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Biophysical mechanism underlying compensatory
preservation of neural synchrony over the adult
lifespan
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We propose that the preservation of functional integration, estimated from measures of

neural synchrony, is a key objective of neurocompensatory mechanisms associated with

healthy human ageing. To support this proposal, we demonstrate how phase-locking at the

peak alpha frequency in Magnetoencephalography recordings remains invariant over the

lifespan in a large cohort of human participants, aged 18-88 years. Using empirically derived

connection topologies from diffusion tensor imaging data, we create an in-silico model of

whole-brain alpha dynamics. We show that enhancing inter-areal coupling can cancel the

effect of increased axonal transmission delays associated with age-related degeneration of

white matter tracts, albeit at slower network frequencies. By deriving analytical solutions for

simplified connection topologies, we further establish the theoretical principles underlying

compensatory network re-organization. Our findings suggest that frequency slowing with

age- frequently observed in the alpha band in diverse populations- may be viewed as an

epiphenomenon of the underlying compensatory mechanism.
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Compensatory mechanisms play a central role in the
maintenance of complex biological systems like the brain.
The basic principle underlying compensatory processes is

that similar activity patterns in biological networks can be
achieved by multiple underlying dynamical configurations of the
system1,2. For example, neural networks can preserve circuit
operation around a target set point in the face of continuous
molecular turnover by undergoing synaptic modifications2.
Although compensation has been mostly studied at fast time-
scales, compensatory processes are also relevant at ultra-slow
timescales such as lifespan ageing3,4. A persistent debate in the
field of ageing neuroscience centers around the question of
whether functional neuromarkers of healthy ageing indicate a
gradual degradation of brain structure or, the presence of com-
pensatory reorganization mechanisms that counteract the dele-
terious effects of structural loss4–6. Compensatory theories posit
that certain features of brain ageing, for example, enhanced
activation in specific brain regions with age are markers of
compensation rather than functional decline4,7. Behaviorally,
compensatory theories of ageing are further supported by reports
of age-related maintenance of cognitive domains such as language
comprehension and crystallized intelligence8,9. However, the task
of classifying various markers of brain ageing as either adverse or
compensatory is made difficult by the enormous complexity of
brain dynamics3,10. Biophysically inspired computational models
provide crucial mechanistic insights when purely experimental
observations are insufficient in resolving competing hypotheses.
Therefore, the goal of this paper is twofold—first, to identify
dynamical markers that remain invariant with age and second, to
elucidate the operational principles that support such invariant
relationships in the face of age-related structural decay.

Electro/magneto-encephalographic (EEG/MEG) signals unfolding
at millisecond time scales carry signatures of circuit-level neural
information processing and serve as an obvious choice for studying
the reorganization of brain dynamics over lifespan11. EEG/MEG
recordings at rest are marked by prominent oscillatory activity in the
alpha frequency range (8–12Hz)12. Numerous EEG/MEG studies
have shown that the frequency corresponding to the peak power in
the alpha band (Peak Alpha Frequency or PAF), reduces with
age13–18. Brain-wide alpha activity is coordinated by and propagates
along white-matter fibers that connect spatially distant brain
regions19–21. Accordingly, various studies have identified white-
matter as a potential locus for resting-state alpha disruption19–23.
Two obvious questions emerge—is PAF slowing over lifespan
mediated by white-matter structural decay and whether frequency
slowing plays a compensatory role in overall circuit maintenance.

White-matter fibers consist of myelinated axons which undergo
multiple cycles of repair throughout normal ageing24–27. However,
axonal conduction speeds are only partially restored by remyeli-
nation, as remyelinated axons possess shorter internodes as com-
pared to developmentally myelinated axons26,28,29. Reduced
conduction speeds along white-matter tracts predict slower net-
work frequencies and impaired synchronization in network models
of large-scale brain dynamics30–32. Left unchecked, progressive
reduction in conduction velocity with age may lead to a complete
breakdown of synchrony in crucial brain circuits that subserve
normal cognitive processes21,33. Hence, from a systems-level view,
there must exist compensatory mechanisms that arrest functional
degeneration.

Here, we hypothesize that PAF slowing with age is sympto-
matic of compensation, rather than just being a passive fallout of
age-related structural deterioration. To test our claim, we evaluate
the degree of neural coordination using phase synchrony
measures34 at different regimes of alpha frequency band in
resting-state MEG recordings collected from participants aged
18–88 at the Cambridge Center for Ageing and Neuroscience

(Cam-CAN)35. Phase synchrony was measured by estimating
Phase Locking Value (PLV)—a measure that quantifies the con-
sistency of phase relationships between oscillators over a period
of time36–38. For each subject in the cohort we calculated PLV at
three different frequency bands- Lower Alpha (LA, 6–10 Hz),
Upper Alpha (UA, 10–14 Hz) and another subject specific band
obtained by considering a 4 Hz band centered at the PAF (Subject
Specific Alpha or SSA). Several cross-sectional studies have found
that spectral features of on-going alpha oscillations exhibit differ-
ential effects with age in the lower and higher alpha sub-bands39–42.
Moreover, the lower and higher alpha bands have been found to be
functionally independent in several cognitive and perceptual
paradigms43–45, further justifying a sub-division of the alpha band.
We further reasoned that the polarity of correlation between phase
coupling and age (whether increasing or decreasing) in each of the
three bands would aid model building by further restricting the
search space of candidate mechanisms.

