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Abstract: The application of modern PCR approaches for the diagnosis of bacterial gastrointestinal
pathogens is on the rise due to their rapidly available results combined with high sensitivity. While
multiple studies describe the ongoing implementation of this technique for routine diagnostic pur-
poses in laboratories in Western industrialized countries, reports on successful and also sustainable
respective approaches in resource-poor tropical settings are still scarce. In order to shed light on
potential reasons for this marked discrepancy, this narrative review summarizes identified challenges
for the application of diagnostic PCR targeting bacterial gastrointestinal pathogens from stool samples
in the tropics. The identified and discussed issues comprise the lack of generally accepted definitions
for (1) minimum standards regarding sample acquisition, storage and transport time for diagnostic
PCR analyses in the tropics, (2) nucleic acid extraction standards allowing an optimum detection
of all types of pathogens which may be responsible for gastroenteritis in the tropics, (3) validation
standards to ensure comparable quality of applied diagnostic assays, and (4) cut-offs for a reliable
discrimination of infection and mere colonization in areas where semi-immunity due to repeated
exposition associated with poor hygiene conditions has to be expected. Further implementation
research is needed to solve those issues.

Keywords: PCR; gastroenteritis; tropics; pre-analytics; interpretation; validation; diagnostics; infec-
tion; colonization; nucleic acid extraction

1. Introduction

As of April 2021, academic interest in PCR-based diagnosis of gastroenteritis has been
documented by the more than 7000 articles on the NCBI (National Center for Biotechnology
Information) PubMed database (https://pubmed.ncbi.nlm.nih.gov/, last accessed on
3 May 2021). Among those articles, only about 2% are focused on the specific situation
in the tropics. This obvious neglect reflects the situation of scarce availability of this
technology in the laboratories of resource-poor tropical countries; however, it does not
necessarily indicate a lacking local need.

On the contrary, as early as in 1994 and thus only seven years after the invention of
PCR [1], a Swiss study reported on the successful application of diagnostic PCR targeting
shigellae as well as enteroinvasive and enterotoxigenic Escherichia coli in returnees from
the tropics [2]. PCR-based identification of the diarrheagenic E. coli [2] was a considerable

Trop. Med. Infect. Dis. 2021, 6, 96. https://doi.org/10.3390/tropicalmed6020096 https://www.mdpi.com/journal/tropicalmed

https://www.mdpi.com/journal/tropicalmed
https://www.mdpi.com
https://orcid.org/0000-0002-5157-8369
https://orcid.org/0000-0002-8967-9528
https://doi.org/10.3390/tropicalmed6020096
https://doi.org/10.3390/tropicalmed6020096
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://pubmed.ncbi.nlm.nih.gov/
https://doi.org/10.3390/tropicalmed6020096
https://www.mdpi.com/journal/tropicalmed
https://www.mdpi.com/article/10.3390/tropicalmed6020096?type=check_update&version=2


Trop. Med. Infect. Dis. 2021, 6, 96 2 of 15

achievement for diagnostic laboratories, because colony morphology of diarrheagenic and
non-diarrheagenic E. coli is usually indistinguishable on agar plates.

More than 25 years have gone by since those very first approaches. In some laborato-
ries in resource-rich Western industrialized countries, PCR targeting bacterial causes of
gastroenteritis has even been established as a new screening standard with subsequent
culture and resistance testing only in case of positive PCR results [3]. Some authors from
such well-equipped laboratories have even argued that cost reductions due to the imple-
mentation of PCR panels might be achieved [4]. This, of course, only applies assuming
that PCR technology is readily available and costs for laboratory personnel are the limiting
factor. Such prerequisites, however, are not always granted, so the authors’ conclusions [4]
might even be considered as cynical in some resource-poor tropical regions.

Accordingly, PCR targeting gastrointestinal pathogens acquired in the tropics has
widely remained a domain of returnee assessments [5,6] or study settings [7]. For re-
turnee screening purposes, even elaborated interpretation strategies for the case of multiple
positive results recorded due to the application of multiplex PCR panels have been intro-
duced [8].

