
ORIGINAL RESEARCH
published: 15 November 2021

doi: 10.3389/fnbot.2021.762252

Frontiers in Neurorobotics | www.frontiersin.org 1 November 2021 | Volume 15 | Article 762252

Edited by:

Shin-Jye Lee,

National Chiao Tung University, Taiwan

Reviewed by:

Puming Wang,

Yunnan University, China

Jinjin Hai,

National Digital Switching System

Engineering and Technological

Research Centre, China

*Correspondence:

Yixiang Lu

lyxahu@ahu.edu.cn

Received: 21 August 2021

Accepted: 06 October 2021

Published: 15 November 2021

Citation:

Lu Y, Wang R, Gao Q, Sun D and

Zhu D (2021) Multi-Modal Image

Fusion Based on Matrix Product State

of Tensor.

Front. Neurorobot. 15:762252.

doi: 10.3389/fnbot.2021.762252

Multi-Modal Image Fusion Based on
Matrix Product State of Tensor
Yixiang Lu*, Rui Wang, Qingwei Gao, Dong Sun and De Zhu

Anhui University, Hefei, China

Multi-modal image fusion integrates different images of the same scene collected

by different sensors into one image, making the fused image recognizable by the

computer and perceived by human vision easily. The traditional tensor decomposition

is an approximate decomposition method and has been applied to image fusion. In

this way, the image details may be lost in the process of fusion image reconstruction.

To preserve the fine information of the images, an image fusion method based on

tensor matrix product decomposition is proposed to fuse multi-modal images in

this article. First, each source image is initialized into a separate third-order tensor.

Then, the tensor is decomposed into a matrix product form by using singular value

decomposition (SVD), and the Sigmoid function is used to fuse the features extracted

in the decomposition process. Finally, the fused image is reconstructed by multiplying

all the fused tensor components. Since the algorithm is based on a series of singular

value decomposition, a stable closed solution can be obtained and the calculation is

also simple. The experimental results show that the fusion image quality obtained by

this algorithm is superior to other algorithms in both objective evaluation metrics and

subjective evaluation.

Keywords: multi-modal, image fusion, tensor, matrix product state, singular value decomposition

1. INTRODUCTION

The purpose of image fusion is to synthesize multiple images of the same scene into a fusion image
containing part or all information of each source image (Zhang, 2004). The fused image contains
more information than each source image, thus, it is more suitable for machine processing and
human visual perception. Image fusion has a wide range of applications in many fields, such as
computer vision, remote sensing, medical imaging, and video surveillance (Goshtasby andNikolov,
2007). The same type of sensors acquire information in a similar way, so the single-modal image
fusion cannot provide information of the same scene from different aspects. On the contrary,
multi-modal image fusion (Ma et al., 2019) realizes the complementarity of different features of
the same scene through fusing the images collected by different types of sensors and generates an
informative image for subsequent processing. As typical multi-modal images, infrared and visible
images, CT and MRI images can provide distinctive features and complementary information, that
is, infrared images can capture thermal radiation signal and visible images can capture reflected
light signal; CT is mainly used for signal acquisition of sclerous tissue (e.g., bones), and MRI is
mainly used for signal acquisition of soft tissue. Therefore, multi-modal image fusion has a wide
range of applications in engineering practice.

To realize image fusion, many scholars have proposed a large number of fusion algorithms in
recent years. In general, the fusion methods can be divided into two categories: the spatial-domain
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methods and the transform-domain methods. The typical
methods in the first category include the weighted average
method and principal component analysis (PCA) method (Yu
et al., 2011) and so on. They fuse the gray values of image
pixels directly. Although the direct operation on the pixels has
low complexity, the fusion process is less robust to noise, and

FIGURE 1 | The matrix product state (MPS) form of X.

FIGURE 2 | The graphical representation of the sliding window technology.

FIGURE 3 | An example for visualizing the process of decomposition and fusion.

the results cannot meet the needs of the application in most
cases. To overcome this shortcoming, a fusion method based on
transform is proposed (Burt and Adelson, 1983; Haribabu and
Bindu, 2017; Li et al., 2019). In general, the transform-based
methods obtain the transformed coefficients of an image using a
certain set of base functions, then fuse these coefficients through
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certain fusion rules, and finally obtain the final fused image
through the corresponding inverse transform. For example,
Burt and Adelson (1983) formed a laplacian pyramid (LP)
by desampling and filtering source images, and then designed
different fusion strategies at each layer. Finally, the fused image
is obtained by applying the inverse transform on the fusion
coefficients. Haribabu and Bindu (2017) first decomposed the
source images by using discrete wavelet transform (DWT) and
fused the coefficients with predefined fusion rules, and then
obtained the final image by applying the inverse discrete wavelet
transform on fused coefficients. Because the transform-based
method employs the average weighted fusion rules for the low-
frequency components which carry the most energy of the image,
there will be something wrong with the contrast loss of the final
fused image.

