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Abstract

Background: Traumatic Brain Injury (TBI) is frequently associated with chronic, treatment-

resistant memory problems, and is one of the leading causes of disability in otherwise healthy 

adults. Cognitive rehabilitation therapies are used with the goal of improving memory functioning; 

however, not all patients benefit. Prefrontal cortex (PFC) is critical for employing effective 

memory strategies. We hypothesized that memory improvement after a brief cognitive intervention 

would be associated with increases in PFC activation during a memory task.

Methods: The current study used behavioral analyses and functional magnetic resonance 

imaging (fMRI) to examine the effects of two days of intensive semantic encoding strategy 

training on memory performance and brain activation patterns in patients in the post-acute stage of 

TBI. fMRI data were collected before and after training while participants learned word lists.

Results: Post-training vs. pre-training changes in total recall and semantic clustering during 

recall were positively correlated with post-training vs. pre-training changes in neural activation in 

PFC.
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Conclusions: These results suggest that variability in treatment response to cognitive training 

after TBI may be due in part to variability in PFC function, and that some survivors of TBIs may 

benefit from treatments specifically targeting the PFC.
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Introduction

Traumatic Brain Injury (TBI) is estimated to affect over 1.5 million people annually in the 

USA, leading to 290,000 hospitalizations, 51,000 deaths, and an estimated $60 billion in 

medical costs [1]. Chronic memory problems are frequently associated with TBI and may 

contribute to difficulties in recovery. The most common, and potentially most debilitating, 

forms of memory problems in survivors of TBI are those related to episodic verbal memory 

[2–4]. Chronic functional impairment is not easily predicted by injury severity, injury site, or 

acute responses to treatments such as cognitive rehabilitation therapies. Understanding the 

neural mechanisms underlying variability in memory performance after TBI may help 

explain variability in recovery trajectory, and therefore could lead to improvements in 

treatment strategies [5].

Executive function -- which is imperative to making plans, implementing strategic action, 

and monitoring and flexibly shifting behavior [6] is critical for episodic memory [7,8]. 

Specifically for survivors of TBI [9–12], impaired executive function may impact the 

‘strategic’ aspects of memory [13] by causing poor strategy use [14] and impairment of self-

regulation [15]. Survivors of both mild [16] and severe [17] TBI have been found to use 

fewer semantic encoding strategies than healthy participants. Performance is most impaired 

in situations that require self-initiated strategy use [12,17], but improves when survivors of 

traumatic brain injury are directed to use more effective strategies [13,18,19]. This indicates 

that survivors may be able to use semantic organizational strategies when given explicit 

guidance, but fail to self-initiate strategic processes. To date, it is unknown whether training 

individuals who have suffered TBI to use effective memory strategies during recovery can 

improve their self-initiated memory strategy use.

In the current study, we used behavioral analyses and fMRI to examine the effects of 

intensive semantic encoding strategy training on memory performance and brain activation 

patterns in persons with post-acute TBI [20]. Participants underwent fMRI scanning during 

encoding of word lists before and after being instructed to use a specific semantic encoding 

strategy. They then underwent two days of general semantic strategy training, and were 

tested with the fMRI procedure again. Post- minus pre-training brain activation was 

correlated with post- minus pre-training memory performance and an objective measure of 

semantic strategy use. The goal of the current pilot study was to identify brain regions 

associated with improvements in memory performance and semantic strategy use following 

brief, intensive strategy training at a stage of recovery in which cognitive training is often 

prescribed.

Lepping et al. Page 2

Int J Phys Med Rehabil. Author manuscript; available in PMC 2020 August 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Materials and Methods

Subjects

This study was approved by the Human Subjects Committee at a large Midwestern US 

medical center. Nine adults with TBI completed this study (MeanAGE 41.78 SD 8.93 years, 

range 25-57; 7 males; 7 right-handed; MeanED 12.56 SD 0.88 years). Participants were 

recruited from the medical center and area TBI resource centers. All participants had 

suffered a TBI, defined by documented loss of consciousness resulting from blunt force 

trauma to the head [21]. Glasgow coma scale was not used as an inclusion criterion as 

several participants’ scores were affected by intubation on arrival to the emergency room. 