Within the tropics itself, experience with PCR-based routine diagnosis of gastrointesti-
nal pathogens is scarce, making the establishing of evidence-based guidelines challenging.
As known from the data within the Geosentinel database on diseases acquired from interna-
tional travel [9,10] as well as from experience with travelers in the tropics by our own group
and others [5,11,12], infectious causes of gastroenteritis are bacteria, eukaryotic parasites
and viruses in declining order in resource-poor tropical countries while viruses are most
frequently etiologically relevant in Western industrialized countries followed by bacteria
and parasites. In particular, diarrheagenic E. coli and Shigella spp., Campylobacter spp.,
and Salmonella enterica dominate in the tropics as shown in previous studies [5,7,11,13–19].
Cold-affine Yersinia spp. and spore-forming Clostridioides difficile are considerably less
frequently detected in tropical settings [7,13]; Tropheryma whipplei persists in tropical cli-
mates but usually just as a harmless enteric colonizer [20,21], and Vibrio spp. are usually
associated with acute outbreak events [22].

In line with those reports, the focus of the review presented here is on chances and
challenges of PCR targeting causative agents of bacterial gastroenteritis with particular
emphasis on tropical conditions.

2. Methods

The search terms “PCR”, “gastroenteritis”, “bacteria”, and “tropics” were applied in
various combinations with the database NCBI PubMed. Selected articles as well as the
authors’ own practical experience were chosen to write a narrative review on diagnostic
PCR targeting gastroenteric pathogens in the tropics. In particular, challenges of the
diagnostic processes, beginning from pre-analytic considerations and ending with result
interpretation issues, were within the focus of this work.

3. Pre-Analytics–on Storage and Transport Conditions

As stated above, diagnostic PCR targeting gastroenteritis-associated pathogens has
most frequently been applied in study settings in the tropics so far. Thereby, it is often
unfeasible to provide fully equipped PCR laboratories at all remote study sites, so samples
are usually transferred to a central diagnostic infrastructure. Accordingly, a delay between
sample acquisition and further processing of the samples for the diagnostic process is
usually unavoidable.

Although well-funded studies may provide options for cooled or even frozen sample
storage and transport, such optimum conditions are not always granted [23]. While suc-
cessful preservation and stabilization of DNA and RNA in purified nucleic acid eluates has
been described for 30 days irrespective of storage temperature, the quality of non-extracted
nucleic acids tends to gradually decline over time in spite of stabilizing matrix effects
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within the sample [24]. Therefore, various strategies have been discussed to circumvent the
potentially arising problem of target DNA degradation due to prolonged sample storage.

Preservation of nucleic acids on Whatman cards, which are known to stabilize bac-
terial DNA for at least three years at ambient temperature [25], has been introduced as a
promising approach. In a recent study with spiked stool samples, comparable positivity
rates for bacterial agents causing gastroenteritis were observed after nucleic acid extraction
from Whatman cards and directly from the spiked stool samples [26]. Promising results
were also shown for DNA of protozoan parasites in stool after storage on Whatman cards
under laboratory conditions [27].

However, alternative strategies had been assessed as well. Stabilization of pathogen
nucleic acids on swabs with proprietary drying systems was successfully applied for
the molecular diagnosis of gastrointestinal pathogens with acceptable diagnostic accu-
racy [28,29].

In a recently performed “real-life” observation in tropical Tanzania [30], bacterial
DNA in stool samples both on Whatman cards and on nucleic acid-stabilizing swabs
remained stable for several months of storage at ambient temperature. Positivity rates of
multiplex PCR were comparable after immediate nucleic acid extraction from stool and after
delayed nucleic acid extraction from Whatman cards and from swabs. However, imperfect
agreement as defined by Cohen’s kappa [31] was observed [30], a finding which is not easy
to interpret. Differing sensitivity due to parallelism of variable free nucleic acid degradation
and variable nucleic acid release from decaying cells is one potential explanation. Another
likely explanation is release of cross-reacting DNA of non-target organisms after prolonged
storage. Accordingly, a residual uncertainty regarding diagnostic accuracy remains [30].