Seeking mechanistic insights into age-related compensation, we
investigate the relationship between slowing of PAF and phase-
locking by constructing an in silico whole-brain model (WBM) of
neural coordination. The WBM consisted of coupled differential
equations, modeling the phase of autonomous alpha oscillators
(Kuramoto model)46 at nodes chosen from standardized anato-
mical parcellations of the human brain47. White-matter proper-
ties obtained from diffusion tensor imaging (DTI) data, namely—
inter-areal connection strength and transmission delays were
varied to study the relationship of steady-state phase-locking and
network frequency in the alpha band. The complex network
obtained from DTI derived topology and a mathematically
tractable all-to-all network captured the emergence of a complex
interplay between transmission delays and neural coupling in
determining phase locking and dominant network frequency.

Results
We performed MEG data analysis in conjunction with compu-
tational modeling to elucidate the relationship of neural coordi-
nation associated with PAF and reorganization of white-matter
with age (N= 627, 315 Females). First, we estimate phase locking
—a widely used measure of neural coordination among simul-
taneously recorded brain signals (Fig. 1), from eyes-closed rest-
ing-state MEG data (8 min/participant). Second, we theoretically
demonstrate compensatory reorganization in a simplified net-
work model of interacting alpha oscillators connected via all-to-
all connection topology. Finally, we simulate the neural dynamics
generated by the cortical network spanning the entire brain
whose nodes are connected by DTI based structural connectivity
with realistic cortical conduction speed to gain insights into the
biological mechanisms that guide the slowing of PAF and
maintenance of neural coordination.

Alpha phase locking is preserved at the PAF across age. MEG
recordings from the Cam-CAN lifespan cohort (age range 18–88
years) were used to characterize the relationship of network fre-
quency and phase coupling across age. Resting-state MEG data
was first pre-processed and then submitted to a source recon-
struction pipeline as implemented in the Brainstorm toolbox48.
Source time series were obtained for predefined anatomical par-
cellations (Region of Interest or ROI) in accordance with the
Desikan-Killiany parcellation scheme consisting of 68 brain
regions49. For each subject, power spectra was computed between
1 and 40 Hz for each ROI using the Welch Method (see Meth-
ods). For each spectra, background fluctuations (1/f component)
were separately modeled using an automated algorithm50 for the
identification of individual peak alpha frequency (see Methods).
This was deemed necessary because 1/f features in EEG have been
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shown to vary with age51 and could possibly confound the sub-
sequent analysis. PAF estimated from ROIs were averaged to
yield a mean PAF for each subject. Mean PAF was found to
significantly reduce with age (r=−0.38, p < 0.0001) (Fig. 2),
similar to patterns reported in earlier studies14,18.

Next, for each participant we computed the Phase Locking
Value (PLV) at the individual PAF between all ROI pairs. Since
this band is derived from the PAF estimated separately for each
subject, we refer to it as the Subject Specific Alpha (SSA) band.
PLV is estimated by bandpass filtering the time series in the
frequency band of interest and then using Hilbert transform to
obtain the corresponding phase time series. Next, for each ROI
pair, phase time series are subtracted to yield phase differences
which are then used to estimate consistent phase relations across
time (see Methods for mathematical expression). While robust at
estimating phase locking, PLV is susceptible to picking up phase
correlations that may arise due to the spread of magnetic fields
from one brain area to another (known as field spread). Phase
correlations due to field spread are most likely to occur at zero-
lags. Therefore, in addition to PLV, another measure of phase
locking—Phase Lag Index (PLI), which discounts zero-lag
correlations, was estimated for each participant and frequency
band (see Methods and Fig. 1).

Estimated PLVs/PLIs were averaged across all ROI pairs to
obtain onemean PLV/PLI for each participant. For comparison, we
also estimated PLV and PLI at two other frequency bands—Lower
Alpha (LA, 6–10 Hz) and Upper Alpha (UA, 10–14 Hz). Pearson’s
linear correlation analysis between age and band-specific phase

locking revealed that both PLV and PLI increased with age in LA
band (rPLV= 0.32, pPLV < 0.0001, rPLI= 0.21, pPLI < 0.0001); PLV
and PLI decreased with age in the UA band (rPLV=−0.18, pPLV <
0.0001, rPLI=−0.38, pPLI < 0.0001). In contrast, PLV only margin-
ally increased (rPLV= 0.1, pPLV= 0.03) while PLI remained invar-
iant with age in the SSA band (rPLI= 0.01, pPLI= 0.5) (Fig. 2).
Surrogate distributions, obtained by randomly shuffling resting-
state epochs indicated that PLV and PLI values in the SSA band
were significantly higher than what would be expected by chance
(p < 0.01) (Fig. 2). Taken together, the results indicate that phase
locking is preserved at the SSA while the PAF slows with age
(Fig. 2). Findings were also replicated at the sensor level (N= 650,
see Supplementary Fig. 3).

