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Abstract

Background

Immunotherapy is now considered as the new pillar in treatment of cancer patients. Den-

dritic cells (DCs) play an essential role in stimulating anti-tumor immune responses, as they

are capable of cross-presenting exogenous tumor antigens in MHCI complexes to activate

naïve CD8+ T cells. Analgesics, like non-steroid anti-inflammatory drugs (NSAIDs), are fre-

quently given to cancer patients to help relieve pain, however little is known about their

impact on DC function.

Methods

Here, we investigated the effect of the NSAIDs diclofenac, ibuprofen and celecoxib on the

three key processes of DCs required for proper CD8+ cytotoxic T cell induction: antigen

cross-presentation, co-stimulatory marker expression, and cytokine production.

Results

Our results show that TLR-induced pro- and anti-inflammatory cytokine excretion by human

monocyte derived and murine bone-marrow derived DCs is diminished after NSAID

exposure.

Conclusions

These results indicate that various NSAIDs can affect DC function and warrant further inves-

tigation into the impact of NSAIDs on DC priming of T cells and cancer immunotherapy

efficacy.

Introduction

Cancer patients often receive analgesics to treat acute or chronic cancer-related pain [1]. In

many cases, non-opioids are sufficient to relieve pain, especially when the medication is taken
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regularly, and pain can be controlled and maintained [2]. Non-steroid anti-inflammatory

drugs (NSAIDs) are a specific class of analgesics. NSAIDs are not recommended during che-

motherapy as they can cover up a fever. Similarly, they are not advised closely before and after

surgery because of their anti-coagulant effects [2]. However, their analgesic effect [3, 4], their

effect on the immune system and on tumor progression deems them as interesting analgesic

candidates for cancer patients. NSAIDs exert their function through inhibition of cyclooxy-

genase (COX) enzymes (COX1 and/or COX2). COX1 is a constitutively expressed enzyme,

whereas COX2 is an inducible enzyme and increases upon cell activation during inflammatory

processes, e.g. by pro-inflammatory cytokines, as well as damage-associated molecular patterns

[5]. Non-selective NSAIDs inhibit the activity of both COX1 and COX2 (e.g. diclofenac and

ibuprofen), while selective NSAIDs specifically target COX2 (celecoxib). COX enzymes con-

vert arachidonic acid to prostanoids, including thromboxane and prostaglandins (PGE), in

lipid droplets [6]. High COX expression levels in the tumor therefore often correlate with over-

production of PGE [7, 8]. The prostaglandin E2 (PGE2) lowers nociceptor thresholds [9], pro-

motes tumor development and progression by evasion of apoptosis [10, 11], sustains

proliferation [12, 13], induces angiogenesis [14–16], and promotes cancer cell adhesion,

migration, and invasion [17]. Furthermore, PGE2 acts as a major mediator in inflammatory

responses [18], mainly promoting immunosuppressive environments [19]. High COX levels in

tumors [20–26] have been linked to lower survival rates [27, 28]. The use of NSAIDs in turn

has been linked to lower cancer incidence [29–33], lower mortality [34, 35], and increased

anti-tumor effects [22, 36, 37].

The immune system plays an essential role in the elimination of tumor cells. Initiation of

the adaptive arm of the immune system, and specifically the activation of CD8+ cytotoxic T

lymphocytes (CTL), is important, as these cells are able to recognize and kill tumor cells specif-

ically. Dendritic cells (DCs) play a crucial role in orchestrating anti-tumor immunity as they

are specialized cross-presenting cells, capable of priming tumor-specific CTLs. Three signals

crucial for efficient T cell priming are: (cross)-presentation of extracellular tumor antigens in

MHCI-molecules, co-stimulation, and cytokines [38–40]. Antigen presenting DCs are able to

provide these signals, as they phagocytose tumor debris, cross-present these antigens and

mature (express co-stimulatory markers) while migrating to the lymph nodes, and produce

cytokines to activate naïve CD8+ T cells locally [41, 42]. Toll-like receptor (TLR) activation

educates DCs to initiate effector T cell differentiation and expansion [43]. The immunomodu-

latory effect of several NSAIDs has been explored [44–47], but further insight is needed into

the effect of different NSAIDs on the three signals exploited by DCs in one system.

