
Cone dystrophy (CD) and cone-rod dystrophy (CRD) are 
members of a heterogeneous group of inherited progressive 
retinal disorders featuring predominant cone cell dysfunction 
[1]. The prevalence of CD and CRD is approximately 1:40,000 
worldwide, and the two diseases are considerably similar 
clinically and genetically: Both diseases are characterized by 
a loss of visual acuity, disturbance in color vision, and photo-
phobia and result in a central scotoma. Furthermore, cone 
photoreceptor responses observed using electroretinography 
(ERG) are impaired or extinguished in CD and CRD cases. 
Patients with CD exhibit normal rod responses initially, but 
many of these patients develop rod dysfunction later in life; 
thus, definitively distinguishing between CD and CRD is not 
straightforward [2,3].

In the case of CD and CRD, all modes of gene inheritance 
have been detected, and to date, 30 genes have been reported 
as causative genes of these retinal diseases in the RetNet 
database (accessed on March 20, 2015). In previous studies, 
mutational analysis was performed mainly on single genes or 

on a set of genes by using Sanger sequencing or microarray 
techniques [1,4,5]. However, with the recent development of 
next-generation sequencing, all of the exons of multiple genes 
can be sequenced in parallel. Thus far, only a few studies have 
used systematic exome-sequencing analysis for patients with 
CD or CRD, but the studies suggest that the distribution of 
the causative genes might differ according to ethnicity [6-9]. 
Moreover, certain studies have shown that genes previously 
reported to be associated with other retinal dystrophies might 
cause CD or CRD [10].

In this study, we conducted a comprehensive molecular 
analysis of 43 Japanese patients with CD or CRD by using a 
targeted exome-sequencing approach. We analyzed all retinal 
and optic-nerve disease genes reported in the RetNet database 
at the time this study was designed (193 genes), including 
all causative genes of CD or CRD. We expect our results 
to contribute to the catalog of genetic variations in Japanese 
patients with CD and CRD.

METHODS

All procedures used in this study adhered to the tenets of 
the Declaration of Helsinki. The institutional review board 
and the ethics committee of each institution approved the 
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study protocols. All patients and their relatives were fully 
informed of the purpose and procedures of this study, and 
written consent was obtained from each participant.

Study participants: We recruited 43 Japanese patients with 
CD or CRD who visited the Department of Ophthalmology 
and Visual Sciences at the Kyoto University Graduate School 
of Medicine, Kyoto, Japan, between January 2011 and 
December 2012 and agreed to participate in the study. An 
additional 26 patients with other inherited retinal diseases, 
carrying 33 identified variants, were investigated to evaluate 
the integrity of the current approach [11].

CD and CRD were diagnosed by two retina specialists 
(authors A.O. and M.O.) based on comprehensive ophthal-
mologic examinations. When the two diagnoses disagreed, 
another retina specialist (author K.O.) arbitrated. The criteria 
for inclusion in the CD diagnostic group were a progressive 
decline in visual acuity, the presence of a central scotoma, 
and reduced cone responses from full-field ERG but normal 
rod responses. Full-field ERG was performed according to 
the protocol of the International Society for Clinical Elec-
trophysiology of Vision (ISCEV) [12]. Inclusion in the CRD 
diagnostic group was based on the following criteria: a 
progressive decline in visual acuity, the presence of a central 
scotoma, and reduced responses of cones and rods in full-
field ERG, with cone functions equally or more severely 
impaired than rod function. Atrophic changes in the macula 
were confirmed in most of the patients by using ophthal-
moscopy and optical coherence tomography (OCT) imaging. 
We excluded patients with presumed Stargardt disease who 
exhibited subretinal yellow-white flecks or the typical dark 
choroid sign in fluorescein angiograms. Patients with central 
areolar choroidal dystrophy, pattern dystrophy, vitelliform 
macular dystrophy, age-related macular degeneration, and 
syndromic disorders were also excluded from this study. A 
detailed family history was obtained through patient inter-
views, and the presumed inheritance traits were determined 
using this information. Genomic DNA was extracted and 
purified from the peripheral blood of the patients and their 
available family members by using a DNA extraction kit 
(QuickGene-610L; Fujifilm, Minato, Tokyo, Japan).