In addition to traditional spatial-domain and transform-
domainmethods, sparse representation (SR) has been extensively
used in image fusion in recent years (Yang and Li, 2010; Jiang
and Wang, 2014; Liu et al., 2016; Zhang and Levine, 2016).
The SR method assumes that the signal to be processed satisfies
y ∈ Rn, then y = Dx, where D ∈ Rn×m(n << m) is an
overcomplete dictionary, and n is the dimensions of the signal
andm is the number of atoms in the dictionaryDwhich is formed
by a set of image subblocks, x is the sparse coefficients vector.
The fused image is reconstructed by means of fusing the sparse
coefficients. Although the SR-based method has achieved many
results in the field of image fusion, some detailed information will
be lost in the reconstructed image (e.g., the edges and textures

tend to be smoothed), which limits the ability of the SR to
express images (Yang and Li, 2010). To solve this problem, some
scholars proposed some improved algorithms (Jiang and Wang,
2014; Liu et al., 2016). For instance, Jiang and Wang (2014)
used morphological component analysis (MCA) to represent the
source imagesmore effectively. TheMCAmethod first applied SR
to separate the source images into two parts: cartoon and texture,
then different fusion rules were designed to fuse these two parts
respectively. Finally, a fused image with rich information was
obtained, and more characteristic features of the source images
were preserved.

As an extension of the vector and matrix, the tensor (Kolda
and Bader, 2009) plays an important role in the high-dimensional
data processing. In the field of computer science and technology,
a tensor is a multi-dimensional array. It can be extended to
some common data types, for example, a zero-order tensor can
be defined as a constant, the tensor of order 1 is defined as a
vector, the tensor of order 2 is defined as a matrix, the tensor
of order 3 and the tensor of order N (N ≥ 3) is called high-
order tensor. In essence, tensor decomposition is a high-order
generalization of matrix decomposition, which is mainly applied
to dimensionality reduction, sparse data filling, and implicit
relationship mining. The information processing method based
on tensor is more suitable for the processing of high-dimensional
data and the extraction of feature information than vector and
matrix, therefore, some relevant applications have been emerged
in recent years (Bengua et al., 2015, 2017a,b; Zhang et al., 2016).
In view of the excellent performance of tensors in representing

FIGURE 4 | Fusion flowchart based on MPS.
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high-dimensional data and feature extraction, a tensor-based
high-order singular value decomposition method (HOSVD)
(Liang et al., 2012) was applied to image fusion and achieved
good results. In this method, the source image is initialized into
a tensor which is subsequently decomposed into several sub-
tensors by using a sliding window technique. Then, the HOSVD
is applied on each sub-tensors to extract the corresponding
features which are fused by employing certain fusion rules.

Since HOSVD is an approximate decomposition method, it
will lead to the loss of information in the process of image
fusion. At the same time, the calculation process is large and
a stable closed-form solution cannot be obtained. To avoid

loss of detailed information, a novel method based on matrix
product state (MPS) is proposed to fuse the multi-modal images.
Compared with HOSVD, MPS achieves the improvement
of HOSVD and achieves the purpose of acquisition image
information accurately. Moreover, being different from SR who
linearly represents images by using atoms in an overcomplete
dictionary, MPS decomposes image tensor into MPS. The
main difference is that SR is approximate decomposition, while
MPS is accurate decomposition. Therefore, in terms of signal
reconstruction, MPS has better performance in signal expression.
The main contributions of the article are outlined as follows:
(i) Considering that image fusion depends more on local

FIGURE 5 | The output fused images in patch size experiment. (A) original image (infrared image); (B) original image (visible image); (C) patch of size 2× 2; (D) patch

of size 4× 4; (E) patch of size 6× 6; (F) patch of size 8× 8; (G) patch of size 10× 10; (H) patch of size 12× 12; (I) patch of size 14× 14; (J) patch of size 16× 16;

(K) patch of size 18× 18; (L) patch of size 20× 20.
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information of the source images and dividing the image into
blocks can get more details of each pixel, the two source images
are first divided into several sub-image blocks, and then the
corresponding sub-image blocks are initialized into sub-tensors;
(ii) We perform the MPS on each sub-tensor separately to
obtain the corresponding core matrixes. The core matrixes are
fused using the fusion rule based on the sigmoid function
which incorporates the conventional choose-max strategy and
the weighted average strategy. This fusion strategy can preserve
the features of the multi-modal source images and reduce the
loss of contrast to the greatest extent; (iii) Due to the application
of MPS, the computational complexity of image fusion based

TABLE 1 | The influence of patch size.