Here, we set out to explore the effects of non-selective COX inhibitors diclofenac and ibu-

profen and specific COX2 inhibitor celecoxib on the cross-presentation, co-stimulatory poten-

tial, and cytokine production by DCs. We report that TLR-induced cytokine production by

murine bone-marrow derived DCs (mBMDCs) and human moDCs is impaired upon preincu-

bation with NSAIDs. Understanding the role of NSAIDs on DC functioning might further

improve DC-based cancer immunotherapy.

Material and methods

Mice, cell lines, and murine and human DC cultures

Female C57BL/6J mice (6–8 weeks old) were purchased from Charles River Wiga (Sulzfeld,

Germany). Drinking water and standard laboratory food pellets were provided ad libitum and

mice were allowed to settle for at least 1 week. The experiments were approved by the Animal

Experiments Committee of the Radboud University Medical Center, and were performed in

accordance with institutional, national and European guidelines. All mice were maintained
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under specific pathogen-free barrier conditions at the Central Animal Laboratory (Nijmegen,

The Netherlands). Mice were sacrificed by cervical dislocation. mBMDCs were cultured as

according to previously described protocol [48, 49]. In short, bone marrow was flushed out of

tibia and femur and mashed over a nylon mesh with pore size 100 μm. Cells (4x106 in 10 cm

dish) were cultured for 8 days in RPMI-1640 (Gibco, #42401–018), supplemented with 10%

heat-inactivated fetal bovine serum (FBS, Greiner Bio-One), 2mM L-glutamine (Lonza,

#BE17-605E/U1), 1% penicillin/streptomycin (pen/strep, Gibco, #15140–122) and 50 μM

beta-mercaptoethanol (Gibco, #21985–023) (BMDC medium) in the presence of 20 ng/ml

rmGM-CSF (PeproTech, # 315–03), at 37˚C with 5% CO2. On day 3 and 6, rmGM-CSF was

added to the culture. Non-adherent cells were harvested and used for assays (mBMDCs). B3Z

cells, a T cell hybridoma specific for the immunodominant OVA Kb peptide in H-2Kb, which

carries a β-galactosidase construct driven by NF-AT elements from the interleukin-2 (IL-2)

promotor [50], were cultured in IMDM (Gibco, #21980–032) supplemented with 5% FBS, 2

mM L-glutamine, 1% pen/strep, 50 μM beta-mercaptoethanol, and 0.5 mg/ml hygromycin

(Invitrogen, #10687010). Human monocyte-derived DCs (moDCs) were generated as

described previously [51, 52], from cells isolated from buffy coats obtained from healthy volun-

teers (Sanquin, Nijmegen, The Netherlands) after written informed consent as per the Declara-

tion of Helsinki. moDCs were acquired by culturing ficoll gradient (SepMate™, StemCell,

#85450) obtained peripheral blood mononuclear cells (PBMCs) with 450 U/ml rhGM-CSF

(Immunotools, #11343128) and 300 U/ml rhIL-4 (Immunotools, #11340047) for 6 days.

rhGM-CSF and rhIL-4 were added again at day 3. moDCs were cultured in RPMI-1640 sup-

plemented with 10% FCS, 2 mM glutamine, and 1% pen/strep. Adherent cells were used for

assays. During all incubation steps, cells were kept at 37˚C with 5% CO2, unless stated

otherwise.

Adjuvants, reagents and antibodies

Lipopolysaccharide (LPS) was purchased from Sigma-Aldrich (St Louis, MO, USA), and used

at a concentration of 0.5 μg/ml. CpG-ODN 1668 (‘5-TCCATGACGTTCCTGATGCT-3’)

with total phosphorothioate-modified backbone was purchased from Sigma Genosys (Haver-

hill, UK), and used at a concentration of 1 μg/ml. R848 was purchased from Enzo Life Sciences,

and used at a concentration of 4 μg/ml. The NSAIDs diclofenac sodium salt (PHR1144-1G),

celecoxib (PHR1683-1G), and ibuprofen (PHR-1004-1G) were purchased from Sigma-Adrich.

For every experiment, a fresh dilution in medium was made. Celecoxib was first diluted in

DMSO and thereafter further diluted in medium (DMSO concentration <0.03%). For flow

cytometry experiments the following antibodies (clone name in brackets, followed by supplier,

and dilution) conjugated to various fluorophores were used: MHCII-BV510 (M5/114.15.2,

Antibodychain, 1:500), CD80-A488 (16-10A1, Antibodychain, 1:1000), CD11b-PerCP (M1/

70, Biolegend, 1:600), CD115-PeCy7 (AFS98, eBioscience, 1:200), CD11c-APC (HL3, BD,

1:400), and CD86-APCCy7 (GL-1, Biolegend, 1:800). Viability dye used was eFluor™ 450

(ThermoFisher, 1:4000).

