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Abstract: In the current work, the mechanical response of multiscale cellular materials with hollow
variable-section inner elements is analyzed, combining experimental, numerical and machine learning
techniques. At first, the effect of multiscale designs on the macroscale material attributes is quantified
as a function of their inner structure. To that scope, analytical, closed-form expressions for the axial
and bending inner element-scale stiffness are elaborated. The multiscale metamaterial performance
is numerically probed for variable-section, multiscale honeycomb, square and re-entrant star-shaped
lattice architectures. It is observed that a substantial normal, bulk and shear specific stiffness increase
can be achieved, which differs depending on the upper-scale lattice pattern. Subsequently, extended
mechanical datasets are created for the training of machine learning models of the metamaterial
performance. Thereupon, neural network (NN) architectures and modeling parameters that can
robustly capture the multiscale material response are identified. It is demonstrated that rather
low-numerical-cost NN models can assess the complete set of elastic properties with substantial
accuracy, providing a direct link between the underlying design parameters and the macroscale
metamaterial performance. Moreover, inverse, multi-objective engineering tasks become feasible. It
is shown that unified machine-learning-based representation allows for the inverse identification of
the inner multiscale structural topology and base material parameters that optimally meet multiple
macroscale performance objectives, coupling the NN metamaterial models with genetic algorithm-
based optimization schemes.

Keywords: multiscale; metamaterials; machine learning; neural networks; experimental testing

1. Introduction

Progress in additive manufacturing has allowed for the engineering of customized
structures with highly refined inner designs, well below the micrometer scale [1]. Mechani-
cal parts have been fabricated with characteristics that would have been infeasible using
traditional manufacturing processes [2]. Moreover, a wide range of advanced materials—
named metamaterials—have been developed, with tailorable effective mechanical proper-
ties [3–5] and design flexibility that has opened new frontiers in the control of the functional
response of structural components [6–8].

Metamaterials have typically been based on the design of periodic inner structural
patterns that can yield macroscopic mechanical properties with fundamentally different
attributes from the ones observed for the base material used [9,10]. This quest has fostered
the engineering of advanced materials with extraordinary mechanical behaviors such as
the development of auxetics [11,12], and thus, materials which laterally expand instead
of contracting upon the application of tensile loads [13–16]. The aforementioned non-
conventional volumetric response has been primarily materialized by re-entrant patterns,
with indicative examples being the star-shaped or the re-entrant honeycomb periodic cell
designs [17–19].
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Depending on the unit-cell architecture selection, different material performance ob-
jectives can be fulfilled, such as high specific stiffness to normal and shear loads, or high
yield-strength limits for a target relative density design [10]. Certain periodic patterns have
been associated with high specific elastic stiffness attributes—with indicative examples
being the triangular and kagome lattice patterns [20,21]—while others are associated with a
unique volumetric bulk response [22] or resistance to shape-changing (shear) loadings [23].
It should be noted that the resistance of an architected material to volumetric or shape
changes is primarily determined by its unit-cell pattern and is typically considerably differ-
ent from the one expected for the base material employed [24]. In particular, metamaterials
with a substantially high or low bulk K and shear modulus G can be engineered upon
selection of the appropriate lattice architecture, using common steel or aluminum alloys
as the base material [23]. Interestingly, modifying the slenderness of the elements that
comprise the basic unit-cell does not affect the relative bulk-to-shear (K/G) response of
several lattice patterns, so that hexachiral or re-entrant star-shaped metamaterials with
a relative density of 0.1 or 0.2 yield the same relative bulk-to-shear K/G response, even
though each density design relates to a different bulk K and shear G resistance [24]. As a
result, their relative volumetric-to-shape resistance performance remains invariant, even
though their individual elastic, shear and relative density attributes are different [24].

An extended space of effective material attributes can be achieved through the intro-
duction of structural hierarchies into the basic topological framework, leading to increased
tensile elastic characteristics, with nearly-constant specific stiffness [25,26]. Hierarchical,
multiscale constructions can not only materialize unique elastic mechanical properties that
are infeasible by single-scale designs, but also modify the post-elastic [27], collapse load [28]
and buckling resistance of the primal, single-scale metamaterial [29]. The manipulation of
the macroscale effective material properties, achieved through the insertion of additional
architectural scales, is lattice-specific, with the design at the additional inner scale to deci-
sively modify the overall material performance, as illustrated for anti-tetrachiral, two-scale
lattices [30].