In spite of innovative approaches as mentioned above, standardization approaches
in terms of defining evidence-based minimum requirements for pre-analytic conditions
prior to PCR for gastroenteric pathogens in stool samples in the tropics are widely missing.
Large multicentric, preferably multinational, studies would be desirable to identify widely
accepted minimum standards based on sufficiently large datasets.

4. Nucleic Acid Extraction–Challenges for a “One-Size-Fits-All” Solution

After arrival of samples in the diagnostic laboratory, nucleic acid extraction is usually
the first analytic step. Stool samples are not the easiest specimens for PCR, because they
include various inhibitory components [32]. However, three decades of experience with
several studies on the optimization of nucleic acid extraction from stool [32–35] have guided
the way to quite reliable nucleic acid extraction protocols from stool samples. Thereby,
interestingly, automated nucleic acid extraction did not always outcompete traditional
manual column-based nucleic acid extraction [35]. Accordingly, it may remain a question of
operational practicability, whether more man power can be provided for laborious manual
extraction procedures [35] or whether a slightly higher inhibition rate as controlled by
inhibition control PCR [36] can be accepted.

While the complex and inter-individually variable composition of stool samples im-
plies the likely presence of multiple different inhibitory components, some of them such
as, e.g., bile salts, hemoglobin degradation products and complex polysaccharides, have
been more thoroughly assessed [37–41]. Strategies to overcome inhibition comprise sample
dilution or purification applying separation columns, which may in turn result in decreased
sensitivity for samples in which the target DNA amounts are close to the detection thresh-
old [42–47]. Other approaches include the use of PCR facilitating components such as,
e.g., the polyamine compound spermidine [37,48,49] to reduce negative effects of PCR
inhibitors. Modern commercial nucleic acid extraction assays for stool samples usually
contain preparation steps for the reduction of the inhibition problem.

In case of diarrhea due to enteroinvasive bacteria like Campylobacter spp., Salmonella
spp., or Shigella spp./enteroinvasive E. coli, not only stool samples but also incubated blood
culture material may be considered for PCR-based analysis for diagnostic purposes or in
tropical study settings [50]. In scientific literature, it is a rarely addressed topic that nucleic
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acid extraction from incubated blood culture materials with various standard procedures
including column-based and automatic approaches leads to sample inhibition, making
the resulting eluates unsuitable for PCR analysis [50–52]. It is possible to circumvent
this problem by centrifugation-based protocols [50–52]. However, those approaches are
pretty time-consuming and laborious, so they are hardly suitable for routine diagnostic
use in times of MALDI-TOF-MS (matrix-assisted laser-desorption ionization time-of-flight
mass spectrometry) application for species identification from incubated blood culture
materials [53–55].

In addition, sample inhibition is not the only challenge for nucleic acid extraction.
When stool samples from the tropics are assessed, the diagnostic focus is rarely on bacterial
pathogens alone, but parasitic infectious agents are frequently also targeted [56–58]. In
order to release nucleic acids from strong-shelled eggs or cuticle cells of helminthic parasites,
harsh nucleic acid extraction methods, i.e., freeze-thawing at the very least [59] but also
more robust, bead beating-based extraction schemes [60,61] have been suggested, although
their superiority in terms of sensitivity has not been continuously demonstrated [62]. For
protozoan parasites, similarly harsh nucleic acid extraction procedures have been proposed
as well [63,64].

In the diagnostic routine situation, it is if not unfeasible, at least inconvenient to have
different nucleic acid extraction schemes for different types of pathogens. In any way, such
a requirement will not facilitate the implementation of PCR technology at resource-limited
sites, so compromises regarding sensitivity are frequently made. If harsh bead beating-
based nucleic acid extraction as recommended for molecular helminth screenings is applied
for PCRs targeting bacterial pathogens, sensitivity is comparable regarding the proportions
of positive results compared to column-based standard nucleic acid extraction [62]. How-
ever, agreement as indicated by Cohen’s kappa [31] leaves room for improvement [62] and
it is not always clear whether only sensitivity but also specificity of the PCR approaches is
affected by the different extraction approaches [62] in a similar way as discussed above for
pre-analytic conditions.