RNA isolation and RT-qPCR

Total RNA was isolated 0.5x106 mBMDCs stimulated with TLR for 6 or 18 hours (hr), using

TRIzol reagent (Invitrogen Life Technologies) according to the manufacturer’s instructions,

with minor modifications. mRNA levels for the genes of interest were determined with a

CFX96 sequence detection system (Bio-Rad) using the Faststart SYBR green mastermix

(Roche) with SYBR Green as the fluorophore and gene-specific oligonucleotide primers. Prim-

ers used are COX1 FW TTACTATCCGTGCCAGAACCA, COX1 REV
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CCCGTGCGAGTACAATCACA, COX2 FW TTCAACACACTCTATCACTGGC, COX2 REV

AGAAGCGTTTGCGGTACTCAT, Rer1 FW GCCTTGGGAATTTACCACCT, Rer1 REV

CTTCGAATGAAGGGACGAAA. Quantitative PCR data were analyzed with the CFX Manager

V1.6.541.1028 software (Bio-Rad) and checked for correct amplification and dissociation of

the products. mRNA levels of the genes of interest were normalized to mRNA levels of Rer1

and were calculated according to the cycle threshold method.

In vitro cross-presentation assay

For in vitro cross-presentation assays 80x103 NSAID preincubated mBMDCs were pulsed

with 80 μg/ml of endotoxin-free chicken egg ovalbumin (OVA protein, Endograde, Hyglos

GmbH, Germany) in the presence of 400 ng/ml immune stimulatory complexes (ISCOMs).

After pulsing, cells were washed and cultured overnight with 80x103 B3Z cells. As a control for

cell viability and/or MHC-I expression levels, DCs were pulsed with 5 ng/ml OVA Kb peptide

(SIINFEKL, 257–264, AS-60193, Tebu-bio) 30 min before adding the B3Z cells. The presenta-

tion of OVA Kb peptide in H-2Kb results in production of β-galactosidase (LacZ) by B3Z cells,

which can be detected by adding 0.15 mM chlorophenolred-h-D-galactopyranoside (Calbio-

chem), 9 mM MgCl2, 0.125% NP40, and 7.5 mM DTT in PBS. Plates were incubated for 3 to 5

hr and absorbance values were measured at 595 nm using a photo spectrometer (Biorad).

Flow cytometry

Expression of maturation markers was assessed using flow cytometry. 15x104 NSAID preincu-

bated mBMDCs were stimulated with TLR ligands, washed with medium, and rested over-

night in fresh medium. Subsequently, medium was removed, and cells were washed with

phosphate buffered saline (PBS). Samples were incubated with viability dye for 15 minutes on

ice, and washed with PBS and thereafter washed with PBS supplemented with 0,5% bovine

serum albumin and 0,05% sodium azide (PBA). Samples were incubated with Fc-block

(CD16/32, clone 2.4G2, BD, 1:800) for 10 minutes on ice. Next, cells were incubated with fluo-

rescently labeled antibodies in PBA for 20 min on ice. Subsequently, cells were washed twice,

diluted in PBA and measured on FACS Canto.

Measurement soluble factors

15x104 NSAID preincubated mBMDCs were stimulated with TLR ligands, washed with

medium, and rested overnight in fresh medium. Supernatant was collected 16–24 hr after

incubation with adjuvants and stored at -80˚C. Cytokines (IL-6, IL-10, IL-12, and TNF-α)

were measured using ELISA kits (mIL-6: 88–7064, mIL-10: 88–7105, mIL-12p70: 88–7121,

mTNF-α: 88–7324, hIL-6: 88–7066, hIL-10: 88–7106, hIL-12: 88–7126, hTNF-α: 88–7346; all

from Invitrogen) according to the manufacturer’s instructions. PGE2 was measured using the

R&D kit (KGE004B), according to manufacturer’s instructions, with minor modifications. In

short, prior to the PGE2 measurement, large size proteins in the supernatant interfering with

the assay were removed using a perchloric-acid (PCA) precipitation. For this, 13.7% PCA

(SIGMA, 244252-100M) was added to supernatant. Supernatants were spun down for 5 min-

utes at maximum speed, aspirated to new plate, and neutralization was performed using 4N

NaOH.