The computation of the effective metamaterial attributes presupposes the development
of models that can associate microscale designs with macroscale response metrics. With that,
simplified analytical [31] and numerical homogenization models [32] have been developed,
most of them applicable to single-scale material architecture [33]. It has to be noted that
the extraction of the different constitutive elastic response parameters (e.g., normal, shear,
and bulk moduli) requires the computation of a minimum of two independent loading test
cases, for a unique inner-design architecture [34]. Moreover, an experimental extraction of
the effective metamaterial attributes is typically limited by practical constraints related to
the number of loading scenarios or inner designs that can be probed.

Recently, machine learning techniques have been employed for the computation of
the effective constitutive response of foam materials [35], as well as for the characterization
of functional 3D mechanical metamaterials [36]. Machine learning in material science has
signified a transition to data-driven modeling approaches [37–39]. Models of the kind
can reduce computing costs by several orders of magnitude, providing the possibility
to relate a wide range of input design parameters with the desired quantities of interest
(QoI, Figure 1) within a single computational step [40]. However, their successful training
requires an appropriately designed machine learning model architecture [41], along with
the existence of sufficient data for model training and validation to be feasible [42]. Until
now, neural networks have been extensively employed to simulate structure-property-
related functions [43–45], to identify functional relationships [46–48], as well as to optimize
inner structural topologies [49–54]. Amongst others, spinodoid or curved inner beam
architectures have been considered [55,56].
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Figure 1. A multiscale metamaterial design, with the effective material properties (S0) to be deter-
mined by the first-scale unit-cell (UC, S1) and inner-element scale design (S2) of the periodic pattern.
The effective metamaterial normal E, bulk K, shear G and Poisson’s ratio ν attributes are a function of
the S2 and S1 scale design.

One of the major challenges in the development of high-performing machine learning
methods of this kind is the generation of databases that are informative enough for the
relevant solid mechanics response to be captured. Finite element models have been used
to generate datasets for high-contrast [43,57] and tessellate composites [58]. Moreover,
machine learning models have been developed to identify the relationship between salient
structural features and the uniaxial compressive response of advanced materials. In partic-
ular, the geometric design of cellular materials has been used as an input for deep neural
networks to be trained, so as to predict the macroscale uniaxial response of non-uniform
cellular solids [59].

While it is currently well-established that the insertion of inner-material scales beyond
the primal cellular pattern provides additional degrees of freedom for design, the corre-
sponding material spaces remain, to a great extent, unexplored. Existing contributions have
mainly emphasized on hollow inner designs [60,61], with the form of their inner structural
components remaining unchanged. In particular, multiscale cellular metamaterials with
hollow, variable-section inner designs have not been yet analyzed, their macroscale material
performance remaining unquantified, both numerically and experimentally. Moreover,
relevant data-based machine learning models that can associate multiple inner-scale input
design parameters with the complete set of effective macroscale cellular material attributes
have not been developed. Therefore, the modeling specifications and complexity required
for such a task remain uncharacterized. Moreover, the potential use of surrogate neural
network models of multiscale cellular material performance in the inverse identification of
structural patterns has not been investigated.

In the current work, multiscale cellular material designs with hollow, variable-section
inner designs are investigated. In particular, metamaterial designs with inner elements that
are both hollow and follow a variable cross-sectional profile are analyzed for the first time.
For the analysis, extensive numerical finite element simulations are performed, corrobo-
rated by selective experimental testing and analytical modeling results. It is shown that
appropriate tuning of the second innermost scale can allow for the creation of lightweight,
multiscale metamaterials, with enhanced normal, shear and bulk properties (Section 4).
Furthermore, the necessary specifications for a neural-network-based association of the
multi-scale input design parameters, with a complete set of constitutive and relative density
effective properties, are identified. The high fidelity and low computation of the neural
network model are highlighted, along with its potential coupling with inverse engineering
analysis methods (Section 5).