Patch size SD MI SSIM QG QP

2× 2 63.9385 0.9289 0.6683 0.6543 0.7358

4× 4 64.3397 0.8837 0.6680 0.6589 0.7677

6× 6 64.5772 0.8810 0.6679 0.6658 0.7819

8× 8 64.7225 0.8850 0.6678 0.6710 0.7893

10× 10 64.8229 0.8835 0.6681 0.6738 0.7903

12× 12 64.9079 0.8867 0.6686 0.6760 0.7900

14× 14 64.9586 0.8846 0.6695 0.6783 0.7907

16× 16 65.0244 0.8811 0.6699 0.6813 0.7915

18× 18 66.0479 0.8765 0.6543 0.6663 0.7574

20× 20 66.1362 0.9043 0.6532 0.6679 0.7573

Bold values mean maximum value of the same metrices in the same group of comparative

experiments.

on tensor is reduced dramatically. Hence, MPS decomposition
is realized by computing a series of sub-tensors with maximum
order 3. Moreover, a stable closed-form solution can also be
obtained in the proposed algorithm.

The rest of the article is organized as follows. Section 2
introduces the theory of matrix product decomposition. In
section 3, the algorithm principle and the fusion steps are
detailly discussed. Subsequently, the results of the experiments
are presented in section 4. Finally, some conclusions are drawn
in section 5.

2. MPS FOR TENSOR

2.1. Tensor
Tensor is a generalization of the vector. A vector is a kind of
tensor with order 1. For simplicity and accuracy of the following

TABLE 2 | The influence of step size.

Step size SD MI SSIM QG QP

1 65.0244 0.8811 0.6699 0.6813 0.7915

2 65.0206 0.8832 0.6697 0.6809 0.7910

4 65.0283 0.8905 0.6690 0.6775 0.7888

6 65.0316 0.9087 0.6673 0.6751 0.7835

8 65.0304 0.9223 0.6666 0.6753 0.7811

10 64.1665 0.9461 0.6630 0.6778 0.7752

Bold values mean maximum value of the same metrices in the same group of comparative

experiments.

FIGURE 6 | The output fused images in step size experiment. (A) original image (infrared image); (B) original image (visible image); (C) step size = 1; (D) step size = 2;

(E) step size = 4; (F) step size = 6; (G) step size = 8; (H) step size = 10.
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expressions, first, we introduce some notations about tensors.
The tensor of order 0 is a constant, represented by lowercase letter
x; the tensor of order 1 is a vector represented by a bold lowercase
letter x; the tensor of order 2 is a matrix represented by a bold
capital letter X; the tensor of order 3 is a tensor represented by
bold capital letters in italics X. In this way, a tensor of order N
and the size of each dimension are I1 × I2 × · · · × IN can be
expressed asX ∈ RI1×I2×···×IN , where Ii corresponds to the length
of the i-th dimension. In general, we use xi1 · · · xiN to represent
the (i1, · · · , iN)-th element of X.

2.2. MPS for Tensor
The MPS decomposition (Perez-Garcia et al., 2006; Schollwock,
2011; Schuch et al., 2011; Sanz et al., 2016) aims to decompose

TABLE 3 | Computation times of different algorithms.

Methods Times (s)

DWT 0.1796

LP 0.3812

SR 6.4527

DTCWT − SR 3.8822

VGG 2.5067

MPS 1.8357

an N-dimensional tensor X into the corresponding left-right
orthogonal factor matrix and a core matrix. First, all the
dimensions of an N-dimensional tensor X are rearranged, which
lets the dimension K corresponding to the number of images
to be fused, for example, if the number of source images is
equal to 2, then K = 2. Additionally, the tensor X satisfies X ∈

RI1×···×In−1×K×In×···×IN , I1 ≥ · · · ≥ In−1, In ≤ · · · ≤ IN , then the
elements in the tensorX can be expressed in the form ofMPS, and
the schematic diagram of MPS form of X is shown in Figure 1:

xi1···k···iN = x
(k)
i1···in···iN

≈ L
(1)
i1

· · · L
(n−1)
in−1

C
(n)
k
R
(n+1)
in

· · ·R
(N+1)
iN

.
(1)

L
(j)
ij

and R
(j)
i(j−1)

mentioned in the above formula are called left-

right orthogonal factor matrix with size δj−1 × δj, where δ0 =

δN+1 = 1, and they are all orthogonal:

Ij
∑

ij=1

(L
(j)
ij
)TL

(j)
ij

= I, (j = 1, · · · , n− 1) (2)

and

Ij−1
∑

ij−1=1

R
(j)
ij−1

(R
(j)
ij−1

)T = I, (j = n+ 1, · · · ,N + 1), (3)

where I is an identity matrix, Cn
k
is called core matrix.