Target capture and next-generation sequencing: A capture 
panel of inherited retinal-disease genes was previously 
designed and assessed by our group [11]. The capture panel 
comprised 2,433,298 bp that covered all exons together with 
the flanking exon and intron boundaries (±25 bp) of 365 
genes, including all 193 genes related to retinal and optic 
diseases that had been reported in RetNet at the time this 
study was designed (December 26, 2012). Precapture Illu-
mina libraries were generated as previously described [11]. 

A custom-designed HaloPlex Target Enrichment Kit 2.5 Mb 
(Agilent Technologies, Santa Clara, CA) was used for target 
enrichment, according to the manufacturer’s protocol. Subse-
quently, DNA libraries were quantified and sequenced as 100 
bp paired-end reads by using the Illumina HiSeq 2500 system 
(Illumina, San Diego, CA) according to the manufacturer’s 
protocols.

Data analysis and interpretation of genetic variants: Data 
were processed using our in-house pipeline, and several 
filtering steps were applied to determine the pathogenicity 
of the variants as previously described [11]. The analysis was 
focused specifically on the variants of the 193 genes reported 
in the RetNet database, which included all identified causative 
genes of CD or CRD. Because CD and CRD are rare Mende-
lian genetic disorders, we excluded variants that exhibited 
an allele frequency >0.5% (for recessive variants) or >0.1% 
(for dominant variants) in any of the following databases: 
1000 Genomes [13], NHLBI GO Exome Sequencing Project 
(ESP6500), and Human Genetic Variation Database, which 
contains the genetic variations of 1,208 Japanese patients. 
To predict the effect of missense variants, we used dbNSFP 
[14], which contains seven well-established in silico predic-
tion programs (Scale-Invariant Feature Transform [SIFT], 
Polyphen2, LRT, MutationTaster, MutationAssessor, PhyloP, 
and GERP++); only variants that were predicted to be patho-
genic by at least five of the seven algorithms are reported 
here. For splice-site variants, we used the prediction program 
MaxEntScan [15], and variants whose scores differed by >5 
between the wild-type and mutant sequences were considered 
pathogenic. The Human Gene Mutation Database (HGMD) 
was used to screen mutations reported in published studies.

All mutations and potential pathogenic variants were 
validated using conventional Sanger sequencing methods. 
Segregation analysis was performed if DNA from family 
members was available. As for novel mutations, we checked 
the Exome Aggregation Consortium (ExAC) database 
(Cambridge, MA; accessed November 2015) and confirmed 
that none of them were registered at the time of analysis.

RESULTS

Before the sequence analysis, CD and CRD were diagnosed 
in 17 and 26 of the 43 participants, respectively. The inheri-
tance patterns of the causative genes were determined to be 
autosomal dominant (ad) in nine patients, autosomal recessive 
(ar) in eight patients, and simplex in 26 patients. These cases 
included one consanguineous pair of patients with adCRD (a 
parent–child relationship).

Targeted sequencing and data processing: The targeted gene-
capture and sequencing analysis described in the preceding 
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section was applied to the 43 Japanese patients with CD or 
CRD, and the data were processed using our bioinformatics 
pipeline [11]. In a few cases (7/43, 16.3%), the coverage 
obtained was lower than that in others, but the mean and 
median coverages of the 193 RetNet genes in all samples were 
269X and 260X, respectively. Within the targeted region, 
93.2% of the bases showed >10X coverage and 90.1% showed 
>20X coverage, which suggested that sufficient coverage was 
achieved [11]. Among the 3,619 targeted exons, only 1.46% 
were covered at <5X (Appendix 1).

After automated variant detection, a mean of 507 raw 
variants and small insertions or deletions per sample were 
identified in the exons and corresponding splice junctions. 
When we used our systematic data-filtering method, we 
detected an average of 6.88 rare variants that were likely 
to cause a deleterious protein-coding change. All variants 
present in the 26 positive-control samples were successfully 
detected after the stringent filtering steps, which excluded 
putative false-positive variants and reconfirmed the integrity 
of our approach [11].