2. Multiscale Hollow and Variable Inner Cross-Section Cellular Material Designs
2.1. Analytical and Numerical Characterization

We consider multiscale lattice material architectures composed of elements with a
hollow variable-section inner form. The elements have outer and inner cross-sectional
thickness to and ti, respectively, at their ends, as schematically depicted in Figure 2a.
Both the outer- and inner-element thickness vary along the element length L, following a
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sinusoidal, half-period wave-form evolution of magnitude e—here named swelling—at the
middle of the element (Figure 2a). The element’s area A(x) and moment of inertia Ie(x),
thus, vary along the element length, and their evolution is defined as follows:

tout(x) = to + 2 e sin
[

πx
L
]
, tin(x) = ti + 2 e sin

[
πx
L
]
, {to > ti, 0 ≤ x ≤ L},

A(x) = tout(x) topl − tin(x) tv
opl ,

Ie(x) = Io − Iv, Io = topl tout(x)3/12, Iv = tv
opl tin(x)3/12

(1)

where topl and tv
opl in Equation (1) stand for the out-of-plane total and hollow thickness

parts, respectively (Figure 2a), while sin[πx/L] characterizes the sinusoidal strut cross-
section evolution. The hollow variable-section element form leads to a modification of the
inner mass distribution, which depends on the swelling e and the inner-to-outer element
thickness ti/to selection. Using as a reference the prismatic element case with a volume
Vp = to topl L, the element-scale density modification ρ∗e is defined as:

ρ∗e =
∫ L

0 A(x)dx
Vp

=
π
(

totopl−tv
opl ti

)
+4e

(
topl−tv

opl

)
ti

πtotopl
,

ρ∗ = ρ∗S2
ρ∗S1

= ρ∗e ρ∗S1

(2)

where ρ∗e in Equation (2) simplifies to unity for the prismatic, non-hollow case with zero
swelling e, while the expression is independent of the element length L. The effective
relative density ρ∗ at the metamaterial macroscale is determined by the relative density of
the primal lattice design ρ∗S1

, accounting for the second-scale density modification ρ∗e . In
Figure 2, different multiscale, hollow variable-section square (b), honeycomb (c) and star-
shaped re-entrant (d) designs are depicted. The first-scale star-shaped lattice patterns refer
to the auxetic lattice variant [17] and not to petal-form architecture variants, as investigated
in [62].
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Figure 2. Hollow, variable-section element cross sectional attributes and swelling-to-length e/L
characteristics (a). Finite-element unit-cell square (b), honeycomb (c) and re-entrant star-shaped
(d) variable-section element lattices with to = topl = 1 mm, e = 0.5 mm and an element length L of
20 mm. Periodic multiscale honeycomb FEM with a uniaxially loaded deformed cell is provided
in (e).

For the computation of the effective multiscale metamaterial properties, two equivalent
but distinct methodologies are followed. In the first case, multi-scale periodic finite element
Abaqus models are created with a relative density of 0.03, 0.04 and 0.05 and an e value of 0.5,
with element length values of 24, 30 and 40 mm and a ti/to of 0.5. The inner metamaterial
structure is discretized with tetrahedral C3D10 solids using a fine mesh of more than
20 elements per inner constituent. For each of the lattice multiscale patterns (Figure 2e), a
total of two independent loading cases, namely of a uniaxial tensile and shear load, suffice
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to compute the effective normal, shear and bulk properties. We note that all multiscale
patterns investigated fall within the tetragonal symmetry space, with equal Ex and Ey
moduli, as well as equal Poisson’s ratio values νxy and νyx. The mechanical properties are
obtained through the application of infinitesimal normal and shear strains εx and γxy of
0.001.

Ex = σx/εx, νxy = −εy/εx, Gxy = σxy/γxy (3)

For periodic models with more than five unit-cell repetitions in each material direction,
more than 60,000 elements are required for a single design case for convergent analysis
results. The multiscale nature of the geometry poses practical analysis limitations in the
parametric investigation of a wide range of inner multiscale topologies, and thus, different
inner geometries and lattice configurations. This, in turn, limits the dataset size that can
be created, an important parameter for the neural network analysis part elaborated in
Section 3.

In the second methodological modeling approach, the previous limitation is surpassed,
applying a two-scale homogenization process. Initially, the homogenized axial and bending
stiffness of the inner variable-section element geometry are computed as a function of
geometric and material properties (to, ti, L, e, Es) for the innermost scale S2 (Equation (1),
Figure 1). Thereafter, the macroscale lattice’s effective attributes are obtained based on the
homogenized second-scale S2 properties, which are employed as inputs for the first-scale
S1 computations, making use of the homogenization algorithm elaborated upon in [32].
The effective metamaterial properties (E, K, G, ν) are a direct result of the asymptotic
homogenization, which computes the complete flexibility and stiffness matrix tensor of a
given multiscale periodic pattern, provided with the homogenized normal and bending
stiffness attributes of its inner constituents. The reader is referred to [32] for a detailed
description of the theoretical formulation, as well as for its numerical implementation. The
previously explicated algorithmic process allows for the parametric computation of a wide
range of multiscale cellular configurations.