FIGURE 7 | Comparison experimental results of infrared and visible images. (A) original figure (infrared image); (B) original figure (visible image); (C) discrete wavelet

transform (DWT); (D) laplacian pyramid (LP); (E) sparse representation (SR); (F) Dual-tree complex wavelet transform-sparse representation (DTCWT-SR); (G) VGG;

(H) Matrix product state (MPS).
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A tensor X can be decomposed into the form of (1) through
two series of SVD decomposition. The process includes a left-
to-right sweep and a right-to-left sweep. We summarize it in
Algorithm 1.

Algorithm 1: Feature Extraction based on MPS

Input:

X ∈ RI1×···×In−1×K×···×IN

Main Procedure:

1: SetW(1) = X(1);
2: for j = 0, 1, . . . , n− 1 do
3: W(j) = USV;
4: Reshape U(j) toU;

5: L
(j)
ij

= U(:, ij, :);

6: end for

7: Reshape V(n−1) toWN ∈ R(1n−1K···IN )×IN ;
8: for j = N,N − 1, . . . , n do

9: W(j) = USV;
10: Reshape V(j) to V;

11: R
(j+1)
ij−1

= V(:, ij−1, :);

12: end for

13: Reshape U(n)into C ∈ R(In−1K···IN )×IN ;
14: Set Cn

k
= C(:, k, :).

Output:

Core Matrix: Cn
k
∈ R1n−1×1n , k = 1, · · · ,K;

Left Factor Matrix: L
(j)
ij
(ij = 1, · · · , Ij, j = 1, · · · , n− 1);

Right Factor Matrix: R
(j)
i(j−1)

(i(j−1) = 1, · · · , I(j−1), j = n +

1, · · · ,N + 1)

3. IMAGE FUSION BASED ON MPS

In this section, the whole process of image fusion will be
described. The source images which have been reconstructed into
tensors are decomposed into a series of sub-tensors by using
the sliding window technology. The graphical representation of
the sliding window technology is shown in Figure 2. Then MPS
is applied to the decomposed sub-tensors to obtain the core
matrixes, and the sigmoid function is used for the fusion of each
pair of core matrixes to obtain the fused core matrixes.

The specific theoretical concepts of decomposition and fusion
are described in sections 3.1, 3.2, respectively, and the overall
process of image fusion proposed in this article is described in
section 3.3.

3.1. Tensor Decomposition by MPS
For the two source images A and B with sizes of M × N, we
use them to construct a tensor X with dimension M × N × 2.
Taking into account the importance of local information of the

FIGURE 8 | Comparison experimental results of infrared and visible images. (A) original image (infrared image); (B) original image (visible image); (C) DWT; (D) LP;

(E) SR; (F) DTCWT-SR; (G) VGG; (H) MPS.
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source image, a sliding window technology is used to decompose
it into several sub-tensors F with dimensionM × N × 2, and the
sliding step p used should satisfy p ≤ min{M,N}; the sub-tensor
F is obtained by the Algorithm 2, as follows. In Algorithm 2,
the fix((M − patch size)/stepsize) represents the nearest integer
to (M − patch size)/stepsize and fix((N − patch size)/stepsize)
represents the nearest integer to (N − patch size)/stepsize. Then,
MPS is applied to each of the sub-tensors.

Algorithm 2: The Sub-tensor obtained by Sliding Window
Technology

Input:

X ∈ RM×N×2

Main Procedure:

1: for i = 1, 1+ stepsize, . . . , 1+ stepsize× fix(
M−patch size

stepsize ) do

2: for j = 1, 1+ stepsize, . . . , 1+ stepsize×fix(
N−patch size

stepsize ) do

3: F = X(i : i+ patch size− 1, j+ patch size− 1, :);
4: end for

5: end for

Output:

sub-tensor: F ∈ RM×N×2;

3.2. Design of Fusion Rule
We introduce the sigmoid function as the fusion rule of the
characteristic coefficients, the fusion coefficient of each core
matrix can be defined as follows:

ei(l) =

M̄
∑

m=1

N̄
∑

n=1

|Ci(m, n, l)| l = 1, 2 (4)

where the subscript i indicates the number of each sub-image,
and l is the label of the corresponding source image.

For ei(l) obtained in the previous section, the fusion rule is
selected by comparing the values of ei(1) and ei(2). When ei(1)
is much less or much more than ei(2), we use the Max rule,
and when the relationship between ei(1) and ei(2) satisfy the
other relation, we use weighted fusion to fuse the corresponding
coefficient matrix and then get the final fusion coefficient matrix.
The function is as follows:

Di =
1

1+ exp(−kln( ei(1)
ei(2)

))

×Ci(:, :, 1)+
exp(−kln( ei(1)

ei(2)
))

1+ exp(−kln( ei(1)
ei(2)

))
× Ci(:, :, 2) (5)

FIGURE 9 | Comparison experimental results of infrared and visible images. (A) original image (infrared image); (B) original image (visible image); (C) DWT; (D) LP;

(E) SR; (F) DTCWT-SR; (G) VGG; (H) MPS.
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where k is the shrinkage factor of the mentioned sigmoid
function. After Di is obtained, each of the fused sub-image
blocks Fi can be reconstructed by the inverse operations of MPS.
Then the sub-image blocks Fi is used to obtain the final fused
image G.