Conduction delays and coupling modulate network frequency
and synchrony in an idealized neural network with all-to-all
connections. We motivate a theoretical understanding of how
oscillatory frequency and network synchronization are modulated
via connection properties by considering a network of N, Kur-
amoto phase-oscillators46. Oscillators interact with one another
according to the following equation-

_θi ¼ ωi þ
K
N

∑
N

j¼ 1
sin

�
θjðt � τÞ � θi

� þ dζðtÞ ð1Þ

where, θ and ω are the phase and natural frequency of each
oscillator. K and τ specify average coupling strength and trans-
mission delay between any two nodes respectively. Natural

Fig. 1 Pipeline for estimation of phase locking via PLV and PLI. a Source-localized MEG signals are bandpass filtered to extract signals in specific
frequency bands. Hilbert transform is used to extract instantaneous phase time series. Phase vectors at each timepoint are projected onto a unit circle.
b Mathematical expressions for the estimation of PLV and PLI. PLV measures zero-phase lags whereas PLI discounts zero-phase lags. This property makes
PLI resilient to volume conduction/field spread artifacts that manifest as zero-phase lag correlations.
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frequencies are derived from a symmetrical distribution centered
at μ. In the most general case, the system is supplied with zero
mean Gaussian noise process ζ(t), with a standard deviation d.
The network is composed of N oscillators connected according to
an all-to-all topology. The order parameter (r) indexes the degree
of phase-synchronization in the network

z ¼ rðtÞeiϕðtÞ ¼ 1
N
∑
N

i
eiθiðtÞ ð2Þ

such that rðtÞ ¼ 1
N ∑

N
i eiθiðtÞ

�� ��, with r= 0 corresponding to
incoherence and r= 1 to complete synchronization and z is a
complex valued function tracking the global phase synchroniza-
tion in the network. For smaller coupling values, the incoherent

state is stable. The incoherent state loses stability at a critical value
of coupling (Kc), giving rise to a partially synchronized regime. In
the absence of conduction delays (τ= 0), the network of oscil-
lators synchronize at the center frequency (μ= 10 Hz) for K > Kc.
However, for τ ≠ 0, the synchronization frequency (Ω) is different
from the center frequency of the distribution of natural fre-
quencies (μ) (Fig. 3)30. Specifically, we observe Ω < μ for the all-
to-all coupled network considered here.

For non-zero delays, the network exhibits multistable states,
such that the system can reside in multiple synchronized regimes
(see Analytical Solution below), each associated with a different
synchronization frequency30,52. Heatmap in Fig. 3c, shows the
relationship of steady-state collective frequency of the network

Fig. 2 Phase locking in the alpha band. a Overview of the analysis pipeline: rsMEG sensor space data was projected to source space. PSD for each ROI was
extracted using Welch method and modeled as a linear superposition of periodic and aperiodic components. Peak frequency was extracted for each brain
region and averaged across ROIs to obtain a single mean peak alpha frequency for each subject. Mean peak alpha frequency was found to be negatively
correlated with age. Subsequently, phase locking was estimated for each subject using both PLV and PLI. b Phase Locking Value (PLV) and Phase Lag Index
(PLI) estimated for three frequency bands- LA (6–10 Hz), SSA (PAF− 2 to PAF+ 2) and UA (10–14 Hz). c PLV and PLI box plot for LA, SSA and UA band,
for each box N = 627. Width of the notch is proportional to the interquartile range. Dots represent data points. d Schematic: PLV, PLI analysis suggests
frequency reorganization that preserves alpha phase locking at reduced peak frequencies.
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(color) for different (K, τ). For smaller values of conduction
delays, the incoherent network has an average frequency close to
the mean of the distribution of natural frequencies (μ= 10 Hz).
However, for longer delays, the collective synchronization
frequency shows considerable suppression.

The order parameter can be shown to evolve via a low-
dimensional system of global synchronization manifold under a
set of simplifying assumptions53. Expressions for steady-state
synchronization frequency and order parameter were obtained
from the low-dimensional system (see Analytical solution) and
compared with parameter space obtained from numerical
simulations (1).

Analytical solution relating synchronization frequency and
conduction delays for a reduced system. We derive analytical
expressions for the synchronization frequency (Ω) and steady-
state order parameter (r) for the case of a fully recurrent network
of phase oscillators (N→∞), connected to each other via cou-
pling K subject to delay τ. For simplicity, we consider the
noiseless case (d= 0). The natural frequencies of oscillators ωj are
derived from a Lorentzian distribution given by

gðωÞ ¼ γ

π
��
ω � μ

�2 þ γ2
� ð3Þ

Ott and Antonsen53 showed that the macroscopic dynamics
corresponding to Eq. 1 follows a low-dimensional ordinary dif-
ferential equation (ODE) given by:

_z ¼ ðiμ � γÞz � K
2

z2zt� τ � zt� τ

� � ð4Þ

For details of this step please refer to the Supplementary Material
(Supplementary Note 4) or Ott and Antonsen53. We require
steady-state solutions of the form53

z ¼ r0e
iΩt ð5Þ

where r0 and Ω are the steady-state order parameter and syn-
chronization frequency respectively. Eqs. 4, 5 lead to

_z ¼ r0iΩe
iΩt

¼ ðiμ � γÞr0eiΩt �
K
2

r20e
i2Ωtr0e

�iΩðt� τÞ � r0e
iΩðt� τÞ� � ð6Þ

r0= 0 (incoherent solution) is a trivial solution of Eq. 6 for all
K, τ, γ. In order to explore coherent solutions we equate the real
and imaginary parts on both sides leading to the following
transcendental equations