For the computation of the homogenized S2 element-scale stiffness attributes, analyti-
cal formulas for the effective axial ke

N and bending ke
B stiffness attributes are derived, using

the unit-force method. The corresponding analytical mechanics expressions contain integral
forms with varying area and moment-of-inertia properties (Equation (1)). In particular, the

axial flexibility f e
N is computed as

L∫
0

(
N · N

)
/(EA(x))dx − N being the virtual axial force

inner element evolution created by a unit normal axial load at the element ends -, while the

bending flexibility f e
B is computed as

L∫
0

(
M ·M

)
/(EIe(x))dx − M being the virtual bending

moment developed within a clamped beam element, subsect to a shear type forces at its
ends -. The corresponding stiffness terms are obtained by computing the inverse of the
flexibility components, ke

N = 1/ f e
N and ke

B = 1/ f e
B accordingly. The reader is referred

to [27,63] for a detailed description of the virtual force method.

2.2. Additive Manufacturing and Experimental Characterization

The elastic stiffness of two-scale honeycomb metamaterial designs was experimentally
investigated using 3D-printed periodic specimens (Figure 3a). Two distinct, multiscale
honeycomb designs were fabricated with an element length L of 7.1 mm, an out-of-plane
thickness of 10 mm (Figure 3b,c) and different inner-element hollow profiles. In particular,
element profiles with an e value of 0.17 and 0.36 mm were fabricated, with the correspond-
ing honeycomb periodic designs named D1 and D2. The L/to ratio was set, in all design
cases, as equal to 18, while the topl/to parameter was set to 0.5. For the fabrication, a BMF
3D printer was employed with a high-temperature resin. For each honeycomb design,
three repeat samples were conducted. A total fabrication time of several tenths of hours
was required for the 3D printing of the specimens, noting the substantially high number
of slices necessary for a sufficiently accurate geometric representation. The multiscale
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honeycomb structures consisted of a total of 20 periodic cells stacked in the out-of-plane
thickness direction (Figure 3c); the stacking was employed to ensure sufficient stiffness
and surface area along the specimen thickness direction for the load application upon
mechanical testing.
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Figure 3. Experimental testing of micro-fabricated multiscale honeycomb lattices (a). Elements with
a length of 7.1 mm and different inner element geometries are depicted in (b). A 10 mm out-of-plane
thickness with a hollow-width feature size of 0.25 mm is depicted in (c), rotated by 90◦ with respect
to (a).

For the testing, an Instron machine with a 50 N loadcell was employed. A rather low
testing speed of 1 mm/min was used, corresponding to a strain rate below 0.01/s to ensure
static loading conditions for all specimens.

3. Machine-Learning-Based Modeling and Design of Multiscale
Metamaterial Architectures

Effective macroscale metamaterial properties were determined by a substantial number
of inner design parameters. Even for a given base material (Es) and first-scale S1 unit-cell
pattern (e.g., honeycomb, square, Figure 2), the metamaterial attributes were a function
of the element thickness to and length L, as well as the inner-element hollow thickness ti
and swelling parameter e. For a single combination of the previously reported parameters,
a set of a minimum of two independent computational tasks needed to be performed for
the effective normal moduli E, bulk K, shear G and Poisson’s value ν to be obtained. More
importantly, no explicit functions associating the effective macroscale properties with the
inner first S1 and second S2 scale design parameters (Figure 1) were available, so that
multiscale inverse engineering tasks could not be performed.