To make the process of decomposition and fusion more
concrete, the first group of the experiment images is used as an
example to make a flowchart as shown in Figure 3:

3.3. The Process of Image Fusion Based on
MPS
The process of image fusion based on MPS can be divided into
the seven steps as follows

1. Input two source images;
2. Reconstructed the two source images into a third-order

tensor, and the sub-tensors are extracted by sliding window
technology;

3. Matrix product state decomposition is used on sub-tensors to
obtain left and right factor matrixes and core matrixes;

4. Compare the vectors representing source image 1 and source
image 2 in the core matrixes obtained in step 3, and obtain the
fused matrixes by corresponding their quantitative relations
to different situations of the sigmoid function, and then
construct it as sub-tensors;

5. Multiply the fused sub-tensors by left and right factor tensors
to obtain sub-images;

6. Sub-images addition;
7. Output fused image.

The specific flowchart is shown in Figure 4.

4. EXPERIMENTS

4.1. Objective Evaluation Metrics
1. Standard deviation (SD)

SD is defined as follows:

SD =

√

√

√

√

1

H ×W

H
∑

x=1

W
∑

y=1

(F(x, y)− µ)2, (6)

where µ is the average value of the fused image, H andW are
the length and width of the image, respectively. SD is mainly
used to measure the contrast of the fused image.

2. Mutual information (MI)
Mutual information is defined as follows:

MI =

L
∑

x=1

L
∑

y=1

hR,F(i, j)log2
hR,F(i, j)

hR(i)+ hF(j)
, (7)

where hR,F(i, j) is the normalized joint distribution gray
histogram between the source image R and the fused image

FIGURE 10 | Comparison experimental results of infrared and visible images. (A) original image (infrared image); (B) original image (visible image); (C) DWT; (D) LP;

(E) SR; (F) DTCWT-SR; (G) VGG; (H) MPS.
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F, hR(i) and hF(j) are the normalized marginal distribution
histogram of the two source images, respectively, L is the
number of gray levels.

3. Structural similarity (SSIM)
Structural similarity is defined as follows:

SSIM(x, y) = (
2µxµy + c1

µ2
x + µ2

y + 1
)α(

2σxσy + c1

σ 2
x + σ 2

y + 1
)β (

σxy + c3

σxσy + c3
)γ ,

(8)
where µx and µy are the average value of x and y. The middle
term represents the similarity of contrast, σx and σy is the
SD of x and y. The right term characterizes the structural
similarity, and σxy is the covariance of x and y. The c1, c2,
and c3 are three constants, and the parameters α, β , and γ ,
respectively, adjust the contribution of the three terms. SSIM
can calculate the similarity between the fused image and the
source image. Its value which is between 0 and 1 is closer to 1,
the more similar the two images are. The average value of the
fused image and the two source images A and B is taken as the
final evaluation metric, namely

SSIM =
1

2
(SSIMA + SSIMB). (9)

4. Gradient based fusion metric (QG)
QG is defined as follows:

QG =

∑H
x=1

∑W
y=1(QAF(x, y)wA (x, y)+ QBF(x, y)wB (x, y))
∑H

x=1

∑W
y=1(wA (x, y)+ wB (x, y))

,

(10)
where QAF(x, y) = QAFg (x, y)QAFα

(x, y), at each pixel
(x, y),QAFg (x, y) and QAFα

(x, y) denote the edge strength and
orientation preservation values. QBF(x, y) is defined as the
same as QAF(x, y). The weighting factors wA (x, y) and wB (x, y)
indicate the significance of QAF(x, y) and QBF(x, y). QG is an
important fusion image quality evaluation method computing
the amount of gradient information that is injected into the
fused image from the source image.

5. Phase congruency based fusion metric (QP)
The QP is defined as follows:

QP = (Pp)
α(PM)β (Pm)

γ , (11)

where p,M, andm refer to phase congruency, maximum, and
minimum moments. The parameters α, β , and γ are set to 1
in this article. For more detailed information on parameters,
please refer to the article Hong (2000).QP measures the extent
that the salient features in the source image are preserved.