Participants with TBI were in the post-acute stage of recovery, between one and eight weeks 

post injury (Mean 3.08 SD 2.23 weeks), and volunteered to participate in this four-day 

intensive research study. Additional demographic and injury information is presented in 

Table 1.

Experimental paradigm

Participants completed a baseline scanning session [22], two days of intensive semantic 

encoding strategy training [20], and a second post-training scanning session. The functional 

imaging paradigm was based on the California Verbal Learning Test (CVLT) [23,24] and 

was similar to the paradigm of Savage, et al. [7] which has been implemented in several 

studies of verbal encoding [7,22,25–27]. Participants were scanned as they learned lists of 

semantically related and unrelated words. Participants were tested for recall following each 

scan. Two lists, one from each type (Related, Unrelated), were presented during each 

functional run. Each list was repeated twice. Ninety-six words (48 Related, 48 Unrelated) 

were presented over the four functional runs.

Related lists consisted of twelve words selected from three semantic categories (e.g., 

Clothing: Jacket, Shirt, Sweater, Vest; Animals: Squirrel, Beaver, Deer, Wolf; Fruits: Lemon, 

Pineapple, Peach, Grapes). Words were mixed, so that words from the same semantic 

category were never presented consecutively during encoding. Unrelated lists consisted of 

twelve semantically unrelated words. A graphical representation of the paradigm is 

presented in Figure 1. Related and unrelated word lists were matched for word length and 

frequency [28]. Using a back-projection system, words were presented serially centered on a 

translucent screen in black lowercase Times New Roman 90 point font on a white 

background (stimulus duration 2.5 sec, 0.5 sec interstimulus interval (ISI)). Lists were 

separated by blocks of twelve repetitions of a flashing fixation cross (2.5 sec, 0.5 sec ISI). A 

colored circle (blue or yellow) indicating list type (Related, Unrelated) was presented as a 

visual cue before each list.

During the first two functional runs (i.e., the Uncued condition), participants were instructed 

to try to remember the words. No information was given about the semantic structure of the 

related list, and participants were instructed to ignore the visual cue. Before the third 

functional run, participants were informed of the semantic structure of the related lists and 

the meaning of the visual cues. They were then encouraged to actively organize the Related 

word lists by category during encoding (i.e., the Cued condition). They were also instructed 
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to rote memorize the words in the Unrelated word lists in the order of their presentation. To 

ensure that semantic reorganization during presentation of the related word lists in the 

Uncued condition was a result of spontaneous strategy generation, the Uncued condition was 

always presented before the Cued condition. The same fMRI scanning procedure was 

repeated the day after completion of training using novel word lists. Participants were not 

explicitly instructed to use the trained strategies during the post-training fMRI scan. The 

analyses presented here focus on the related word lists in the uncued and Cued conditions 

for two reasons. First, the instructions in the uncued condition specified that participants 

should use a serial encoding strategy for the Unrelated word lists. Second, a semantic 

clustering score (see below) could only be used as an objective measure of semantic strategy 

use in the Uncued and Cued Related word conditions.

Training

Participants underwent two days of intensive memory training during which they learned 

three memory strategies [20]. Two four-hour sessions were held on consecutive days (e.g., 

Monday: Pre-training scan; Tuesday and Wednesday: Memory Training; Thursday: Post-

training scan). The strategies employed during the memory training sessions were designed 

to encourage semantic processing during encoding, and included making a judgment of how 

pleasant a word was (Pleasantness), thinking about how a word was personally relevant 

(Personal Relevance), and using a word in a sentence (Sentence Generation). Each strategy 

was practiced with word lists of increasing length (18-144 words). Each studied list was 

followed by recognition memory testing with accuracy feedback (36-288 words).

fMRI data acquisition and analysis

fMRI data were collected on a 3.0 Tesla head only Siemens Allegra scanner. T1-weighted 

images were acquired with a 3D MPRAGE sequence (TR/TE 23/3.06 ms, flip angle 8°, field 

of view [FOV] 256 × 256 mm, matrix 256 × 256, slice thickness 1 mm). Four gradient echo 

BOLD scans were acquired in 34 contiguous axial slices (TR/TE 2000/30 ms, flip angle 90°, 