Mutation analysis of patients: Pathogenic mutations were 
identified in 12 of the 43 patients (27.9%). A total of 14 
distinct mutations were identified, including ten reported 
mutations and four novel mutations. Furthermore, one novel 

heterozygous putative pathogenic mutation was identified in 
CRX (OMIM: 602225; c.284delG), and one novel homozy-
gous nonsense mutation was identified in RGS9BP (OMIM 
607814; c.211G>T (p.E71*)), which is a causative gene for 
bradyopsia (Table 1). Table 2 lists the novel missense muta-
tions predicted to be pathogenic by using a combination of in 
silico prediction tools. Gene reference numbers are shown in 
Appendix 2. Figure 1 shows the pedigrees of the 12 families 
carrying the pathogenic mutations, and the phenotype data of 
these patients are shown in Appendix 3 and Figure 2, Figure 
3, and Figure 4.

Patients carrying mutations in known CD or CRD genes: 
Among the 12 resolved patients, eight known mutations 
were identified in the genes ABCA4 (OMIM: 601691), CRX, 
GUCY2D (OMIM 600179), KCNV2 (OMIM 607604), PROM1 
(OMIM 604365), and PRPH2 (OMIM 179605), whereas 
four novel mutations were identified in ABCA4, CDHR1 
(OMIM 609502), CRB1 (OMIM 604210), and KCNV2 (Table 
1). The pair of familial-related cases (K6073 and K6205) 
was included in this group. We included proband K6247, 
who carried the novel homozygous splice-site mutation 
c.652+1_652+4del in CRB1, in this group because patients 
harboring the CRB1 mutation occasionally exhibit CRD or 
macular dystrophy phenotypes [10,16-18]. Three probands 
(K1741, K2039, and K6120) were discovered to carry 

Table 1. Known mutations and novel potentially causative changes detected in patients. 

ID Type Phenotype Gene Mutation   Reference rs ID
Patients harboring known mutations
K1741 simplex CRD ABCA4 c.6445C>T p.R2149* (homo) [19,21] rs61750654
K2022 ad CD PRPH2 c.589A>G p.K197E (hetero) [38] rs62645931
K2039 simplex CRD ABCA4 c.1760+2T>G (homo) [20,30] rs61751385
K3341 ad CD GUCY2D c.2512C>T p.R838C (hetero) [39] rs61750172
K6073 ad CRD PROM1 c.1117C>T p.R373C (hetero) [40] rs137853006
K6120 ar CRD ABCA4 c.1957C>T p.R653C (homo) [21,31] rs61749420
K6205 ad CRD PROM1 c.1117C>T p.R373C (hetero) [40] rs137853006
K6343 simplex CD CRX c.121C>T p.R41W (hetero) [41] rs104894672

Patients harboring at least one novel mutation
K2044 ar CRD ABCA4 c.3050+1G>A (homo) Novel NA
K6140 simplex CD CDHR1 c.386A>G p.N129S (homo) Novel NA
K6247 ar CRD CRB1 c.652+1_652+4del (homo) Novel NA
K6496 simplex CD KCNV2 c.529T>C p.C177R (hetero) [42] NA
        c.454G>A p.D152N (hetero) Novel NA
K6345 simplex CRD CRX c.284delG (hetero) Novel NA
K3479 ar Bradyopsia RGS9BP c.211G>T p.E71* (homo) Novel NA