Accordingly, there is neither standardization of defined minimum requirements re-
garding the quality of nucleic acid extraction from stool samples if a broad spectrum of
tropical pathogens is desired, nor agreement on which compromises regarding diagnostic
sensitivity are considered acceptable for a “one-size-fits-all”-solution for nucleic acid ex-
traction from stool prior to target-specific PCR. PCR from stool samples after nucleic acid
extraction with commercially available standard nucleic acid extraction kits in line with
the manufacturers’ recommendations has been shown to be similarly sensitive as culture
for the diagnosis of bacterial pathogens [3] and even more sensitive than microscopy for
the diagnosis of enteric protozoa [65] in stool samples. Uncertainty, however, remains
regarding the reliability of PCR for the diagnosis of enteric helminths in stool samples
in comparison to microscopy [62]. Future studies addressing the definition of optimized
nucleic acid extraction conditions for PCRs targeting tropical pathogens from stool are
therefore desirable.

5. The Choice of the Assay and Validation-Associated Issues

Numerous in-house and commercial PCR assays have been developed for the detec-
tion of bacterial gastroenteric pathogens from stool samples since the first introduction of
this technique for travellers returning from the tropics in 1994 [2]. With a strong focus on
C. difficile [66–77] and Campylobacter spp. [78–81], which play important roles as causative
agents also in resource-rich Western industrialized countries, the portfolio of published
in-house and commercial PCR assays for potential use in the tropics also comprises en-
teroinvasive bacteria like S. enterica and Shigella spp., in part in large panels [82–92], but
also diarrheagenic E. coli [93,94].

Although the high number of published papers on PCR targeting bacterial gastroen-
teric pathogens may mediate the impression of indifference regarding the assay of choice,
there are indeed some aspects to be considered. The German microbiological and infec-
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tiological quality standards (MIQ) recommend against the diagnostic use of traditional
gel-based or SybrGreen-based PCRs with melting curve analysis, because cross-reaction
cannot be reliably excluded based on just two DNA-binding oligonucleotides [95]. Accord-
ingly, a confirmation step either by restriction endonuclease treatment or by probe binding
or by sequencing of the amplicon is demanded to ensure sufficiently high specificity [95].
As restriction endonuclease treatment is, however, quite laborious and sequencing still
comparably expensive, probe binding as part of real-time PCR is the most frequently
chosen approach to comply with such quality standards. Next to this, each PCR run has to
be accompanied by positive controls, negative controls as well as nucleic acid extraction
and inhibition controls. In case of desired quantification, control samples with defined
copy numbers of the target genes have to be included as well [95].

However, such technical quality control is still insufficient for diagnostic purposes.
In silico validation of the applied oligonucleotides and in vitro validation of the whole
assay are also mandatory prior to diagnostic use [95,96]. Unfortunately, no internationally
accepted validation standards for in vitro diagnostic tests exist, although precise knowl-
edge of the diagnostic accuracy of applied in vitro assays is crucial for both individual
clinical and study outcomes, so it has been argued that they should be similarly rigorously
evaluated as therapeutic drugs [97].

The test validation scheme as suggested by Rabenau and colleagues for viral pathogens [98]
is internationally widely acknowledged. However, it demands the availability of a reliable
reference standard.

It might be argued that diagnostic stool culture could be applied as a reference stan-
dard. However, diagnostic yield of stool culture is known to be low [99–101] and PCR can
also detect DNA from avital bacteria, making culture a reference standard of questionable
sensitivity for PCR targeting DNA of bacterial causes of gastroenteritis. The issue is likely
to be aggravated in case of studies in the tropics due to the challenges regarding storage
and transport conditions, as detailed above in the pre-analytics chapter.