FOV 192 mm, matrix 64 × 64, slice thickness 3 mm, 0.5 mm skip, in-plane resolution 3 × 3 

mm, 116 data points).

fMRI data were analyzed using Brain Voyager QX software (Brain Innovations, Maastricht, 

The Netherlands). Preprocessing steps included trilinear 3D motion correction, sine-

interpolated slice scan time correction, 3D spatial smoothing with a 4 mm Gaussian filter, 

and high pass filter temporal smoothing. Functional images were realigned to the anatomic 

images obtained within each session and normalized to Talairach and Tournoux’s stereotaxic 

atlas [29]. Functional runs with more than 4 mm of motion along any axis (x, y, or z) were 

not included in data analyses, resulting in the discarding of four runs.

Behavioral data analysis methods: Total recall scores were calculated by summing the 

number of words correctly recalled in the Related uncued and Related Cued word conditions 

separately. Total semantic clustering scores were also calculated as objective measures of 

semantic categorization strategy use. Observed semantic clustering scores for each related 

word list were calculated by summing the number of semantic clusters during recall. A 

semantic cluster occurred whenever a participant recalled two words in succession from the 
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same semantic category. These clustering scores were adjusted for chance [Observed 

Expected: (# Clusters -- (# Clusters / 4.23))], and averaged across the two lists for each 

instruction type (uncued and Cued) [30]. Total recall and total semantic clustering scores 

were entered into Instruction (uncued, Cued) by Training (Pre-training, Post-training) 

repeated measures ANOVAs in SPSS/PASW 18 (IBM Corporation, Somers, NY).

fMRI data: Imaging data were analyzed at the subject level using multiple regression 

analysis with the General Linear Model (GLM). Regressors representing the experimental 

conditions of interest (Pre-training: Uncued Related, Cued Related; Post-training: Uncued 

Related, Cued Related) were modeled with a hemodynamic response filter and entered into 

multiple regression analysis. As TBI is associated with variability in improvement measures, 

correlation analyses were performed between post-training vs. pre-training changes in brain 

activation during encoding of related words and post-training vs. pre-training changes in 

recall of those same words. Specifically, the regression beta value at each voxel for the 

contrast (Post-training Related>Pre-training Related) was correlated with the change in 

recall score (Post-training-Pre-training), resulting in whole-brain Pearson’s r statistic maps 

for the uncued Related and Cued Related conditions. One-tailed tests were performed, as 

positive correlations were hypothesized between post-training vs. pre-training changes in 

memory performance and brain activation. Clusters of activation were considered significant 

if they survived a statistical threshold of α <0.05, corrected for multiple comparisons via 

cluster thresholding estimated with Monte Carlo simulations within brainVoyager QX 

[31,32]. The uncued and Cued conditions were analyzed separately, allowing independent 

inspection of self-generated (uncued) and directed (Cued) strategy use. The average 

regression beta value of all voxels within each of the significant clusters for the contrast 

(Post-training Related> Pre-training Related) was also extracted and correlated with post-

training-pre-training semantic clustering scores and clinical variables, including age, 

education, and time since injury in SPSS.

Results

Memory performance measures

For the memory performance Instruction by Training ANOVAs, there were significant main 

effects of Instruction for both Recall [F (1, 8)=7.41, p<0.05, η2 = 0.48] and Semantic 

Clustering [F (1, 8)=13.11, p<0.01, η2=0.62], as shown in Figure 2a. In both sessions, 

survivors of TBI recalled more words after cueing, and were more likely to cluster words by 

category after cueing. There were no main effects of Training [Recall: F (1, 8)=0.73, p=0.42, 

η2=0.08; Semantic Clustering: F (1, 8)=2.39, p=0.09, η2=0.31], and no Instruction by 

Training interactions [Recall: F (1, 8)=0.93, p=0.36, η2=0.10; Semantic Clustering: F (1, 

8)=0.82, p=0.39, η2=0.09], indicating that the response to cueing was not significantly 

different after training. However, as observed in previous studies of cognitive training in 

TBI, there was a great deal of variability in the response to training, such that some 

participants’ memory performance improved significantly after training, while others’ did 

not, as shown in Figure 2b. This variability allowed us to probe the imaging data to examine 

the relationships between post-training vs. pre-training changes in brain activation during 
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encoding and post-training vs. pre-training changes in memory performance and semantic 

clustering.