Viability measurement

Metabolic activity as a measure for cell viability was assessed using the CCK8 kit (96992-

3000TESTS-F, Sigma-Aldrich). In short, 15x104 GMCSF DCs were cultured with NSAIDs for
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6h. The cells were washed, medium was replaced (100 μL) and 20 μL CCK8 reagent was added

to each well. Plates were incubated for 1 to 3 hr and absorbance values were measured at 450

nm using a photo spectrometer (Biorad).

Statistical analysis

Depending on the experimental layout, data were analyzed using a two-tailed Student’s t-test,

a one-way or 2-way ANOVA or mixed effects analysis with post hoc Dunnett’s or Sidak’s mul-

tiple comparisons test (medium versus rest) or Tukey’s multiple comparisons test, as indicated

in the figure legends. Differences were considered significant when P values were smaller than

0.05, while the following symbols were used: �P< 0.05; ��P< 0.01; ���P< 0.001. The statistical

analyses were performed in Graphpad Prism 8.0.1.

Results

TLR matured mBMDCs provide 3 key signals to induce CTLs: the presentation of extracellular

(tumor) antigens in the MHCI complex, costimulation, and cytokines [38]. mBMDCs also

respond to TLR triggering by a strong upregulation of COX2 mRNA expression, while COX-1

expression is down regulated (Fig 1A). This effect of TLR stimulation on the expression of

COX enzymes in mBMDC is also reflected by the increased production of PGE2 (Fig 1B) and

is in line with previous findings [50]. We then set out to explore the effect of NSAIDs on cross-

presentation, costimulation and cytokine production by DCs. For this, we pretreated

mBMDCs with NSAIDs for 6 hr, followed by a 2.5 hr induction of the DC cross-presentation

adjuvant ISCOMs or a 2.5 hr induction of DC maturation by the TLR ligands LPS, CpG, or

R848 (Fig 2A for experimental setup). This timing regimen was chosen as a 2.5 hr incubation

with ISCOMs or TLR-ligands is sufficient for the induction of cross-presentation, co-stimula-

tory marker expression and cytokine secretion by DCs (S1 Fig). Exposure of DC for 6 hr to

NSAIDs did not affect their viability (S2A Fig) nor the COX1 or COX2 expression (S2B Fig).

A 6 hr pre-incubation period with NSAIDs allowed us to study the early effects of NSAIDs on

DC function.

Fig 1. COX expression and PGE2 production upon TLR exposure. mBMDCs were treated for 6 hr (a) and 18 hr (a, b) with the TLR adjuvants LPS,

CpG, and R848. (a) RT-QPCR was performed for mRNA expression of COX1 and COX2 (mBMDCs, n = 6). (b) PGE2 was measured using a

competitive enzyme immunoassay in PCA-treated supernatant (n = 3). Results are shown as means with SEM. Statistical significance was calculated

using a one-way ANOVA with Dunnett’s multiple comparison test, medium versus rest.

https://doi.org/10.1371/journal.pone.0275906.g001
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NSAIDs do not affect ISCOM induced cross-presentation by mBMDCs

The effect of NSAIDs on the DC’s capacity to cross-present antigens was assessed using

mBMDCs treated with the model antigen OVA in combination with the cross-presentation

inducing ISCOM adjuvant as described previously [45]. Cross-presentation of the OVA pep-

tide (SIINFEKL) in MHCI molecules by DCs was detected upon co-culture with the OVA-spe-

cific B3Z reporter T cell hybridoma as a readout system (Fig 2A). As expected, OVA protein

cross-presentation by mBMDCs is greatly enhanced by the addition of ISCOMs (Fig 2B–2D).

Preincubation of DCs with the NSAIDs celecoxib (Fig 2B), diclofenac (Fig 2C) or ibuprofen

(Fig 2D) prior to exposure to OVA protein and ISCOMs did not affect cross-presentation of

OVA protein. B3Z activation by OVA peptide loaded control DC was similar in all conditions,

indicating that MHCI expression and viability was not affected by preincubation of the DCs

with NSAIDs. These results demonstrate that NSAIDs do not affect ISCOM induced cross-

presentation by mBMDCs.