For the modeling of the mechanical response of a wide range of inner-material de-
signs, a machine-learning-based approach, without prior assumptions with respect to the
observed macroscale constitutive metamaterial response, was followed. Five primal inner
design parameters were used as input features (I), namely two first-scale (S1 : to, L) and two
second-scale (S2 : ti, e) attributes, as well as the base material modulus Es. For the current
analysis, a unit out-of-plane thickness topl , along with a half unit tv

opl out-of-plane void
thickness part, were considered (Figure 2a), without loss of generality. The neural network
output parameters (O) included the complete set of the elastic E, bulk K and shear G values,
as well as the Poisson’s ratio value ν (Figure 1) and relative density ρ∗ data, computed
using multiscale homogenization (Section 2.1). The neural network model can be viewed
as a multivariate regressor of the mechanical performance. We note that all multiscale
patterns investigated fell within the tetragonal symmetry space, so that equal Ex and Ey
moduli and Poisson’s ratio values νxy and νyx applied, allowing for the simplification of
the corresponding notations.

For each unit-cell primal design case, several effective metamaterial performance
data in each feature direction were created. In particular, eleven data points along the
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element thickness to, seven data points along the inner hollow element thickness ti and
element length L, and eleven data points along the swelling e feature direction were
employed. The data points were created in a hierarchical manner, so that for a given
element thickness to and base material moduli Es at the first cellular scale S1, normalized
slenderness and second-scale feature attributes were created (ti/to, to/L, e/to), covering
all possible parameter combinations (summarized in Table 1). For each feature, uniform
spacing among the indicated bounds was applied for simplicity. It is noted that the bounds
prescribed covered a wide range of inner cellular designs, albeit non-exhaustive with respect
to the possible design space of multiscale metamaterial patterns. The number of sampling
points for each parameter was selected based on initial reduced input-dimensionality-
fitting studies; they were defined so as to allow for high-accuracy results, retaining an
overall low data-creation computational cost. Moreover, it should be underlined that the
multiscale metamaterial performance is affine with respect to the base material modulus Es,
so that it could be omitted from the modelling process, if all the results were to be obtained
in a normalized, non-dimensional form. The effective metamaterial attributes for each
multiscale design were computed using the two-scale homogenization process explicated
at the end of Section 2.1.

Table 1. First-scale S1 and second-scale S2 metamaterial design parameter range used for the creation
of training datasets for multiscale square, honeycomb and star re-entrant lattice patterns.

Input Features Range Sampling Points
Es 50–210 (GPa) 9
to 0.5–1.5 (mm) 11

ti/to 0.2–0.8 (-) 7
to/L 1/20–1/50 (0) 7
e/to 0–1 (-) 11

The parameter range of Table 1, along with the discretization introduced for each
feature, leads to more than 53,000 metamaterial design cases for a given multiscale lattice
pattern (Figure 1). The different unit-cell multiscale designs were created in a parametric
manner, following the above elaborated process. The input features (I) of Table 1 are related
to the macroscale effective metamaterial attributes (O) through a neural network model
(Figure 4). The network design and computational complexity, as characterized by the
number of layers n and neurons m per layer (Figure 4a) are parameters to be determined
throughout the training process [64]. Neural network architectures with a minimum of two
and up to five hidden layers were considered, with a minimum of 5 and up to 20 neurons
per layer. A schematic of the machine modeling architecture is provided in Figure 4a.
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Figure 4. Machine learning modeling architecture for the prediction of the effective normal,
bulk, shear, Poisson and relative density properties based on first- and second-scale inner design
parameters (a). The model size defined by the number of layers n and neurons per layer m, as well
as the activation function employed, constitute supervised learning parameters to be determined.
The trained NN model is coupled to a Non-dominated Sorting Genetic Algorithm (NSGA) for the
identification of optimal design parameter sets (b).
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For the training of the model, different activation functions were investigated, includ-
ing the tanh, sigmoid, and deep learning common-purpose activation functions, such as
the relu activation function [43]. For the training process, the mean squared error function
was used (MSE), along with the Levenberg–Marquardt default optimization algorithm. The
data were shuffled before training. The mean squared error was defined through the differ-
ence of the neural network (NN) from the multiscale homogenization (MH) mechanical

parameters MSE = (1/N)∑
N

(
OMH −ONN

)2
. Throughout the training process, 30% of the

available data created with the process previously explicated were used for testing. The
trained NN models were independently controlled with respect to their accuracy, using an
additional validation dataset of 1000 multiscale cellular designs, created through random
input feature generation in a design space that exceeded the bounds set for each feature in
Table 1 by up to 20%. The weighting matrix coefficients Wi, the layer constants Wi

0, and
the layer activation function f and network depth n were parameters to be determined
throughout the training process [64].