Ω ¼ μ � K sinΩτ þ γ tanΩτ ð7Þ

r20 ¼ 1 � 2γ
K cosΩτ

ð8Þ

The requirement 0 ≤ r20 ≤ 1 yields the following condition for the
existence of coherent solutions

cosΩτ ≥
2γ
K

ð9Þ

Equations 7, 8 suggest a mechanism through which frequency
and order parameter are modulated as a function of coupling and
delay for given γ and μ. The transcendental Eq. 7 can be
approximately solved by performing Taylor series expansions,

sinΩτ ! Ωτ � ðΩτÞ3
3! ; cosΩτ ! 1 � ðΩτÞ2

2 ; tanΩτ ! Ωτþ
ðΩτÞ3
3 . Considering the first two terms of the Taylor series the

transcendental Eq. 7 can be simplified to

ð2γ þ KÞΩ3τ3 þ ð6γτ � 6Kτ � 6ÞΩ þ 6μ ¼ 0 ð10Þ
and the constraint in (9) can be further approximated to

Ω2τ2 ≤ 2 � 4γ
K

ð11Þ

Subsequently, Eq. 10 is solved numerically by using a MATLAB
routine (fsolve) for the parameter space constrained by the

Numerical Analytical

Fig. 3 Phase dynamics in an idealized network. a Fully recurrent network of phase oscillators is considered. b Natural frequencies of oscillators are drawn
from a Lorentzian distribution with, γ= 1 Hz, μ= 10 Hz. c Steady-state synchronization frequency and order parameter for N= 1000 oscillators d= 0,
obtained by numerical simulations. Delays were varied between 0 and 20ms. d Analytical expressions for synchronization frequency and order parameter
derived by reducing the high dimensional system through the Ott-Antonsen method. Network frequency and order parameter are modulated by coupling
and delay.
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condition (11). The solution shows excellent agreement with
numerical solutions with N= 1000, as shown in Fig. 3. Most
importantly for our study, we find that reductions in network
synchrony due to increased conduction delays can be offset by
concomitant changes in coupling.

Reduced network synchrony due to lowered conduction speeds
can be rescued by global scaling of connection strength. In
silico modeling of brain dynamics was used to study whether
alpha dynamics on white-matter network topology retains the key
features exhibited by idealized networks for which analytical
relationships between network frequency and neuronal coupling
are derived in the previous section. Kuramoto phase-oscillators46

were placed at anatomical landmarks using the Desikan-Killiany
atlas49. For specifying white-matter connectivity, we used DTI
adjacency matrices from a separate dataset of healthy subjects, as
described in Abeysuriya et al.54. Conduction delays between all
node pairs were estimated by scaling inter-node Euclidean dis-

tances by a fixed cortical conduction velocity v, τij ¼
Dij

v . The
biological scenario differs from the idealized network in three key
aspects: 1. topology, 2. distribution of natural frequencies and 3.
existence of distance dependent delays. Oscillators are set up to
interact with one another according to the following equation46

_θi ¼ ωi þ
K
N

∑
N

j¼ 1
cij sinðθjðt � τijÞ � θiÞ þ dζðtÞ ð12Þ

where, the term cij introduces heterogeneous connection weights
derived from normalized measures of fiber densities. Similar to
the idealized case, network frequency and phase locking values
were obtained by varying cortical conduction velocity (v) and
global scaling parameter (K). Cortical conduction velocity was
varied in the range of 1–30 m/s, in line with previous experi-
mental reports55. Altering the conduction velocity changes the
distribution of distance dependent transmission delays, whereas
changing K is analogous to synaptic scaling. Following56,57, nat-
ural frequencies (ωi’s) are distributed across ROIs based on node
strength (ωmax= 12 Hz, ωmin= 8 Hz, μ= 11.06 Hz) (Fig. 4b, see
Methods for selection of natural frequencies).

Similar to observations in idealized network topology with all-
to-all connections, network synchrony is modulated by the
combined influence of conduction velocity and global gain
parameter (K). Broadly, the system exhibits lower levels of
synchrony for very weak coupling and low conduction velocity
(Fig. 4). On the other hand, larger coupling and conduction
velocity lead to hyper-synchronous states. Somewhere in between
lies the partially synchronized state, characterized by high
temporal variability in the Kuramoto order parameter. Such
maximally metastable regimes are thought to underlie resting-
state dynamics58,59. Accordingly, we restrict our attention to the
metastable regime while considering age-related reduction in
conduction velocity. Distribution of metastability values clearly
delineates the metastable regime as a distinct mode (Fig. 4e).

To better visualize the relationship of network frequency and
phase locking, we plot contour lines. Compensatory balancing of
phase locking corresponds to a traversal along the PLV contour
lines (Fig. 4c). We observe a robust reduction in mean network
frequency along PLV contour lines in the metastable regime
(Fig. 4c, d). In contrast, a vertical descent along the y-axis in
Fig. 4a, that can be interpreted as a passive decline in conduction
velocity without compensation, is not accompanied by any
notable reduction in network frequency. This can be gauged by
the vertical orientation of frequency contours in the metastable
regime.

Interestingly, moving along the PLV contour lines not only
preserves network synchrony, but also metastability (red region,

Fig. 4d). Therefore, in addition to preserving mean synchrony
levels, synaptic scaling also maintains the temporal richness of
alpha dynamics that subserves the dynamic repetoire of core
brain areas60. A non-compensatory decline in network conduc-
tion velocity also raises the possibility of a sudden increase in
network frequency owing to a complete breakdown of network
synchrony due to high network delays. However, traversing along
PLV contour lines assures a monotonic reduction of network
frequency, while maintaining synchronicity among brain areas.
Model simulations with different noise amplitudes and distribu-
tions of natural frequency led to qualitatively similar results
(Supplementary Note 1, Supplementary Fig. 1). To demonstrate
the generality of our results, we replicated the analysis using a
different connectomic dataset and parcellation scheme (auto-
mated anatomical labeling, AAL) as described in61 (Supplemen-
tary Note 2, Supplementary Fig. 2).