Maturation marker profiles remain unaffected by NSAID exposure

The bone-marrow-derived DC cultures with GM-CSF give rise to two major DC subpopula-

tions [53], the GM-MAC (MHCIIlowCD11bhiCD115hi) and GM-DC (MHCIIhiCD11bintC-

D115low). This prompted us to assess whether NSAIDs specifically affect the development or

maturation of these different DC subpopulations (S3A Fig). Our flow cytometry data shows

that the percentage of total CD11c+ cells was slightly lowered by the 6 hr diclofenac preincuba-

tion, when stimulated with CpG (Fig 3A). Preincubation with ibuprofen dose-dependently

lowered CD11c+ population in all TLR-stimulated conditions (Fig 3A). The ratio between the

Fig 2. NSAIDs do not affect ISCOM induced cross-presentation. (a) Timeline shows the experimental setup for assessing cross-presentation, maturation

markers and cytokine production by mBMDCs. (b-d) mBMDCs were first pretreated with NSAIDs for 6 hr, washed and subsequently treated with OVA protein

and ISCOMs for 2.5 hr, and then co-cultured with B3Z T cells for 18 hr. As a positive control for viability and MHC-I levels, mBMDCs were pulsed with OVA

peptide (SIINFEKL) 0.5 hr before coculture with B3Z T cells (n = 4). ISCOM induced cross-presentation of OVA protein and stable loading of exogenous

SIINFEKL by celecoxib (b), diclofenac (c), and ibuprofen (d) pretreated DCs. Results are shown as means with SEM. Statistical significance was calculated using a

one-way ANOVA with Dunnett’s multiple comparison test, medium versus rest.

https://doi.org/10.1371/journal.pone.0275906.g002

PLOS ONE NSAIDs affect dendritic cell cytokine production

PLOS ONE | https://doi.org/10.1371/journal.pone.0275906 October 13, 2022 6 / 16

https://doi.org/10.1371/journal.pone.0275906.g002
https://doi.org/10.1371/journal.pone.0275906


subpopulations of GM-DCs versus GM-MACs was not significantly affected upon NSAID

exposure (Fig 3B).

Next, we assessed the expression of maturation markers CD80 and CD86 on total CD11c

+ DCs and the GM-DC subpopulation as this is the subpopulation expressing highest levels of

CD80 and CD86 (S3B Fig) following TLR stimulation. CD80 and CD86 are important

Fig 3. NSAIDs do not alter TLR-induced maturation marker expression. (a-d) mBMDCs were first pretreated with NSAIDs for 6 hr,

followed by a 2.5 hr TLR stimulation with LPS, CpG, or R848. After overnight rest in fresh medium, composition of the mBMDC culture (a, b)

and maturation marker expression (c, d) were analyzed using flow cytometry (n = 4). Results are shown as means with SEM. (a) Percentage

CD11c+ cells in BMDC culture. (b) GM-DC/GM-MAC ratio within CD11c+ population. (c) Mean Fluorescent Intensity (MFI) ± SEM of

CD80 and (d) CD86 in CD11c+ population. Statistical significance was calculated using a one-way ANOVA with Dunnett’s multiple

comparison test, medium versus rest.

https://doi.org/10.1371/journal.pone.0275906.g003
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co-stimulatory molecules expressed on mature DCs that help the activation of CD8+ T cells

towards effective CTLs. NSAIDs pretreatment did not significantly affect the expression levels

of CD80 and CD86 on CD11c+ DCs (Fig 3C and 3D). In the GMDC subpopulation only

minor differences were observed (S3C–S3E Fig). Together these results imply that preincuba-

tion with NSAIDs does not affect TLR-induced maturation marker expression.

NSAID exposure reduces TLR-induced cytokine production by mBMDCs

Cytokine secretion by DCs is the third signal essential for T cell activation [54], and also plays

an important role in the differentiation towards specific subtypes of T cells [55, 56]. Therefore,

we investigated cytokine production by mBMDCs after preincubation with different NSAIDs

and stimulation with different TLR adjuvants. As expected, DCs pulsed for 2.5 hr with adju-

vants increase their overnight production of IL-6, IL-10, IL-12 and TNF-α (S4A Fig). Interest-

ingly, preincubation with celecoxib reduced TLR-induced production of IL-10, IL-12, TNF-α,

and IL-6 (Fig 4A). Diclofenac pre-exposure significantly decreased IL-12 production upon

TLR stimulation (Fig 4B). Also a trend towards lower IL-10, IL-6 and TNF-α production after

CpG stimulation by diclofenac pretreated DCs was observed. Ibuprofen also strongly inhibited

IL-12 production of DCs (Fig 4C). In addition, also TNF-α and IL-6 production was decreased

after ibuprofen preincubation (Fig 4C). These results indicate that preincubation with NSAIDs

leads to decreased TLR-induced cytokine production by mBMDCs.