CD: cone dystrophy; CRD: cone-rod dystrophy; ad: autosomal dominant; ar: autosomal recessive; hetero: heterozygous; homo: homozy-
gous; NA: not available. K6345 and K3479 were classified as unresolved cases based on the criteria used in this study.
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homozygous mutations in ABCA4 (c.6445C>T (p.R2149*), 
c.1760+2T>G, and c.1957C>T (p.R653C), respectively) that 
are known to cause Stargardt disease. The mutations are 
associated with early onset macular degeneration [6,19,20], 
vessel attenuation [6], patchy parafoveal atrophy surrounded 
by numerous yellow-white flecks [21], or retinitis pigmentosa 
[20] in certain cases. The three patients in this study (K1741, 
K2039, and K6120) had experienced early onset visual-acuity 
decline and presented pan-retinal degeneration but did not 
exhibit yellowish-white flecks; this agrees with previous 
reports suggesting the phenotypic variation. Additional infor-
mation is provided in Appendix 4, which lists all the other 
potentially pathogenic rare variants identified in patients who 
carried pathogenic mutations in known CD or CRD genes.

In one simplex case (K6345), we identified a heterozy-
gous putative pathogenic mutation, c.284delG, in CRX, which 
has been reported to cause CD and CRD in families who 
exhibit autosomal dominant inheritance patterns. However, 
this variant was a novel mutation, and segregation analysis 
was not performed because DNA samples from the patient’s 
family members were unavailable. Therefore, we classified 
this case as unresolved, according to the criteria used in this 
study (see “Data analysis and interpretation of genetic vari-
ants” in Materials and Methods and our previous report [11]). 
Furthermore, probands K3445 and K1909 were discovered 
to carry mutations in ABCA4 and RDH5, respectively, which 
are recognized to cause CD and CRD in families who exhibit 
recessive inheritance patterns. Although these two variants 
were reported to be pathogenic mutations, a second copy of 
the mutations was not detected using the current approach, 
and the cases were ultimately classified as unresolved.

Patients carrying mutations in other retinal disease-related 
genes: Among the remaining cases, one patient was identified 
to carry mutations in genes that are known to cause other 
retinal diseases. Proband K3479 carried a novel homozygous 
nonsense mutation, c.211G>T (p.E71*), in RGS9BP; mutation 
of this gene is recognized to cause bradyopsia, which is char-
acterized by difficulty in tracking moving objects or adapting 
to sudden changes in illuminance. Careful reassessment 
of the clinical symptoms revealed that the patient showed 

difficulty in adjusting to illuminant changes, photophobia, a 
moderately reduced visual acuity (RV=0.6 and LV=0.3), and 
visual field defects with a loss of central sensitivity. Observa-
tion of the fundus with ophthalmoscopy and OCT imaging 
indicated no apparent retinal degeneration, except drusen and 
epiretinal membrane. All of these symptoms were compatible 
with bradyopsia, but because the patient developed a malig-
nant lymphoma after inclusion in the study, we could not 
complete follow-up confirmation of the characteristic ERG 
findings, such as a reduced response to consecutive stimuli. 
However, these clinical symptoms were consistent with those 
of bradyopsia, and this disorder was molecularly diagnosed 
in the proband.

DISCUSSION

In this study, we performed a comprehensive molecular 
screening of 43 Japanese patients with CD or CRD by using 
next-generation sequencing techniques, and we successfully 
obtained molecular diagnoses for 12 cases (27.9%).

Our results identified causative ABCA4 mutations in 
four patients. The ABCA4 mutation is a major cause of arCD 
and CRD in Europe: >31–65% of patients with arCD or 
CRD carry mutations of ABCA4 [22-24]. In contrast, a study 
conducted in China reported that the prevalence of ABCA4 
mutations in Chinese patients with CRD was only 2.1% [6]. 
This discrepancy indicates that ethnic differences exist in the 
prevalence of causative gene alleles for CD and CRD, as in 
the case of retinitis pigmentosa [11]. Here, the prevalence of 
ABCA4 mutations was 9.3% (4/43), which lies between the 
prevalence rates measured for European and Chinese popula-
tions and confirms the ethnic difference in the prevalence of 
ABCA4 mutations.

The results of this study hold implications for the role 
of CRB1 in CRD. CRB1 is widely recognized as a causative 
gene for retinitis pigmentosa and Leber congenital amaurosis; 
moreover, mutations in this gene were reported to be asso-
ciated with the various phenotypes of retinal dystrophies, 
including CRD [10,16-18]. Here, proband K6247 carried the 
homozygous splice-site mutation c.652+1_652+4del in CRB1, 
and the patient exhibited the CRD phenotype. The patient’s 

Table 2. Results of seven in silico programs of novel missense mutations.