Discussion
In this study we propose that functional integration achieved via
neural synchrony is an important neurocompensatory mechan-
ism that is underway during healthy physiological ageing. The key
entry point that led us towards this understanding is a widely
reported phenomenon—age-related decrease in individual peak
alpha frequency13,14,41,51 which we demonstrate to be the out-
come of a dynamic functional compensation process. Compen-
sation preserves network synchrony in response to inclement
enhancement in transmission delays stemming from the dete-
rioration of axonal tracts as a function of age. We test our
hypothesis on empirical MEG recordings by estimating measures
of network synchrony at the PAF in both source (Fig. 2) and
sensor levels (Supplementary Note 3, Supplementary Fig. 3). We
validate this hypothesis by employing two complementary mea-
sures of phase synchrony—Phase Locking Value (PLV) and Phase
Lag Index (PLI) on source-reconstructed MEG data made pub-
licly available by Cam-CAN. While PLV estimates consistency of
phase differences, PLI additionally controls for volume conduc-
tion by discounting zero-lags62. Through surrogate testing we
confirm that PLV and PLI indicate significant phase relationships
and are not artifacts of sample size bias62. Our experimental
results corroborate the findings of preserved PAF connectivity by
Scally et al. which were published for a smaller sample size on
EEG sensor level data41 (Supplementary Note 5). Here we also
demonstrate the preservation of network synchrony at PAF in
both source and sensor level data, thus confirming and expanding
the scope of previous findings41 (Supplementary Fig. 5). Fur-
thermore, partitioning the alpha band into lower and higher sub-
bands offers both practical and mechanistic insights into the
nature of dynamical reorganization over the course of physiolo-
gical ageing. By studying phase coupling separately for LA, UA,
and SSA bands we are able to confirm that in the presence of
group variability in peak frequencies, the use of predefined fre-
quency bands to characterize group differences in functional
connectivity leads to the detection of spurious relationships41.
Therefore, our findings caution against the use of pre-selected
frequency bands for studying cognitive phenomenon41 while also
highlighting the importance of considering inter-subject/condi-
tion variability in the distribution of neural oscillations63,64. A
similar approach of dividing alpha into a lower and higher sub-
band is followed by Vecchio et al. who showed that graph-
theoretic connectivity in the alpha band decreases with age in the
higher alpha sub-band40. Gaal et al. also study physiological
ageing by performing EEG reactivity analysis by considering two
sub-bands within alpha42. Similarly Babiloni et al. characterize
age trajectories separately for alpha sub-bands and report dif-
ferential effects in the lower and higher alpha frequency ranges13.
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Besides ageing, another group of studies have divided the alpha
band to shed light on neurological disorders such as mild cog-
nitive impairment (MCI)65,66, persistent vegetative state67 and
Autism spectrum disorder (ASD)68. Most importantly, age-
related trajectories in the LA, UA, and SSA band serve as the
explanandum for our subsequent model. While preserved age
trajectories in the SSA band may come about due to multiple
underlying phenomena, the added constraints imposed by LA
and UA trajectories allow us to restrict the computational model
to a smaller set of candidate mechanisms (Fig. 2d). In short, our
computational model aimed to explain three crucial empirical
observations—(1) Preserved phase locking in the SSA band
alongside a reduction in PAF, (2) Enhanced phase locking with
age in the LA band, and (3) Reduced phase-locking with age in
the UA band. We argue that age-associated enhancement in

conduction delays offers a parsimonious explanation for all three
empirical findings.

Numerous studies have speculated a prominent role for white-
matter fibers in modulating alpha synchrony20,22,23. Therefore, in
order to study the relationship of network frequency and syn-
chrony, we reduce large-scale white-matter network to its basic
dynamical elements- conduction delays and inter-areal coupling
that forms the backbone of a whole-brain connectome. Each node
in the connectome is considered to be a unit amplitude limit-cycle
oscillator (an idealized autonomous oscillator), described by its
phase (Fig. 3). Anatomically, each autonomous alpha oscillator
can be identified with a self-sustained thalamo-cortical unit, or
alternatively, pacemaker populations such as the infragranular
and supragranular layer in V2 and V469,70. Both numerical and
analytical approaches on idealized network with all-to-all

Fig. 4 Large-scale alpha phase locking. a Model overview-DTI connectivity and distribution of inter-node distances. Equations governing node dynamics.
b Distribution of natural frequencies. Green spheres represent magnitude of natural frequency. ROI-wise distribution of natural frequencies. c Contour plot
indicating isolines for mean frequency (blue) and PLV (red) as a function of global coupling and conduction velocity, Noise amplitude (d)= 3, ωmax= 12 Hz,
ωmin= 8 Hz. PLV and PAF remain constant along isolines. d Metastability measured as the standard deviation of the order parameter plotted as a function
of conduction velocity and global coupling. Dotted line indicates PLV isoline. Asterisk corresponds to region with maximum metastability. e Distribution of
metastability in the parameter space. Asterisk in heatmap corresponds to second mode of the gaussian. f Distribution of conduction delays (in ms), for
conduction velocity= 5, 10, 15.20m/s. g Frequency depression along isolines corresponding to PLV= 0.2, 0.3, and 0.4.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03489-4 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:567 | https://doi.org/10.1038/s42003-022-03489-4 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


connections confirm how changes in average conduction delays
may be offset by modifications in coupling, and that frequency
slowing is a collateral to this compensation. Next, we extend our
model to include network topology estimated from empirical
human white-matter connectivity and find robust frequency
modulation with average conduction speed change and global
coupling. We track trajectories in the global coupling-conduction
velocity space that preserve phase locking, restricting our atten-
tion to the partially synchronized regime. Our results unequi-
vocally demonstrate that frequency slowing emerges as the system
attempts to maintain phase locking in response to a reduction in
conduction velocity by modulation of inter-areal connectivity
(Fig. 4).