FIGURE 11 | Comparison experimental results of infrared and visible images. (A) original image (infrared image); (B) original image (visible image); (C) DWT; (D) LP;

(E) SR; (F) DTCWT-SR; (G) VGG; (H) MPS.
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4.2. Study of Patch Size and Step Size
Considering the sliding window technology is used, we will first
study the respective influence of the size of the sub-image block
and the step size of the sliding window on the performance of
the fusion image experimentally. In the following statement we
use patch size and step size to call the two factors briefly. To
obtain the optimal patch size and step size, we will use a pair
of infrared and visible images as source images, as shown in
Figures 5A,B. In the experiment of patch size, the patch size is set
to 2×2, 4×4, 6×6, 8×8, 10×10, 12×12, 14×14, 16×16, 18×18,
and 20 × 20 with the step size fixed to 1 and shrinkage factor
fixed to 200. In the experiment of step size, the step size is set
to 1, 2, 4, 6, 8, and 10 with the patch size fixed to 16 × 16 and
the shrinkage factor fixed to 200. The experimental results based
on the objective evaluation metrics are shown in Tables 1, 2. The
output fused images are shown in Figures 5, 6.

It can be seen clearly from Table 1, in most cases, that the
best results can be obtained when the size of the sub-image block
is 16 × 16. According to simple analysis, when the sub-image
block is too small, the image characteristics cannot be effectively
represented. Additionally, it can be seen from Table 2 that when
the step size is 1, the best result can be obtained. According to
simple analysis, when the step size is too large, local information
of the image may be lost or cannot be displayed well. Therefore,
the in following experiments, the patch size was set to 16 × 16,
and the step size was set to 1.

4.3. Computation Complexity
The computation time of each group of experimental images
is recorded when different fusion algorithms are used.
Experimental results show that the complexity of the proposed
algorithm is lower than other algorithms. The results are shown
in Table 3 as follows:

All the codes are performed under MATLAB R2014a running
on computer equipment with an Intel i7-7700K CPU (4.2
GHz) and 16 GB of RAM. As can be seen from the table,
compared with SR and Dual-tree complex wavelet transform-
sparse representation (DTCWT-SR), the running of the proposed
algorithm is faster. In general, the computational complexity of
the proposed algorithm is reduced.

4.4. Experimental Results and Discussion
In this section, the effectiveness of the proposedmethod is further
verified by comparing the experimental results of this algorithm
with other fusion methods. The comparison methods used are
DWT (Haribabu and Bindu, 2017) and LP (Burt and Adelson,
1983), SR-based methods (Liu et al., 2016), VGG-Net (Hui et al.,
2018), and DTCWT-SR (Singh et al., 2012). In addition to the
infrared and visible images used in the previous section, CT and
MRI medical images are also used for contrast experiments. The
performance of each algorithm is evaluated by calculating the
evaluation metrics based on the fusion results. In the experiment,
all the experimental source image size is 256×256, the fixed patch

FIGURE 12 | Comparison experimental results of CT and MRI images. (A) original image (CT); (B) original image (MRI); (C) DWT; (D) LP; (E) SR; (F) DTCWT-SR; (G)

VGG; (H) MPS.
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FIGURE 13 | Comparison experimental results of CT and MRI images. (A) original image (CT); (B) original image (MRI); (C) DWT; (D) LP; (E) SR; (F) DTCWT-SR; (G)

VGG; (H) MPS.

FIGURE 14 | Comparison experimental results of CT and MRI images. (A) original image (CT); (B) original image (MRI); (C) DWT; (D) LP; (E) SR; (F) DTCWT-SR; (G)

VGG; (H) MPS.
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FIGURE 15 | Comparison experimental results of CT and MRI images. (A) original image (CT); (B) original image (MRI); (C) DWT; (D) LP; (E) SR; (F) DTCWT-SR; (G)

VGG; (H) MPS.

size is 16 × 16, the step size is 1, and the shrinkage factor k is
200. The proposed method and several comparison algorithms
are applied to nine pairs of source images. The experimental
results are shown in Figures 7–15, respectively. The objective
evaluation metrics values of the nine pairs of images are shown
in Tables 4, 5.

It can be seen from the table that in most cases, the algorithm
proposed in this article can achieve optimal results, especially for
CT and MRI images, the various metrics of the results of MPS
are much higher than other methods. For infrared and visible
images, the method in this article can also achieve optimal results
under more than half of the evaluation metrics. These results
show that the proposed method is better than other methods for
multi-modal image fusion. This advantage mainly benefits from
two aspects: (i) The sliding window method is adopted to divide
the image into several sub-images, so the local information of
the image can be captured well; (ii) MPS method is an accurate
decomposition and reconstruction method, so in the process
of image fusion, there will be no loss of information due to
the solution.