fMRI analyses

As shown in Figure 3 and Table 2, in the uncued condition, post-training vs. pre-training 

changes in recall scores were significantly correlated with post-training vs. pre-training 

changes in neural activation during encoding in the right frontal pole and left medial 

prefrontal cortex (MPFC), as well as the right middle temporal and supramarginal gyri and 

cuneus. Post-training vs. pre-training changes in semantic clustering in the uncued condition 

were significantly positively correlated with post-training vs. pre-training changes in 

activation during encoding in the left MPFC (r=0.64, p=0.03, one-tailed test), and there was 

a trend for a positive correlation in the supramarginal gyrus (r=0.58, p=0.05, one-tailed test). 

However, age, education, and time since injury were not significantly correlated with post-

training vs. pre-training changes in activation during encoding in any of the clusters in the 

uncued condition (two-tailed tests; all ps>0.10).

In the Cued condition, post-training vs. pre-training changes in recall scores were 

significantly correlated with post-training vs. pre-training changes in neural activation 

during encoding in bilateral Ventrolateral Prefrontal Cortex (VTPFC), bilateral dorsolateral 

prefrontal cortex (DTPFC), left Posterior Dorsal Frontal Cortex (PDFC), left lateral 

Orbitofrontal Cortex (OFC), right MPFC, right precentral gyrus, thalamus, and right inferior 

parietal lobule. The significant correlations in left lateral PFC regions are shown in Figure 4, 

and all significant correlations are presented in Table 3. Post-training vs. pre-training 

changes in semantic clustering in the Cued condition were significantly positively correlated 

with post-training vs. pre-training changes in activation during encoding in all of the clusters 

(one-tailed tests). Age, education, and time since injury were not significantly positively 

correlated with post-training vs. pre-training changes in activation during encoding in any of 

the regions in the Cued condition (two-tailed tests; all ps>0.10).

Discussion

This pilot study examined the effects of semantic encoding strategy training on memory 

performance and brain activation patterns after TBI. Variability in post-training vs. pre-

training changes in PFC brain activation patterns was associated with variability in memory. 

In the Uncued condition, post-training vs. pre-training changes in recall were positively 

correlated with post-training vs. pre-training changes in activation in the right frontal pole 

and the left MPFC during verbal encoding. In the Cued condition, post-training vs. pre-

training changes in recall were positively correlated with changes in activation in bilateral 

VLPFC, bilateral DLPFC, and left PDFC. Additionally, post-training vs. pre-training 

changes in activation in many of these regions were also positively correlated with post-

training vs. pre-training changes in semantic clustering during recall. The implications of 

these results are discussed below.

Strategic memory impairments have been found consistently in survivors of TBI [9–17]. 

Prior research has shown that situations that require self-initiated memory strategy use often 

are associated with the greatest performance deficits [12,17]. However, when survivors of 
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TBI are given direction on which memory strategies to use during task performance, 

memory improves [13,18,19]. Thus, the present finding that recall increased with direct 

cueing of semantic categorization strategy use is in line with previous research. Importantly, 

the present research expands prior knowledge by suggesting that semantic encoding strategy 

training may be able to improve directed and self-initiated use of effective memory strategies 

in some survivors of TBI.

Prefrontal cortex has consistently been implicated in strategic memory in healthy adults 

[7,33–36]. It plays a critical role in supporting both self-initiated and directed encoding 

strategy use [6–8]. Previous work has shown that variability in responsiveness to strategy 

cueing is associated with variability in lateral PFC activation during encoding. Strangman 

and colleagues examined immediate responsiveness to strategy cueing in patients with 

chronic TBI, and whether responsiveness predicted clinical outcome [22,26]. In uninjured 

controls, brain activation in the left DLPFC was negatively associated with greater semantic 

clustering when participants were cued to use a semantic categorization strategy. In contrast, 

activation in this area was positively associated with semantic clustering during spontaneous 

strategy generation in individuals with TBIs. When brain activation was used as a predictor 

for clinical outcome following rehabilitation [26], the authors found that activation in left 

VLPFC had an inverted-U shaped relationship to post-rehabilitation test performance, 

suggesting that both under-and over-recruitment of the left VLPFC led to worse outcomes. 