ONN
= f n

(
Wn f n−1

(
. . . W3 f 2

(
W2 f 1

(
W1 I + W1

0

)
+ W2

0

)
. . .
)
+ Wn

0

)
(4)

The trained model was used as a surrogate for its coupling with the genetic, multi-
objective optimization algorithm (Non-dominated Sorting Genetic Algorithm, Figure 4b)
elaborated in [65] for the identification of Pareto set solutions that satisfy both base material
moduli and density targets at the metamaterial macroscale. For the inverse analysis,
the neural network modeling parameters of Figure 4a were used as inputs, while the
effective elastic modulus and relative density value were concurrently used as macroscale
optimization objectives. For the generic algorithm computation, a probability of crossover
and mutation of 0.9 and 0.5 were used accordingly, along with a mutation parameter of
0.05 [65]. The population size and number of generations required for convergence are
discussed in Section 5.

4. Effective Mechanical Attributes of Multiscale, Variable Inner Section
Cellular Materials

The variable-section, doubly sinusoidal variation of the inner geometry result in a
non-linear area and moment of inertia distribution along the element length, as indicated
by the function definitions of Equation (1). An analytical computation of the effective
axial ke

N and bending ke
B stiffness at the element scale using the classical mechanics for-

mulations summarized in Section 2.1 is infeasible with the use of commercial integration
routines (Mathematica 11.3, Maple 2020), retaining the sinusoidal geometric definitions
of Equation (1). However, by employing the Bhaskara approximation of the sin(x) func-
tion [66] (Appendix A), closed-form expressions of the element’s effective axial and bending
stiffness attributes are obtained, as follows:

ke
N = Es/

(
L

8e
(

tv
opl−to

)
−tv

opl ti+totopl
+

20eL
(

topl−tv
opl

)
acoth(c1)

c3/2
2 c3

)
,

ke
B = Estopl/

(
L3
(

t3
o+c4

(to−8e)4(to+2e)2 +
c5
c6

))
−Estv

opl/
(

L3
(

t3
i +c7

(ti−8e)4(ti+2e)2 +
c8
c9

)) (5)

where αcoth in Equation (5) stands for the inverse hyperbolic cotangent function. The
constants c1 − c9 entering the expressions of Equation (5) are detailed in Appendix A. For
zero swelling e, the effective axial stiffness ke

N simplifies to the well-known axial stiffness
form of a prismatic element cross-sectional profile. The same applies to the bending element
stiffness ke

B for which the constants c4, c5, c7 and c8 vanish.
In Figure 5a, the scaling of the relative density as a function of the element geometry

e/to and cross section hollowness ti/to is provided. The effect of the variable inner-element
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section design on the specific bending-element stiffness is illustrated in Figure 5b as a
function of the swelling-to-length ratio e/L. The modified inner (S2, Figure 1) normal and
bending stiffness attributes can lead to a different density scaling of the effective elastic
macroscale cellular properties. In Figure 5c, the scaling law of the effective modulus with
respect to the relative density (E/Es = Aρ∗

n
) of variable-section, multiscale honeycombs

(MH), with a swelling parameter value e = 0.5, is provided, along with the case of prismatic,
single-scale honeycombs (PH). The two-scale MH mechanical properties are computed
using the multiscale homogenization process from Section 2.1. The periodic finite-element
modeling results (P-FEM, Figure 2e) are depicted by blue cross symbols.
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Figure 5. Dependence of the relative density of hollow variable-section elements on the swelling-to-
end-element-thickness ratio e/to and on the ti/to ratio (a). The enhancement of the inner specific
bending stiffness (normalized to ρ∗e of Equation (2) and to the prismatic bending stiffness element case)
as a function of the swelling-to-length e/L and inner-to-outer-element-thickness ti/to is provided
in (b). A length L = 20 and a to, topl and tv

opl of 1, 1 and 0.5 mm are used, respectively. The effective
elastic modulus scaling with relative density for a multiscale honeycomb lattice (e = 0.5) and a
prismatic honeycomb (e = 0.0) is depicted in (c).

The relative density of the hollow variable-section geometry is below unity over a
wide range of variable-section hollow element forms (Figure 5a), allowing for lightweight
material designs. More importantly, the specific bending stiffness of the variable-section
inner geometry is enhanced (Figure 5b), with rather small e values to yield substantial
stiffness improvements compared to the prismatic design case. It is noted that the inner
stiffness enhancement is strongly non-linear. Doubling the maximum swelling e increases
the specific bending stiffness more than two times (Figure 5b).