As early as the 1950s, Norbert Wiener had hypothesized that
independent oscillators with natural frequencies close to 10 Hz
interact with one another to shape alpha rhythmicity71,72.
According to Wiener, alpha activity emerges from frequency
pulling between individual alpha oscillators which possess slightly
different natural frequencies71. This idea is regarded as one of the
earliest models of collective dynamics of biological oscillators72.
In the intervening years, models of collective synchronization
have become a mainstay of neuroscience, having been employed
to explain diverse phenomenon such as traveling brain waves,
fluctuating beta oscillations, fMRI functional connectivity, large-
scale brain synchronization, myelin plasticity etc.32,47,73–75. In the
present article, we adapt Wiener’s idea of frequency pulling to
explain the gradual slowing of alpha frequency with age. Speci-
fically, we show that frequency pulling in the presence of con-
duction delays, biases the system to synchronize at lower
frequencies. Intuitively, the mechanism proposed here is analo-
gous to a group dance, where complicated dance moves are
initially practiced slowly, since it is easier to maintain lockstep at
lower speeds. Similarly, upscaling inter-areal coupling (global
synaptic scaling) allows for the maintenance of network lockstep
at slower coordination frequencies.

Similar homeostatic mechanisms that regulate circuit output
have been identified elsewhere. For example, neurons in the visual
cortex of developing rodents undergo synaptic scaling in response
to visual inputs76. Synaptic scaling has also been shown to
compensate for neuron number variability in the crustacean
stomatogastric ganglion77. Recently, Santin et al. elegantly
demonstrate how respiratory motor neurons in the bullfrog can
dynamically regulate breathing by modifying synaptic strengths
after long periods of inactivity78. From the perspective of com-
munication through coherence (CTC) hypothesis79, alpha phase-
locking constitutes an information channel, whereby distant
oscillators with slightly different peak frequencies communicate
with one another through leader-laggard phase relations. Con-
sistent phase locking, a prerequisite for effective communication
across brain regions, entails that oscillators adjust their individual
frequencies under the combined influence of coupling and
transmission delays. Thus, there emerges a clear relationship
between oscillation frequency and phase connectivity. Therefore,
our central hypothesis is that frequency shifts with ageing need to
be understood in the context of homeostatic maintenance of
large-scale phase locking. Understanding the precise mechanism
of frequency slowing—whether adverse or compensatory—has
far-reaching consequences for characterizing age-associated
neuropathologies like Dementia and Alzheimer’s disease, which
share PAF slowing as a prominent feature39,80,81. In the frame-
work proposed here, greater frequency slowing in AD may result
from the higher demands placed on compensatory processes by
accelerated demyelination. Therefore, our model supports a
growing view that suggests a greater role for white-matter
abnormality in explaining AD progression82.

Compensatory models of ageing have been proposed to
account for the finding that many individuals continue to func-
tion remarkably well with age despite substantial structural loss.
For example, according to the scaffolding theory of ageing and
cognition (STAC)4, the ageing brain can preserve cognitive
function in the face of age-associated neural changes like volume
shrinkage, white-matter degeneration, cortical thinning, and
dopamine depletion by recruiting alternate neural pathways,
referred as scaffolds. While the STAC model has succeeded in
explaining a number of observations in ageing neuroscience at the
cognitive level, we still lack a clear understanding of the dyna-
mical principles that facilitate compensation. Thus, our model
departs from the standard conceptualization of alpha slowing as
an adverse outcome of ageing. Rather, we recast frequency
slowing as a tell-tale signature of neural compensation. Earlier
models have conceptualized alpha slowing as a passive process,
resulting from the gradual decline of system parameters. For
example, Da Silva et al.83 model EEG maturation by using a
neural mean field model. Their model consists of two populations
of neurons: thalamic and cortical, driven by multiple uncorrelated
noise sources. By changing the feedback coupling parameters the
authors obtained a family of spectral curves that closely resemble
developmental trajectories. However, the model lacks axonal
delays, which are known to undergo age-related changes and are
held to be major drivers for the evolution of cortical networks.
Similarly, Van Albada et al.84 employ a more detailed neural
mean field model of the thalamo-cortical system85 to investigate
age-associated changes in EEG spectral parameters and found
white-matter stabilization and regression to be a major determi-
nant of EEG characteristics across lifespan. However, the
approach, models the gross EEG spectrum for estimating model
parameters, making it hard to dissociate specific mechanisms
responsible for age-related changes in narrow-band frequencies.
More recently, Bhattacharya et al.86 used a variant of the Lopes
Da Silva model to study slowing of peak alpha oscillations in the
context of Alzheimer’s disease, implicating thalamic inhibition as
the principal driver of alpha slowing, however, as with the ori-
ginal Lopes Da Silva model, this model does not consider axonal
conduction delays. Future efforts can build on the model pro-
posed here to tease out how compensatory processes operate in
various other contexts, such as rehabilitation from stroke, recovery
from traumatic brain injuries to predict recovery timelines and to
detect critical times for intervention. Going forward, our model may
be augmented by new imaging paradigms (e.g. g-ratio mapping to
introduce heterogeneity in conduction speeds87).

