inspired by 
the DNA-modified solid-state nanochannels30,31, which possessed  
different kinds of responsiveness, will be developed in the future.
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