ID: mutation SIFT
Polyphen2 
Hvar LRT

Mutation 
taster

Mutation 
assessor GERP++ PhyloP

K6140: CDHR1 c.386A>G (p.N129S) 1 (D) 0.885(P) 1 (D) 1 (D) 4.55(H) 5.09 1.917
K6062: CRX c.142C>T (p.R48W) 1 (D) 0.996(D) 1 (D) 1 (D) 2.385(M) 1.47 0.246
K6496: KCNV2 c.454G>A (p.D152N) 1 (D) 1 (D) 1 (D) 1 (D) 3.95(H) 5.07 2.352

D: damaging; P: possibly damaging; H: high; M: medium.
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parents were a consanguineous couple, and the brother (not 
included in this study) harbored the same mutation and 
developed the same phenotype. The early onset phenotype 
and autosomal recessive heritability agreed with the results 
of a previous study [18], and the presence of cystoid macular 
edema and predominantly nasal involvement agreed with 

the results of another report [17]. The current study further 
supports the notion that mutations in CRB1 cause CRD.

This study revealed that one patient carried a putative 
disease-causing homozygous mutation in RGS9BP. RGS9BP 
plays a crucial role together with RGS9 in the recovery 
phase of visual transduction [25-27]. Mutations in RGS9 

Figure 1. Pedigrees of the 12 patients with cone or cone-rod dystrophy carrying pathogenic mutations. The patients’ IDs and the corre-
sponding genes are shown above the pedigrees; +: wild-type allele.
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and RGS9BP are known to cause bradyopsia (slow vision), 
which is characterized by delays in adaptation to changes 
in light and darkness, photophobia, moderate loss of visual 
acuity, difficulty in seeing moving objects, normal color 
vision, and a normal fundus [25,28,29]. Proband K3479 
carried the novel homozygous nonsense mutation c.211G>T 
(p.E71*) in RGS9BP. The symptoms, fundus appearance, 
and standard ERG findings of the proband were compatible 

with bradyopsia. Rod responses were within the normal 
range, whereas cone responses were non-recordable by using 
ISCEV ERG standards. The patient’s parents were healthy but 
consanguineous, and three of the six siblings of the patient 
showed similar disease phenotypes, which suggested an auto-
somal recessive inheritance pattern. We could not confirm 
the characteristic ERG findings (i.e., a reduction in cone 
and rod responses after the first stimulation with prolonged 

Figure 2. Color fundus photographs of the patients with cone or cone-rod dystrophy carrying pathogenic mutations.
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recovery) because the proband had died by the time we identi-
fied the mutation. However, the clinical symptoms and mode 
of inheritance were consistent with those of bradyopsia, and 
thus, in this patient, we diagnosed bradyopsia instead of CRD.

Probands K1741, K2039, and K6120 were identified to 
carry the homozygous mutations c.6445C>T, c.1760+2T>G, 

and c.1957C>T in ABCA4, respectively, which have been 
reported to cause Stargardt disease [19-21,30,31]. ABCA4 
is a causative gene for autosomal recessive CD, CRD, 
retinitis pigmentosa, and Stargardt disease. Before the era 
of genetic diagnostics, these diseases were differentiated 
based on clinical findings; however, Stargardt disease, CD, 

Figure 3. Wide-field fundus autofluorescence images of the patients with cone or cone-rod dystrophy carrying pathogenic mutations. Fundus 
autofluorescence was imaged with Optos200Tx (Optos, Dunfermline, UK) except K6140 (HRA2; Heidelberg Engineering, Heidelberg, 
Germany). Most of the examinations for K6205, the mother of K6073, were performed at another institution and were not available.
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and CRD are currently recognized to show considerable 
overlap. For instance, the same mutation is associated with 
Stargardt disease and CRD [24,32]. Furthermore, the muta-
tion c.1760+2T>G identified in proband K2039 was reported 
to cause retinitis pigmentosa [20]. These three cases in this 
study highlight the phenotypic variations, and these patients 
should be treated as patients with ABCA4-associated retinop-
athy and not designated arbitrarily as patients with Stargardt 
disease or CRD [33-35].