Fig 4. NSAID preincubation reduces TLR induced cytokine production. (a-c) mBMDCs were first pretreated with NSAIDs for 6 hr, followed by a 2.5 hr TLR

stimulation with LPS, CpG, or R848. After overnight rest in fresh medium, cytokines were measured using ELISA (n = 4). IL-10, IL-12, TNF-α, and IL-6 production after

TLR stimulation by (a) celecoxib, (b) diclofenac, and (c) ibuprofen preincubated DCs. Results are shown as means with SEM. Statistical significance was calculated using a

one-way ANOVA with Dunnett’s multiple comparison test, medium versus rest.

https://doi.org/10.1371/journal.pone.0275906.g004
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Cytokine secretion by mature human DCs is affected by exposure to

NSAIDs

To extrapolate our data on the effect of NSAIDs on cytokine production by mBMDCs to the

human situation, human monocyte derived DCs (moDCs) were cultured from human blood

and exposed to NSAIDs according to the same schedule (Fig 2A). Many reports have described

that myeloid DCs and moDCs do not express TLR9 or do not respond to its ligand CpG [57–

62]. We therefore used LPS and R848 as TLR stimuli. As expected, also human moDCs secrete

IL-6, IL-10 and TNF-α after 2.5 hr stimulation with adjuvants (S4B Fig). TNF-α was mainly

produced within the 2.5 hr stimulation period (S4B Fig) with R848, while IL-12 secretion was

not significantly detected after LPS nor R848 stimulation (S4B Fig). In line with our murine

data, also human moDCs show a trend towards diminished cytokine expression profile when

exposed to celecoxib or diclofenac prior to the TLR stimulation (Fig 5A and 5B). The

decreased production of TNF-α upon celecoxib or diclofenac preincubation was mainly

detected in the first 2.5 hr during TLR stimulation (S4C Fig). For ibuprofen treated moDCs,

the effect was less pronounced (Fig 5C). Altogether, TLR-stimulated human moDCs, like

mBMDCs, appear to produce less cytokines when pretreated with celecoxib and diclofenac.

Fig 5. Decreased cytokine production by moDCs upon TLR stimulation when preincubated with NSAIDs. (a-c) moDCs were first pretreated with

NSAIDs for 6 hr, followed by a 2.5 hr TLR stimulation with LPS or R848. After overnight rest in fresh medium, cytokines were measured using ELISA

(n = 5–6). IL-10, TNF-α, and IL-6 production after TLR stimulation by (a) celecoxib, (b) diclofenac, and (c) ibuprofen preincubated moDCs. Results are

shown as means with SEM. Statistical significance was calculated using Mixed-effects analysis with Dunnett’s multiple comparisons test.

https://doi.org/10.1371/journal.pone.0275906.g005

PLOS ONE NSAIDs affect dendritic cell cytokine production

PLOS ONE | https://doi.org/10.1371/journal.pone.0275906 October 13, 2022 9 / 16

https://doi.org/10.1371/journal.pone.0275906.g005
https://doi.org/10.1371/journal.pone.0275906


Discussion

There is compelling evidence that NSAIDs lower different cancer types (colon, breast, prostate

and lung) incidence and improve survival [29–35]. NSAIDs are suggested to play a role in the

modulation of anti-tumor immunity [22, 36, 37, 63]. Since DCs play a vital role in the anti-

tumor immunity cascade, we have studied the effects of NSAIDs on the three pathways (cross-

presentation, co-stimulation, cytokines) applied by DCs to induce tumor-specific CD8+ CTLs.

Our data demonstrate that celecoxib (selective COX2 inhibitor) and diclofenac and ibuprofen

(COX1/2 inhibitors) have no or little effect on DC cross-presentation and CD80/CD86 co-

stimulatory molecule expression, but reduce TLR-induced cytokine production by both

murine bone marrow-derived DCs and human moDCs.

Cross-presentation is a process primarily executed by DCs and is essential to initiate a cyto-

toxic T cell response to exogenous tumor antigens. In this study, we show that diclofenac, ibu-

profen and celecoxib had no effect on ISCOMs-induced cross-presentation and TLR-induced

(murine) DC maturation. Interestingly, in contrast to our results on freshly differentiated

DCs, Kim et al. has shown that immortalized DCs (DC2.4) are slightly restricted in cross-pre-

sentation of OVA present in biodegradable microspheres when cultured with ibuprofen [44].