The improved second-scale material performance can modify the scaling of the ef-
fective macroscale elastic modulus E with respect to the metamaterial relative density ρ∗.
In particular, the least square fitting for the PH case yields A and n coefficients of 1.3 and
3, respectively, which is in agreement with the theoretical predictions [20] (e = 0, data
from Table 1). For the MH case with e = 0.5, the A coefficient more than doubles to 2.8
compared to the theoretical prediction of 1.3 for the PH case, while the corresponding
density exponent n is reduced to 2.75.
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In Figure 6a, the experimentally obtained stress–strain results for the D1 and D2 design
cases of Section 2.2 are provided, along with the prismatic reference case. The experimen-
tally obtained (E) elastic stiffness for each design case is depicted in Figure 6b—computed in
the low-strain range (<1%)—along with the multiscale homogenization numerical analysis
results (N). For each design case, two distinct experimental repeats are presented (R1, R2 in
Figure 6).
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Figure 6. Experimental stress-strain response of multiscale honeycombs with two distinct inner
element profiles, along with the reference prismatic design case (a). Relative stiffness increases
with respect to the prismatic, single-scale configuration for each of the multiscale, variable-section
honeycomb design cases -experimental (E) and numerical (N) results (b).

The experimental results of Figure 6a indicate a clear elastic stiffness increase with
higher swelling parameter e values (Figure 6a), with the highest swelling D2 design case
considerably outperforming the stiffness of the reference prismatic design. The stiffer
response is retained throughout the entire strain range investigated. It should be noted that
the enhanced constitutive performance can be obtained at a practically invariant relative
density value of the effective metamaterial, noting the near unity ρ∗e value corresponding
to the design specifications of the multiscale honeycomb designs D1 (Figure 6a). The elastic
stiffness of the moderate e design case D1 is more than three times higher the prismatic,
single-scale design case, a performance-improvement scaling factor that exceeds 7 for the
high e D2 design case (Figure 6b). The experimental data lie in good accordance with the
numerical predictions for both density cases tested, verifying the substantial difference of
the MH case with respect to the PH single-scale designs. It should be noted that the stiffness
increase effect observed upon the use of variable-section hollow inner-strut designs does
not apply to all first-scale cellular patterns, as explicated in the sequel.

In Figure 7, the effect of the inner second-scale on the macroscale elastic E, shear G
and bulk K material properties of multiscale square (s)-, honeycomb (h)- and star re-entrant
(sr)-shaped cellular patterns is analyzed in a comparative manner. In particular, not only the
specific elastic normal modulus, but also the specific shear and bulk modulus (Figure 7a–c)
are given for different swelling-to-length e/L values. The mechanical properties are normal-
ized with respect to the prismatic design reference case. All computations pertain to an L/to
of 20 with a ti/to of 0.8 and a to of 1 mm. Moreover, a unit out-of-plane thickness topl , along
with a half-unit tv

opl out-of-plane void thickness part, is considered. The computations are
performed following the multiscale homogenization process elaborated upon in Section 2.1.
In Figure 7d, the evolutions of the normal-to-shear E/G and bulk-to-shear K/G moduli
ratios over the same range of e/L values are provided.
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Figure 7. Specific shear (a), normal (b) and bulk (c) modulus per relative density evolution of square
(s), honeycomb (h) and star re-entrant (sr) lattice patterns for different element-scale ratios e/L. The
specific normal-to-shear E/G and bulk-to-shear K/G moduli ratio values are provided in (d) over the
same range of e/L values. The analysis is performed for a L/to ratio of 20 and a to and ti of 1 and
0.8 mm, respectively.

The employment of hollow, variable-section inner designs at the second inner scale
(S2) of the cellular material leads to an increased specific metamaterial shear stiffness for
all lattice patterns in Figure 2. More specifically, the specific shear stiffness enhancement
is up to approximately seven times the shear resistance of the reference hollow lattice
pattern for an e/L value of 5%, with the increase being non-linear with respect to the
swelling-to-length parameter. An analogous improvement is recorded for the axial modu-
lus (E/Ee=0)/(ρ∗/ρ∗e=0) of the honeycomb and square re-entrant lattice patterns, with the
specific axial modulus of the square lattice remaining practically unaffected (Figure 4b).
Accordingly, the specific bulk modulus (K/Ke=0)/(ρ∗/ρ∗e=0) of the star re-entrant metama-
terial design increases, contrary to the bulk resistance of the square and honeycomb lattice
patterns, which remain practically invariant.