Glossary of terms
Phase locking. Refers to the tendency of cyclic time series to
synchronize due to mutual interactions. For example, two pen-
dulum clocks connected weakly get aligned over time. In neu-
roscience the binding by synchrony hypothesis holds that object
attributes are represented in the brain by synchronous activity of
neural ensembles. Synchrony may be achieved at zero-lag (no
phase difference) or at non-zero-phase lags (constant phase
difference).

Compensation. The ability of biological systems to adaptively
change network parameters in order to maintain circuit/beha-
vioral output. Consequently, identical activity patterns can be
seen for networks having widely diverging system parameters. For
example, cerebellar Purkinje neurons may display similar elec-
trical activity inspite of having different ratios of sodium and
calcium currents.
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Alpha band. Prominent oscillatory feature of human electro-
physiological recordings, characterized by 8–12 oscillatory cycles
per second. Enhanced in the eyes-closed condition, alpha oscil-
lations are implicated in diverse cognitive phenomenon like
attention and working memory. Alpha oscillations undergo
evolution over the course of development and senescence.

Source reconstruction. A set of mathematical algorithms that
employ electrode/sensor level time series to estimate neural time
courses. Sensor level recordings are assumed to be superpositions
of multiple neural generators each casting their influence subject to
distance from sensors, properties of intervening tissue etc. Con-
tribution of each neural generator is projected onto scalp surface by
employing Maxwell’s equations (Forward model). Model inversion
(inverse problem) yields reconstructed neural time courses.

Delay differential equation. A class of differential equation in
which the derivative of the state variable depends upon the value
of the variable at an earlier time. For example, in aircraft
dynamics there exist finite temporal lags between pilot input and
movement of control surfaces like rudder and elevators. Biolo-
gical systems are also replete with temporal lags (e.g., nerve
conduction, auditory delay lines etc). In contrast to ordinary
differential equations which require a finite set of initial condi-
tions, delay differential equations require the variable to be
defined at all points prior to the initial timepoint and the max-
imum delay, making the system infinite dimensional.

Methods
MEG data description. Data used in the preparation of this work was obtained
from the CamCAN repository (available at http://www.mrc-cbu.cam.ac.uk/
datasets/camcan/)35. Cam-CAN dataset was collected in compliance with the
Helsinki Declaration, and has been approved by the local ethics committee,
Cambridgeshire 2 Research Ethics Committee (reference:10/H0308/50). Following
written informed consent, MEG data was collected using a 306-sensor (102 mag-
netometers and 204 orthogonal planar magnetometers) VectorView MEG System
by Elekta Neuromag, Helsinki, located at the MRC Cognition and Brain Sciences
Unit. Data were digitized at 1 kHz with a high pass filter of cutoff 0.03 Hz. Head
position was monitored continuously using four Head Position Indicator coils.
Horizontal and vertical electrooculogram were recorded using two pairs of bipolar
electrodes. One pair of bipolar electrodes were used to record electrocardiogram for
pulse-related artifact removal during offline analysis. The data presented here
consisted only of resting state, where the subjects sat still with their eyes closed for a
minimum duration of 8 min and 40 s.

MEG preprocessing and source reconstruction. Brainstorm package was used
for processing MEG data48. For each participant, MEG recordings (.fif files) were
first loaded. Heartbeat and eyeblink events were detected using EOG and ECG
recordings through an automated procedure. SSP projectors were applied to
remove heartbeat and eyeblink artifacts. Eyeblink projectors could be successfully
applied to 627 out of 650 participants; the remaining 23 participants had to be
excluded. Time series were then resampled to 100 Hz in order to reduce compu-
tational loads for the subsequent analysis. DC offset and linear trends were
removed and the signal was bandpass filtered between 1–40 Hz. Noise covariance
matrix for each participant was estimated from empty room recordings provided
with the Cam-CAN distribution35. Head model was computed from a standard
anatomical template provided in Brainstorm (ICBM152 MNI). Current density
map was estimated in accordance with the Minimum Norm Imaging88 method for
dipoles oriented normally to the cortex using a depth weighting parameter
(order= 0.5,MaximalAmount= 10). Noise covariance was regularized with the
median eigenvalues. Regularization was implemented with an SNR set to 3. Source
time series were projected to 68 brain parcellations according to the Desikan-
Killiany atlas49.

Peak alpha frequency (PAF) estimation. All subsequent analysis was performed
on the resulting data. ROI-wise power spectral density was estimated using Welch
periodogram method89. In accordance with the Welch method, the time series was
split into 5s windows with 50% overlap. Each window was multiplied with a
tapering window (Hanning window) to suppress the contribution of spectral
leakage. Discrete fourier transform was then performed to yield fourier coefficients,
which were then squared to yield spectral power. Finally, subject spectrum was
obtained by averaging across windows. Power spectrum of electrophysiological
recordings consist of both periodic and aperiodic components51,90. In order to

remove the influence of aperiodic 1
f component, the spectrum (P) is modeled as:

P ¼ L þ ∑
M

m¼ 0
Gm ð13Þ

L, Gm model the aperiodic and periodic components respectively. Gm is approxi-
mated as a Gaussian function:

Gm ¼ ae
�ðF� cÞ2

2w2 ð14Þ
while the aperiodic component (L) is modeled in the semi-log power space as:

L ¼ b � logðFχÞ ð15Þ
where, b is an offset and χ is the slope. a, c, w, b, and χ were estimated through an
automated model fitting procedure50. Model fitting was performed in the 2–20 Hz
range, following Tran et al.91.