Their basal CD80 and CD86 expression slightly increased upon 18 hr ibuprofen exposure but

not their phagocytic capacity [44]. The use of a different source of DCs, antigen delivery vehi-

cle and stimulation schedule (prolonged dosed and higher doses of ibuprofen) may explain

these differences. In line with our data, diclofenac does not alter nickel-induced human DC

maturation and CD86 expression [46].

Furthermore, we report that diclofenac strongly reduced the production of TLR-induced

pro- and anti-inflammatory cytokines by murine DCs, and a similar trend towards reduced

production was observed for human DCs. Statistical significance for NSAID-induced reduc-

tion in cytokine production by TLR stimulated moDCs was not reached, as the magnitude of

the effects were variable between donors.

The secretion of distinct soluble and membrane-bound molecules determines the down-

stream polarization of T cells towards type 1 or type 2 responses [64]. Th1 cells secrete IL-2

and IFN-γ, cytokines promoting differentiation and maturation of CD8+ T cells into CTLs

[65, 66]. Interfering with DC polarization and thereby cytokine production can thus affect T

cell skewing and thereby modify the outcome of anti-tumor immune responses. Previous stud-

ies showed that diclofenac induces the polarization towards Th1 instead of Th2 cells, as it sup-

presses type 2 (CCL17) DC cytokine secretion [46], and not type 1 cytokines (TNF-α, IL-

12p70). Another group showed that murine bone marrow-derived DCs co-cultured with gli-

oma cells show enhanced IL-12 and decreased IL-10 secretion in the presence of diclofenac

after stimulation with R848 [45]. Furthermore, ex vivo analyses revealed that tumor-infiltrating

DCs regained their capacity to produce IL-12 on R848 stimulation after diclofenac exposure

[45]. In contrast to our results where we saw a decrease in TLR-induced IL-12 production

after pretreatment with diclofenac, these studies indicate that diclofenac promotes Th1 differ-

entiation. This discrepancy possibly depends on the exposure time with NSAIDs, specific DC

subsets used and the presence of glioma cells. The environmental context is important for the

effect of NSAIDs on cytokine production by DCs. Future research will have to elucidate

whether (tumor)microenvironmental factors influence pro- and anti-inflammatory cytokine

production upon NSAID exposure.

Previously, it was shown that also celecoxib may modulate the balance between Th1 cyto-

kines and Th2 cytokines by increasing Th1 cytokine IL-12 and reducing Th2 cytokine IL-10

[47], although its effect on cytokine production was most evidently seen in combination with

tumor lysate. In contrast to the effect of celecoxib on tumor lysate induced DCs, we here show
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that celecoxib reduced TLR-induced production of IL-10, IL-12, TNF-α, and IL-6. It will be

interesting to study the effect of altered cytokine production by NSAIDs through DCs on T

cell skewing/differentiation in future experiments.

Our study underscores that combination of NSAIDs with DC-based immunotherapies

should be explored in more detail, as NSAIDs are able to alter DC function, and thereby could

affect (immuno)therapy outcome. Since NSAIDs also reduce immunosuppressive PGE2 levels

in the tumor microenvironment, their combination with different immunotherapies has been

studied preclinically. Both celecoxib and aspirin reduced PGE2 levels in the melanoma tumor

microenvironment, inhibited PGE2-dependent suppression of myeloid cell activation, and

increased anti-PD-1 efficacy [67]. Immature human DCs differentiate towards stable myeloid-

derived suppressor cells (MDSC) when exposed to PGE2 [68]. Celecoxib refined DC-based

immunotherapy by preventing the local and systemic expansion of all MDSC subtypes, reduc-

ing levels of reactive oxygen species and nitric oxide, and reversing T cell tolerance for meso-

thelioma [69]. Also in COX2 inhibitor SC5836-treated 4T1 bearing mice, MDSC

accumulation in the tumor was reduced, and primary outgrowth was delayed [70]. Celecoxib

administered after primary tumor establishment synergized with tumor lysate-pulsed DCs and

GM-CSF [71]. This combination therapy suppressed primary 4T1 murine mammary tumor

growth and markedly reduced the occurrence of lung metastases, due to an enhanced tumor-

specific immune response [71].