Further analysis of the experimental results shows that: (i)
On the whole, VGG-Net has the worst performance in all cases.
Compared with other comparison methods, there is a big gap
in various evaluation metrics. This is because the information
captured is insufficient in the layer-by-layer feature extraction
of the source image, and when the details of the fusion image

are weighted by the final weight graph, the contrast of the initial
detail part of the fusion image is reduced; (ii) Among the two
multi-scale methods used, DWT fusion method performs poorly.
This is because the DWT method is based on Haar wavelet
to achieve fusion, which can only capture image features in
horizontal and vertical directions but cannot capture more basic
features of the image; LP method is better than the DWTmethod
because the Laplacian pyramid generates only one band-pass
component at each scale, which reduces the possibility of being
affected by noise; (iii) The results obtained by SR method are
better than other multi-scale methods in most cases but not
as good as the proposed method. This is because the signal
representation ability of SR is better than that of multi-scale
transformation, and errors will occur in the process of signal
reconstruction, which is unavoidable for the SR method. The
method proposed in this article can effectively avoid this problem
by non-destructive tensor reconstruction. In addition, the “max-
L1” rule of direct fusion in the spatial domain will lead to spatial
inconsistency, which affects the performance of the SR method;
(iv) DTCWT-SR is an method that multi-scale method combined
with SR method. By comparing the objective evaluation metrics,
the fusion performance of the algorithm is better than SR in some
aspects, but it is still poor compared with MPS.

In addition to objective evaluation, the performance of
the algorithm in this article is also discussed through some
visual comparisons of the fused images. In general, the
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TABLE 4 | Comparison of objective evaluation metrics of infrared and visible images.

Figure Metrics DWT LP SR DTCWT-SR VGG MPS

SD 57.3495 59.1760 55.0023 65.0175 49.1788 65.0244

MI 0.3915 0.3981 0.7197 0.5625 0.4373 0.8811

Figures 7A,B SSIM 0.6308 0.6481 0.6602 0.6025 0.6266 0.6699

QG 0.6573 0.6990 0.7014 0.6874 0.5975 0.6813

QP 0.6769 0.7765 0.7392 0.7586 0.7139 0.7916

SD 37.3080 39.6529 38.5454 41.7521 32.5971 42.1726

MI 0.5262 0.5779 0.6457 0.5969 0.6614 0.9720

Figures 8A,B SSIM 0.7674 0.7688 0.8170 0.8013 0.7603 0.8017

QG 0.5558 0.6168 0.5753 0.6094 0.5995 0.6748

QP 0.6769 0.7764 0.6895 0.7632 0.7659 0.8349

SD 31.6360 35.0567 35.3218 36.0795 23.3351 35.0392

MI 0.3357 0.4055 0.4509 0.3861 0.4190 0.9292

Figures 9A,B SSIM 0.5701 0.6088 0.5350 0.4449 0.4284 0.6157

QG 0.5755 0.6560 0.4487 0.5945 0.5352 0.7249

QP 0.4050 0.5384 0.2579 0.5002 0.5816 0.7004

SD 28.3593 29.2224 28.5693 29.7191 22.83747 29.8865

MI 0.2238 0.2356 0.2720 0.2582 0.2604 0.7066

Figures 10A,B SSIM 0.6288 0.7088 0.6331 0.4864 0.5494 0.6926

QG 0.3999 0.4835 0.3304 0.4211 0.3482 0.5204

QP 0.1892 0.2996 0.1220 0.2577 0.2541 0.3927

SD 23.9236 25.6275 31.2000 39.5077 29.1652 31.7625

MI 0.1528 0.1573 0.2883 0.4184 0.3954 0.6704

Figures 11A,B SSIM 0.4223 0.4544 0.4624 0.4025 0.4351 0.4911

QG 0.4217 0.5184 0.3987 0.5021 0.3749 0.5204

QP 0.2256 0.3745 0.1827 0.3612 0.2683 0.4304

Bold values mean maximum value of the same metrices in the same group of comparative experiments.

proposed method achieves the best visual effect among all the
fusion images.

The fusion results of infrared-visible images are shown in
Figures 7–11. It can be seen from the figure that the method
proposed in this article has good adaptability, and the fusion
images are obtained to retain the information of the infrared
and visible images, respectively. In Figure 7, both the multi-
scale fusion method and SR show varying degrees of artificial
traces at the junction between the trees and the sky in the upper
left corner, while DTCWT-SR and VGG-Net resulted in severe
contrast loss. In Figure 8, the white squares in infrared picture
are dimming in varying degrees in DWT, LP, SR, DTCWT-SR,
and VGG-Net methods, and the leaf luster in the visible image is
not well-displayed in the VGG-Net method. In Figure 9, DWT
and SR show the phenomenon of information loss. LP, DTCWT-
SR, and VGG can get relatively complete fusion images, but the
brightness is weaker than MPS. The clarity of the billboard in
the upper left corner of the fused image is better in the MPS
method. In Figure 10, the fused images obtained by DWT and SR
show some small black blocks, that is information loss, while the
human shape brightness on the right side of the images obtained
by LP, DTCWT-SR, and VGG method is low. The reason for
these shortcomings is the fusion rules used in the fusion process

all have a certain degree of weighting on the source image. Our
fusion rules based on the sigmoid function can well avoid these
shortcomings, that is, in the image, whose colors are only black
and white, the weight of the white part of the image will be much
larger than that of the black part, thus, evolving into the Choose-
max rule. In Figure 11, compared with the other five comparison
methods, it can be seen that the human figure on the right and the
branch on the lower right corner of the fusion image obtained by
MPS have the highest resolution.