Without a reliable reference standard, however, indirect methods for diagnostic ac-
curacy estimation have to be considered as summarized elsewhere [102]. Such indirect
approaches comprise Bayesian estimations requiring information on the expected preva-
lence [103], comparisons of assays including sample populations with unknown but most
likely different prevalence values under the assumption of stable test performance with
both populations, as well as the use of reference tests with imperfect but known diagnostic
accuracy [104], and last but not least, latent class analysis (LCA) [105]. All those mathe-
matical approaches have certain prerequisites which have to be considered as more or less
guaranteed for their application [102]. In spite of their undeniable disadvantages [102],
those strategies are nevertheless options in order to come as close as possible to the aim of
measuring “absolute truth”, an aim which is aspired to but never reached by any diagnostic
method [96].

Within the European Union, steps are being taken regarding the standardiza-
tion of diagnostic test validation by the imminent enforcement of the Regulation (EU)
2017/746 [106,107]. In short, the enforcement will lead to a need for the application of
certified tests unless additional benefit of in-house approaches is proven. Although it is
basically a good idea to hold the test-producing industry accountable for high-quality
validation of their diagnostic products, it is likely that the high validation standards as
demanded by the Regulation (EU) 2017/746 will lead to a vanishing of commercial PCR
kits for rarely assessed parameters, because the marketing of such test kits may not be
cost efficient. This is potentially bad news for rare and neglected tropical pathogens,
for which diagnosis will then be restricted to few reference centers instead of becoming
broadly available.

Even in case of well-validated test assays with good sensitivity and specificity values
of 99% or more, the predictive values depend on pretest probability according to Bayes’
theorem [102]. Accordingly, in case of low prevalence with resulting low pretest probabil-
ity, the positive predictive value will necessarily be low in spite of good but not perfect
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specificity of the applied assay. This has to be considered in case of PCR-based screen-
ing in low-prevalence settings or if PCR-based diagnosis of very rare tropical infections
is intended.

Further, when interpreting diagnostic PCR results, one has to keep in mind that
the target structure of each PCR assay is just a defined nucleic acid sequence, not the
pathogen as a whole. The pathogen is the meta-structure, for which this sequence acts as
a sensitive surrogate parameter [102]. Thereby, sensitivity depends on the stability of the
target sequence, i.e., the reliability of its occurrence in unaltered homology in all target
pathogens in all geographic regions of interest. More than this, the surrogate status of
the target sequence can also affect a PCR assay’s specificity if the assay is used under
circumstances different from its validation setting. In particular, in stool samples, myriads
of microorganisms exist, whose composition varies considerably depending on factors such
as geography, ethnicity and subsistence [108]. So, if PCR targeting a certain nucleic acid
sequence is specific for a defined pathogen in human gut microbiomes at the validation
site, it is not completely excluded that a very similar sequence might occur in non-target
microorganisms in the stool of individuals in another geographic region, potentially leading
to cross-reactions and associated false positive results. Similarly, altered variants or reduced
copy numbers of the target sequence might occur in target pathogens in certain geographic
regions, which might limit sensitivity. Accordingly, it is recommendable to perform regional
validations as well before a PCR assay targeting gastroenteric pathogens is transferred from
one region of the world to another. This particularly applies to remote tropical settings, for
which the pre-existing knowledge on the composition of the gut microbiomes of the local
population is scarce [108]. No in silico validation of PCR oligonucleotides can be better
than the quality of available sequence data and the reliability of each in vitro validation
will necessarily depend on the representativeness of the available sample material.

If reliable sequence databases can be considered as granted, sequencing of the ampli-
con is a good option in order to confirm the specificity of a positive PCR result [95]. Due to
the associated effort and costs, however, this option is rarely chosen.

In case of surveillance or study settings, imperfect test accuracy of PCR assays can be
compensated by accuracy-adjusted prevalence estimators [109,110] or LCA-based preva-
lence estimation [105], as long as test accuracy is known from evaluation studies. Such
approaches, however, are helpful on a population level only, and cannot decide the correct-
ness of a defined PCR result for an individual patient. Considering the lacking generally
accepted validation standards for PCR assays and the abovementioned limitations, more
experience with PCR-based diagnosis for bacterial gastroenteric pathogens in the tropics
will be highly desirable to help physicians better estimate the clinical impact of such PCR
results. Academic assessment of harmonization of PCR targeting gastrointestinal bacterial
pathogens in tropical conditions will thus remain a domain of implementation science.