The findings of the current study are consistent with this previous work, but build on it with 

the novel finding that variability in longer duration post-training vs. pre-training changes in 

PFC activation is associated with variability in post-training vs. pre-training changes in 

memory recall. Given the role of PFC in supporting strategic memory, this suggests that 

survivors of TBI who have more difficulty engaging lateral PFC are less capable of 

employing effective encoding strategies. They may also be less efficient when learning and 

applying new strategies in the future.

Recently, semantic strategy training has been shown to improve memory performance and 

modify brain activation patterns in PFC in healthy controls and clinical populations [25,37]. 

Kirchhoff and colleagues examined the impact of two days of intensive semantic encoding 

strategy training, using the same strategy training protocol that was used in this study, on 

older adults’ memory performance and brain activation during encoding [20]. They found 

that self-initiated use of semantic encoding strategies and memory performance were 

increased after training, and that training-related changes in activation in medial superior 

PFC, left dorsolateral PFC, and left ventrolateral PFC were positively correlated with 

training-related changes in memory performance. Taken together, the results of this recent 

study and the present research suggest that semantic encoding strategy training may be able 

to improve memory performance and alter PFC brain activation in multiple populations. In 

addition, the results of the present study underscore that PFC function is critical in 

supporting the success of cognitive rehabilitation, and may underlie variability in clinical 

outcomes in survivors of TBI. Predictive power for determining chronic impairments or 

long-term responsiveness to treatment is limited when examining many clinical variables, 

including injury severity, injury site, and acute responsiveness to treatment. The results of 

the current study suggest that functional MRI may serve as a useful tool to identify those 
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individuals who may have difficulty engaging lateral PFC. For those individuals, treatments 

that specifically target lateral PFC function may be necessary to improve performance.

Limitations

Results of this pilot study should be interpreted cautiously, as it is limited by a small and 

varied sample. Injury severity and location were widely distributed among our participants, 

which may have increased variability and impacted statistical power. However, all 

participants were at a similar stage of recovery (i.e., post-acute). We chose to include two 

left-handed participants to increase our sample size even though language processing is 

sometimes distributed differently in left-handed individuals. However, this study used a 

within-subject design. The potential impact of handedness or other individual difference 

variables such as pre-morbid IQ or injury location was likely minimized as each participant 

served as his or her own control. Our short-term longitudinal design does not allow us to 

make predictions about how robust strategy learning may be in TBI. Research to date has 

focused on the short-term impact of this type of training. Future research should focus on the 

long-term effects of semantic strategy training on memory performance and brain activation. 

Additionally, although executive function is critical for both episodic memory as well as 

general organizational strategies, we cannot infer how well memory strategies for word lists 

may impact daily functioning. Future studies would need to follow TBI survivors through 

broader cognitive rehabilitation programs in order to predict recovery. Another limitation of 

this study is that it did not include a healthy control group that also received cognitive 

training. Without this control group, it is not possible to know whether the patterns of neural 

recruitment associated with semantic encoding strategy training differ between survivors of 

TBI and healthy controls. Finally, this study also did not include an untrained control group 

of survivors of TBI. This means that we cannot definitely rule out the possibility that 

spontaneous recovery and/or experience with the Cued condition may at least in part be 

contributing to the post-training vs. pre-training changes in brain activity, memory 

performance, and semantic categorization strategy use identified in the present research.

In summary, although survivors of TBIs improved their memory performance immediately 

following cueing, memory performance improvement following semantic strategy training 

was variable. Notably, variability in post-training vs. pre-training memory performance 

changes was associated with changes in neural recruitment during encoding in PFC. This 

suggests that variability in responsiveness to treatment may be due in part to variability in 

the ability to engage the PFC to support semantic memory encoding strategies. While 

preliminary, these findings suggest that treatments targeting the lateral PFC may benefit 

some survivors of TBI more than others, and that functional MRI may be helpful in 

identifying which individuals might benefit the most from these treatments or from cognitive 

rehabilitation therapies that include more intensive semantic encoding strategy training.
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Figure 1: 
Verbal encoding paradigm employed during the scanning. This figure represents a single 

functional run. Each scanning session consisted of four functional runs: two before, and two 

after cueing.
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Figure 2: 
A: Number of words correctly recalled in each condition and semantic clustering score pre- 

and post-training. Error bars represent standard error. B: Recall scores plotted by participant.
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Figure 3: 
Uncued condition: Change in activation during encoding of related words after training in 