Phase locked value (PLV) and Phase lag index (PLI). Phase locking was esti-
mated by using PLV and PLI measures. Firstly, each 5s epoch for each participant was
bandpass filtered in LA, UA, and SSA band. Next, Hilbert transform was performed
for each filtered epoch to extract phase time series, ϕa(t). Phase difference (ϕab(t)=
ϕa(t)− ϕb(t)) was calculated for each ROI pair. PLV and PLI were estimated as62

PLVab ¼ 1
T

∑
T

t¼ 1
eðiΔϕabðtÞÞ

����
���� ð16Þ

PLIab ¼ 1
T

∑
T

t¼ 1
signðΔϕabðtÞÞ

����
���� ð17Þ

sign ¼
þ 1 Δϕab > 0

0 Δϕab ¼ 0

�1 Δϕab < 0

8><
>:

ð18Þ

PLV and PLI were averaged across epochs and ROI pairs.

Statistics and reproducibility. Pearson’s linear correlation was computed to
calculate age-trends for PAF, PLV and PLI (N= 627). Surrogate distributions were
generated by randomly shuffling variables across 10,000 iterations (Fig. 2). Addi-
tionally, bootstrapping was performed to ascertain significant PLV and PLI in the
SSA band (threshold= 0.05) for 100 randomly chosen participants. Surrogate
distribution for PLV/PLI were obtained by randomly shuffling epochs to produce
100 PLV/PLI values; p-values were estimated from the resulting distribution (see
Supplementary Fig. 4). Additional replication of the main results was done using an
openly available rsEEG dataset (N= 111, see Supplementary Fig. 5).

Whole-brain model of alpha slowing. In this study we use the Kuramoto model
(1) with conduction delays in order to explain brain-wide slowing of alpha oscil-
lations with age. We demonstrate frequency slowing on two types of topology—(1)
fully recurrent, (2) DTI based structural connectivity.

Structural connectivity (DTI). For our study we use pre-processed structural
connectivity (SC) matrix derived from Human Connectome Project as provided in
Abeysuriya et al.54. SC matrices were obtained by performing probabilistic trac-
tography on diffusion MRI data. In short, fiber orientations were calculated from
distortion-corrected data, as implemented in FSL. Probtrackx2 was used to detect
upto 3 fiber orientations per white-matter voxel. Matrices were reduced to a
68 * 68 scheme, according to the Desikan-Killainy atlas49. Adjacency matrices of 40
participants were averaged. Log-transformation was performed to account for
algorithmic biases. Conduction delays were obtained by scaling barycentric dis-
tances between ROIs by conduction velocity.

Natural frequency assignment. Natural frequencies for 68 ROIs were assigned
based on anatomical node strengths according to the equation56,57

ωi ¼ ωmax � ðωmax � ωminÞ
ðsj � sminÞ2

ðsmax � sminÞ2
ð19Þ

Where, ωmax= 12 Hz and ωmin= 8 Hz are the maximum and minimum oscillatory
frequencies, specifying the distribution of alpha frequency across ROIs. smax and
smin are the maximum and minimum strengths respectively.

Metastability. Metastability refers to the ability of dynamical systems to flexibly
engage and disengage without remaining confined in trivial dynamical configurations
such as hyper synchrony or incoherence. According to the communication through
coherence (CTC) view, brain areas communicate through state dependent phase
coupling58. In this scheme, resting-state dynamics must display maximal variability in
phase configurations (i.e., maximal metastability). The principle of maximal metast-
ability, combined with realistic values of cortical conduction speeds allow us to
demarcate relevant regions for exploration in the conduction speed-coupling space. The
standard deviation of the order parameter (2) is regarded as a proxy for metastability58.
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Numerical integration. For the recurrent network, system of equations repre-
sented by (1) was numerically solved for N= 1000 oscillators using the Euler
method. Integration time step was kept at dt= 0.001 s. For DTI connectivity
conduction delays were assumed to be integer multiples of dt to avoid use of
computationally intensive interpolation schemes. Noise was supplied to each node
by multiplying random normal numbers by the noise amplitude, scaled by

ffiffiffiffiffi
dt

p
.

Each simulation was run for 30 s and first 10 s were discarded and all subsequent
analysis was performed with the resulting signal. Neuroscience gateway platform
was used to simulate computationally intensive parameter sweeps92.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data used in the preparation of this work were obtained from the CamCAN repository
(available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/). DTI structural
connectivity matrices were downloaded from https://github.com/OHBA-analysis/
abeysuriya_wc_isp/tree/master/data_files and https://github.com/juanitacabral/
NetworkModel_Toolbox respectively. Data used for plotting Figs. 2 and 4 can be found
in Supplementary Data 1.

Code availability
The codes used for data analyses and modeling along with corresponding documentation
are available at https://bitbucket.org/cbdl/wbm_kuramotodelay/src/master/. Codes may
also be accessed from Zenodo (DOI: 10.5281/zenodo.6542486).
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