6. Post-Analytics–the “Infection or Colonization” Decision

Apart from the abovementioned issues of uncertain test specificity under circum-
stances different from the validation setting and low positive predictive value in case of
low pretest probability [102], there is yet another aspect to consider when interpreting the
results of PCRs targeting gastroenteric pathogens in the tropics.

When PCR from stool of patients with diarrhea is performed in resource-rich West-
ern industrialized countries like Germany [83] or Switzerland [111], even after travel-
ling in the tropics under hygienically controlled circumstances [111,112], only individual
pathogens are usually detected that are then causally attributed to a coexisting gastroin-
testinal disease. Under tropical conditions, however, such etiological attribution is not as
easy, because DNA of typical gastrointestinal pathogens such as S. enterica, Campylobacter
spp., diarrheagenic E. coli [7,13,14,30] and even Shigella spp. [19] or enteropathogenic proto-
zoa [7,13,14,18,19,30,113] can be detected in asymptomatic individuals in the tropics as well.
Adaptation processes and semi-immunity are considered to account for such phenomena
in case of detection of facultatively pathogenic causative agents in asymptomatic individu-
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als [114]. Even in symptomatic patients, however, attribution of etiological relevance of
individual pathogens is challenging if more than one pathogen is detected, as is frequently
the case in resource-limited tropical settings with poor hygiene conditions [7,11,13].

Next to asymptomatic colonization [114–116], persistence of DNA of successfully
treated and already cleared infections [24] can also account for positive PCR results without
association to symptomatic gastroenteritis. DNA clearance from stool, either by excretion
or nucleases, is a stochastic process and contradicting reports of DNA persistence duration
after cleared infections between a few days and several weeks within the complex stool
matrix exist [113,117].

In particular, the discrimination of etiologically relevant infection from harmless col-
onization is a considerable challenge for PCR applied with stool samples [103]. Some
authors have argued that lower cycle threshold (Ct) values of real-time PCR, correspond-
ing to higher pathogen loads, might be used for the discrimination of colonization and
infection [118–120]. In particular for Shigella spp., there have been repeated reports indicat-
ing higher likeliness of etiological relevance in case of recorded low Ct values [118,120].
However, other studies failed to reproduce such associations [19,30,116] and clear or at
least gradual cut-offs for respective discrimination attempts are missing so far. Likely
reasons for the lacking success in establishing reliable associations between Ct values
and clinic relevance of pathogen detection might include semi-immunity [114] but also
varying diagnostic accuracy of applied PCR assays, either due to the design of the assays
or due to altered distribution of target sequences as well as potentially cross-reacting
non-target sequences in various geographic regions. Accordingly, such associations need
to be assessed and stratified by both PCR assay and geographic region, demanding a
considerable workload and ongoing standardization of the applied assays to make their
results comparable.

Discrimination of colonization from infection in case of positive PCR results will most
likely remain a challenge in settings where semi-immunity due to repeated pathogen expo-
sition [114] associated with poor hygiene conditions is prevalent. As long as approaches
in order to drastically increase the hygiene levels in resource-limited tropical countries
are lacking, however, frequent spread of fecal–orally transmitted pathogens will go on
triggering semi-immunity [114]. Further diagnostic studies addressing this issue of etio-
logical relevance, e.g., by including also data on local gut microbiome compositions [108]
or parameters indicating inflammatory reactions as also suggested for other infectious
diseases [121–126], are required.

7. Discussion

The review was performed to focus on some yet to be resolved challenges for the
reliable application of diagnostic PCR for bacterial agents causing gastroenteritis with focus
on the situation in the tropics, where infectious diarrhoea is a particular issue of concern as
repeatedly shown for both the local population [7,13] and travellers [127,128]. As detailed
above, a number of open research questions which should be addressed in the near future
have been identified as summarized in Table 1.