In this study, molecular diagnoses were made in 27.9% of 
the patients, and 62.1% of the cases remained unresolved. The 
detection rate was slightly higher than that for the Chinese 
population (21.28%) but lower than that for the European 
population (62.1%), which indicates the ethnic differences 

in the prevalence of causative gene alleles for CD and CRD 
[6,9]. The methodological limitations of our approach and 
the technical limitations of next-generation sequencing tech-
nology might be one of the reasons for not determining the 
molecular cause of disease in these patients [11]. Here, we did 
not assess intronic mutations, synonymous mutations, and 
small insertions or deletions that do not cause frameshift. 
For instance, some intronic mutations in ABCA4 reported 
in European populations were not screened in this study 
[36]. Furthermore, next-generation sequencing technology 
occasionally does not allow easy reading of certain regions 
such as GC-rich regions, repeated sequences, copy-number 
variations, and large deletions or insertions. Moreover, the 
sequencing of seven samples (16.9%) yielded lower coverage 

Figure 4. Optical coherence tomography of the patients carrying pathogenic mutations. Images were obtained by using Spectralis (Heidelberg 
Engineering, Heidelberg, Germany). Most of the examinations for K6205, the mother of K6073, were performed at another institution and 
were not available.
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than that in the case of other samples due to a technical 
reason: generation of the precapture libraries. Although 
the mean coverage of these samples was sufficient for the 
detection of genetic variants (233X), the percentage of bases 
showing >10X coverage was 81%, and low-coverage variants 
were excluded. To compensate for the deficiencies of our 
approach, additional target screening of low-depth regions 
could be conducted using conventional direct sequencing, and 
this might serve as an effective tool for improving genetic 
diagnosis [37]. Another reason for the limited detection rate 
could be our stringent criteria for determining the pathoge-
nicity of variants; we included only those variants that were 
predicted to be pathogenic by five out of the seven in silico 
programs used. When less stringent criteria were employed, 
such as prediction by one out of five in silico programs, two 
additional patients were assessed as carrying disease-causing 
mutations.

In conclusion, this study screened the largest sample of 
Japanese patients with CD and CRD to date and indexed the 
genetic constitution of this cohort. Our results confirmed 
the efficacy of next-generation sequencing-based molecular 
diagnosis of patients with CD or CRD.

APPENDIX 1. LOW-COVERAGE REGIONS IN THE 
193 CAUSATIVE GENES OF HERITABLE EYE 
DISORDERS.

CD: cone dystrophy; CRD: cone-rod dystrophy; Chr: chromo-
some. To access the data, click or select the words “Appendix 
1.”

APPENDIX 2. LIST OF GENE REFERENCE 
NUMBERS.

To access the data, click or select the words “Appendix 2.”

APPENDIX 3. PHENOTYPE DATA OF THE 
PATIENTS WHO CARRIED MUTATIONS IN KNOWN 
CD OR CRD GENES.

VA: visual acuity; NR: non-recordable; NA: not available. 
*Visual acuity at the current age. †Data of the right eyes. 
To access the data, click or select the words “Appendix 3.” 
K6205 is a mother of K6073 and most examinations were 
performed in another institution. K6140 underwent electro-
retinogram more than 15 years before and the current data is 
not available.

APPENDIX 4. LIST OF ADDITIONAL POTENTIALLY 
PATHOGENIC RARE VARIANTS IDENTIFIED IN 
PATIENTS WHO CARRIED MUTATIONS IN KNOWN 
CD OR CRD GENES.

To access the data, click or select the words “Appendix 4.” 
CD: cone dystrophy; CRD: cone-rod dystrophy; ad: auto-
somal dominant; ar: autosomal recessive; hetero: heterozy-
gous; NA: not available.
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