Figures 12–15 are the fusion results of CT and MRI medical
images. It can be seen from the experimental results that the
DWT method cannot to be applied to the fusion of medical
images, and the other four methods can obtain a complete
image. In Figure 12, LP, DTCWT-SR, and VGG-Net methods
have no loss in details, but the sharpness of the light and dark
junction is insufficient, the edge is blurred, and the contrast is
lost. However, the bottom of the fused image obtained by the
SR method is fractured, indicating that there is information loss.
In Figure 13, the spine in the lower right corner and the jaw in
the lower left corner of the image obtained by MPS were more
clear than the other five methods, the brain vein was also clearer,
and the contrast was higher than the other five methods. In
Figure 14, the fused images obtained by LP and SRmethods were
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TABLE 5 | Comparison of objective evaluation metrics of CT and MRI images.

Figure Metrics DWT LP SR DTCWT-SR VGG MPS

SD 56.2694 60.5508 59.2485 72.1939 49.4054 73.6843

MI 0.6266 0.6713 0.7032 0.7449 0.6849 1.0761

Figures 12A,B SSIM 0.6846 0.7114 0.7088 0.6631 0.5067 0.7318

QG 0.6618 0.6706 0.6818 0.6728 0.3410 0.7696

QP 0.3756 0.4625 0.2952 0.3945 0.5255 0.6941

SD 75.3185 77.7486 80.6627 82.7177 68.0464 86.4508

MI 0.4175 0.4496 0.6142 0.4336 0.5063 0.7824

Figures 13A,B SSIM 0.5358 0.5861 0.5921 0.5969 0.5787 0.6041

QG 0.4343 0.5262 0.5425 0.4216 0.4322 0.5806

QP 0.2928 0.4069 0.3859 0.3193 0.3986 0.5129

SD 45.5362 53.7899 55.2056 53.5713 37.3261 59.2069

MI 0.4510 0.4551 0.8655 0.3547 0.6078 1.1221

Figures 14A,B SSIM 0.3849 0.4403 0.4937 0.5016 0.3702 0.5057

QG 0.6453 0.6430 0.8465 0.8056 0.6750 0.9191

QP 0.2833 0.5291 0.5418 0.5613 0.5755 0.5769

SD 62.0558 66.6555 65.3679 69.7711 55.0330 72.7695

MI 0.6098 0.6060 0.7530 0.4336 0.6993 0.9532

Figures 15A,B SSIM 0.5962 0.6136 0.6569 0.6410 0.5476 0.6756

QG 0.5955 0.5743 0.6552 0.3626 0.3392 0.7100

QP 0.2531 0.4005 0.3128 0.2664 0.3675 0.6454

Bold values mean maximum value of the same metrices in the same group of comparative experiments.

fractured at the lower right corner. Although DTCWT-SR and
VGG methods obtained relatively complete fusion images, there
is a certain degree of contrast loss. In Figure 15, LP, DTCWT-SR,
and VGG-Net methods have some contrast loss, especially in the
middle part, at the same time, the image obtained by the SR
method presents spatial dislocation at both sides of the eyeball
and a certain degree of distortion appears at the position of white
connection of the two images. The SR method also has similar
shortcomings in this regard, please refer to the lower right corner
of the image.

5. CONCLUSION

In this article, we propose a method based on MPS for multi-
modal image fusion. First, the source images are initialized into
a three-dimensional tensor, and then the tensor is decomposed
into several sub-tensors by using a sliding window to obtain
the corresponding features. The core matrix is fused by the
fusion rule based on the sigmoid function, and the fused
image is obtained by multiplying the left-right factor matrix.
In this article, we use a sliding window to avoid blocking
effects, and fully consider the local information of the source
images by dividing the source image into a set of sub-images.
The experimental results show that the proposed algorithm is
feasible and effective for image fusion. Being different from
the average fusion rule of the multi-scale method and the
“Max-L1” fusion rule of the SR method, the fusion rule based
on the sigmoid function used in the article is more effective,
but it also makes the fusion process more complicated of

the proposed method. Future study will focus on further
exploring a more effective fusion rule to improve the fusion
results.
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