If well-equipped laboratory infrastructure is scarce, automated cartridge-based PCR
approaches provide an easy-to-implement solution for PCR in resource-poor tropical
settings, as successfully proven by the rollout of GenXpert-(Sunnyvale, CA, USA-)based
tuberculosis screening in sub-Saharan Africa [129–132]. Such assays are considerably
easier to implement compared to traditional multiplex real-time PCR assays [133] and also
available for gastroenteric pathogens [29]. However, open or hidden costs of automated
PCR approaches, which have already been described for automated PCR applied for
tuberculosis screening [134,135], make the broader implementation of such technologies in
the resource-poor tropics for an infectious disease as frequent as infectious diarrhoea, apart
from study settings, challenging.
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Table 1. Challenges for PCR targeting bacterial pathogens causing gastroenteritis with particular
focus on the situation in the resource-limited tropics.

Stage of the Diagnostic Process Challenge

Pre-analytic stage
Lacking definition of minimum standards regarding
sample acquisition, storage and transport (time) for
diagnostic analyses in the tropics.

Diagnostic stage–nucleic acid
extraction

Lacking agreement on nucleic acid extraction standards
which allow an optimum detection of all types of
pathogens which may be responsible for gastroenteritis in
the tropics.

Diagnostic stage–PCR Lacking internationally accepted validation standards to
ensure comparable quality of applied diagnostic assays.

Post-analytic stage–result
interpretation

Lacking cut-offs for a reliable discrimination of infection
and mere colonization in areas where semi-immunity due
to repeated exposition associated with poor hygiene
conditions has to be expected.

The choice of the most appropriate PCR assays for the tropics remains a challenge,
because validation studies specifically performed in the tropics are still scarce. Although
even broad confidence intervals regarding the expected test accuracy due to a paucity of
validation data can be included in the calculation of test accuracy-adjusted prevalence
on a population-based level, such considerations [109,110] are of little practical help for
individual diagnostic approaches and resulting therapeutic decisions.

At least specificity-associated problems with the interpretation of PCR results can in
part be compensated by sequencing if a sufficient amount of amplicon DNA is available.
Some authors even argue that unbiased sequencing approaches directly from primary
sample materials may provide useful hints in the future [136]; however, polymicrobial
contamination makes the interpretation of the results of such approaches challenging
if assessments from primary non-sterile sample materials such as, e.g., gut biopsies are
performed [137]. Additionally, although modern molecular diagnostic assays are quite
robust, suboptimal sample material is always a challenge for the diagnostic threshold even
in case of modern PCR platforms [138].

PCR-based diagnosis of causative agents of bacterial gastroenteritis in other compart-
ments such as, e.g., in blood in case of bacteremic shedding, remains challenging due to low
pathogen concentration in the bloodstream. As detailed above, assessment by PCR with or
without subsequent sequencing is possible after blood culture incubation as well [50,139],
but requires laborious sample preparation to avoid PCR inhibition. Highly repetitive
long sequence targets like retrotransposons, which allow the PCR-based detection of sin-
gle cells of Schistosoma spp. in peripheral blood [140], are usually scarcely available in
bacterial genomes.

The broad variety of potential causative agents of infectious gastroenteritis remains
another challenge. This includes emerging new pathogens, as recently demonstrated by
the causal association of SARS-CoV-2 detection in a stool sample of a child with diarrhoea
in Iran [141].

In a more abstract epistemiological sense, medical diagnosis is always a variant of the
art of coming close to an unknown truth [96]. As described above, PCR-based diagnosis of
bacterial gastroenteritis in the tropics is quite a challenging variant of this art and various
scientific questions still need to be addressed in this field in the future.

8. Conclusions

In summary, PCR for the diagnosis of gastrointestinal pathogens is a widely applied
approach, whose potential for a diagnostic routine application under tropical conditions
requires additional evaluation. Further investigations are particularly needed to standard-
ize the pre-analytic, analytic and post-analytic steps with special emphasis on the climatic,
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infrastructural, epidemiological and socioeconomic situation in the tropics. With adequate
academic support by the disciplines of implementation science, however, it will most likely
be possible to define optimum conditions for beneficial use of this technique under tropical
conditions as well.
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