MPFC (TAL X, Y, Z=−7, 57, −3) was positively correlated with change in recall (one-tailed 

test, α < 0.05 corrected for multiple comparisons).
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Figure 4: 
Cued condition: Change in activation during encoding of related words after training in the 

prefrontal cortex was positively correlated with change in recall (one-tailed test, α < 0.05 

corrected for multiple comparisons).
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Table 1:

Demographic and injury information. All participants had positive loss of consciousness due to closed head 

injury. Education in years; GCS=Glasgow Coma Score upon admittance to ER.

Gender Hand Age Education Weeks post injury GCS Radiologic findings Cause of injury

Male Left 43 13 8.0 $ $ Pedestrian hit by car

Male Right 40 13 1.4 15 1, 2, 3 MVA

Male Right 37 13 2.0 3* 4, 5, 6 MVA

Male Right 38 12 4.7 3* 2 MVA

Male Left 47 12 2.1 7 2 Fall

Female Right 25 11 1.0 15 None Assault

Female Right 49 12 1.3 14 2 Assault

Male Right 40 13 3.6 15 None MVA

Male Right 57 14 3.6 3* 2, 3 Fall

*
$=Unknown, Intubated at CCS assessment; Radiologic findings: 1=Subarachnoid hematoma, 2=Facial fractures, 3=Facial hematoma, 4=Subdural 

hematoma, 5=Scalp laceration, 6=Skull fracture, $=Unknown; Cause of injury: MVA=Motor vehicle accident.

Int J Phys Med Rehabil. Author manuscript; available in PMC 2020 August 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lepping et al. Page 16

Table 2:

Uncued condition: Regions with significant positive correlations between post-training vs. pre-training 

changes in recall and post-training vs. pre-training changes in brain activation during encoding (one-tailed test, 

α<0.05 corrected for multiple comparisons). Fast column: Pearson’s correlations between post-training vs. 

pre-training changes in semantic clustering scores and post-training vs. pre-training changes in activation 

during encoding.

Region BA Peak X Peak Y Peak Z Voxel s r:SC

Right Frontal Pole 10 16 66 29 13 .42

Left MPFC 10 −7 57 −3 11 .64*

Right Supramarginal Gyrus (SMG) 40 25 −50 33 15 .58#

Right Middle Temporal Gyrus (MTG) 39 43 −72 17 10 .37

Right Cuneus 18 23 −84 18 20 .47

*
significant at p<0.05;

#
trend at p<0.10.
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Table 3:

Cued condition: Regions with significant positive correlations between post-training vs. pre-training changes 

in recall and post-training vs. pre-training changes in brain activation during encoding (one-tailed test, a<0.05 

corrected for multiple comparisons). Last column: Pearson’s correlations between post-training vs. pre-

training changes in semantic clustering scores and post-training vs. pre-training changes in activation during 

encoding.

Region BA Peak X Peak Y Peak Z Voxels r:SC

Left VLPFC 10 −32 43 18 32 0.63*

Left VLPFC 10 −17 60 20 24 0.56*

Right VLPFC 10 32 48 6 18 0.75*

Left DLPFC 9 −42 34 37 14 0.69*

Right DLPFC 8 32 24 41 19 0.73*

Left PDFC 6 −37 7 56 19 0.72*

Left Lateral OFC 47 −27 28 −8 16 0.67*

Right MPFC 9 22 42 18 15 0.71*

Right Precentral Gyrus (PcG) 4 20 −26 69 24 0.70*

Right Precentral Gyrus (PcG) 6 14 −18 69 11 0.62*

Thalamus NA 2 −29 0 10 0.69*

Right Inferior Parietal Lobule (IPL) 40 51 −51 49 19 0.69*

*
=significant at p<0.05;

#
=trend at p<0.10.
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