The direct effect of NSAIDs on DC polarization may play a pivotal role in the initiation of

anti-tumor immunity. Now that NSAIDs are explored for their beneficial properties in diverse

anti-tumor immunotherapies in different tumor types, it will be important to further study

their potential influence on treatment outcome.

Conclusion

Altogether we show that preincubation with NSAIDs does not affect ISCOM-induced cross-

presentation nor TLR-induced CD80 or CD86 co-stimulatory molecule expression. Cytokine

production by both mBMDCs and human moDCs, however, is diminished when DCs were

pretreated with celecoxib, diclofenac, or ibuprofen. Since the presence of NSAIDs can affect

DC polarization, giving NSAIDs to cancer patients might affect the initiation of the anti-

tumor immunity cascade, and thereby could affect treatment outcome.

Supporting information

S1 Fig. 2.5 hr stimulation induces cross-presentation, maturation markers, and sufficient

cytokine production after replacement medium. (a) Experimental design with different

incubation durations and stimuli. (b) mBMDCs were treated with OVA protein and ISCOMs

for indicated durations, and then co-cultured with B3Z T cells for 18 hr. As a positive control

for viability and MHC-I levels, mBMDCs were pulsed with OVA peptide (SIINFEKL) 0.5 hr

before coculture with B3Z T cells (n = 3). Statistical significance calculated using 2-way

ANOVA, Sidak’s multiple comparisons test (for medium versus ISCOM), Tukey’s multiple

comparisons test (for ISCOMs versus ISCOMs). mBMDCs were stimulated with LPS, CpG, or

R848 for indicated durations (c-e). After overnight rest in fresh medium (for 1, 2.5, and 5 hr

pulse) or overnight stimulation without rest in fresh medium (O/N stimulation), maturation

marker expression in CD11c+ cells was analyzed using flow cytometry (n = 5). Statistical sig-

nificance was calculated using a one-way ANOVA with Dunnett’s multiple comparison test,

medium versus rest. Directly after the pulse (d), and during the first and second 6 hr after

refreshment of the medium, cytokines IL-6, IL-10, IL-12 and TNF-α were measured using
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ELISA (n = 2–3). (b-d) Results are shown as means with SEM.

(TIF)

S2 Fig. Viability and COX1/2 expression is maintained after 6 hr NSAID stimulation. (a-b)

mBMDCs were treated for 6 hr with NSAIDs. (a) CCK8 assay as a read out for cell viability

and metabolic activity, after 6 hr stimulation with NSAIDs. Raw data–blanco depicted (n = 4).

Statistical significance was calculated using one-way ANOVA with Dunnett’s multiple com-

parisons test, medium versus rest. (b) RT-QPCR was performed for mRNA expression of

COX1 and COX2 (mBMDCs, n = 3–4). Results are shown as means with SEM. Statistical sig-

nificance was calculated using a two-tailed Student’s t-test.

(TIF)

S3 Fig. CD80 and CD86 expression in GMMAC and GMDC subsets. (a) Gating strategy of

mBMDCs to GMMAC (MHCIIlowCD11bhiCD115hi) and GMDCs (MHCIIhiCD11bintC-

D115low). mBMDCs were not pretreated (b), and first pretreated with NSAIDs (c) celecoxib,

(d) diclofenac, or (e) ibuprofen for 6 hr, followed by a 2.5 hr TLR stimulation with LPS, CpG

or R848. After overnight rest in fresh medium, maturation marker expression was analyzed

using flow cytometry (n = 4). Mean Fluorescent Intensity (MFI) ± SEM of CD80 and CD86 in

CD11c+ GMMAC (b) and GMDC (b-e) population. Statistical significance was calculated

using a one-way ANOVA with Dunnett’s multiple comparison test, medium versus rest.

(TIF)

S4 Fig. TLR induced cytokine production by mBMDCs and moDCs. mBMDCs (a, n = 4)

and moDCs (b-c, n = 5–6) were first pretreated with NSAIDs for 6 hr, followed by a 2.5 hr

TLR stimulation with LPS or R848. After overnight rest in fresh medium (a-b) and directly

after pulse (b-c), cytokines IL-6, IL-10, IL-12 (a-b), and TNF-α (a-c), were measured using

ELISA. Results are shown as means with SEM. Statistical significance was calculated using

Mixed-effects analysis with Dunnett’s multiple comparisons test, on raw data. (b) Detection

limit for hIL-12 is 50–4000 pg/ml.

(TIF)
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