The multiscale designs yield a macroscale cellular material response (Figure 7a–c)
that differs for each of the first-scale lattice patterns (S1), so that the material design space
extension induced by the innermost architectural scale (S2) is non-unique. More specifically,
the relative performance of the multiscale, variable-section metamaterial designs to normal
loads and shear loads (E/G) remains practically unaffected for the honeycomb and re-
entrant square lattice patterns (Figure 7d), contrary to the square lattice case, where a
shear-stiffer response is observed (Figure 7d). Accordingly, the bulk-to-shear effective
metamaterial performance (K/G) becomes shear-stiffer for the square and honeycomb
lattice case, remaining unaffected for the re-entrant square lattice pattern.

5. Neural-Network-Based Multiscale Metamaterial Forward Modeling and
Inverse Design

Multiscale metamaterial performance is determined by several first- and second-scale
parameters, as well as by the base material modulus Es. To predict the complete set of
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effective metamaterial properties, as summarized in Figure 4a, different depth neural
network architectures were probed. It was observed that a highly accurate mapping of the
input design features (I) with the output effective material properties (O) is feasible for
all activation functions listed in Section 3. However, networks using the ReLu activation
function require more than double the number of training parameters and deeper network
architecture than the corresponding sigmoid or hyperbolic tangent counterparts for the
same accuracy level to be achieved. Networks with a total number of four layers and less
than one thousand training parameters were observed to provide the highest modeling
accuracies, as quantified by the training process. The minimum testing loss performance
was obtained for networks with 20 × 15 × 5 × 5, 16 × 10 × 5 × 4 and 16 × 12 × 6 × 5
neurons for the multiscale honeycomb, square and re-entrant square cellular patterns. All
network architectures are provided in the form of supplementary material. Networks with
higher computing cost and comparable loss performance were excluded from the analysis.
In the independent validation sets used for each of the multiscale cellular patterns here
investigated, a relative error among the multiscale homogenization and the NN predictions
below 1% for all QoI of Figure 4b was recorded. In Figure 8a, insights in the training and
testing loss curves for the case of a multiscale honeycomb lattice over a training period of
5000 epochs are provided. Figure 8b–d depict frequency error bars for the bulk (K) and
normal (E) modulus and relative density neural network predictions for the validation
dataset of the 1000 randomly generated multiscale cellular designs (Section 3). For the
relative error estimation, the multiscale homogenization (MH) results are used as a reference
for the NN prediction comparisons.
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Figure 8. Training and test loss curves for the neural-network (NN)-based modeling of the mechanical
response of multiscale honeycomb metamaterial designs (a). Error probability distribution of the
bulk (b) and normal (c) modulus and relative density value (d) for the validation dataset of 1000
random-input-feature generation. Relative error values below 0.05% are considered, for all practical
purposes, as zero.

The loss curves of Figure 8a reveal a multi-level training process, which spans several
orders of magnitude of performance improvement over 5000 epochs. The trained neural
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network model can predict the effective multiscale properties with substantial accuracy
comparable to state-of-the-art relevant modeling contributions [40] over the entire space,
as indicated from the loss curve in Figure 8a. The error frequency distribution for the bulk,
elastic and relative density predictions denotes a relative material performance prediction
error that is substantially lower than 1% for all NN model predictions (Figure 8b–d).
It should be noted that the sharp variation in the loss function in Figure 8a has to be
associated—to a certain extent—with the incorporation of the base material modulus Es
in a dimensional form in the input neural network model parameters (Section 3). All
trained neural network architectures are provided in the form of complementary material
for completeness purposes.

The elaborated NN-based metamaterial models provide a direct link of the inner scales
(Figure 4a) with the complete set of elastic effective metamaterial attributes. As a result,
inverse multiparametric identification tasks become feasible. In particular, given a set of
macroscale material performance objectives, the inner design specifications that best match
the prescribed criteria can be probed. We note that the inverse structural identification
analysis conducted herein is restrained within the mechanical performance limits of the
multiscale cellular patterns investigated. As such, its scope and functionality need to be
clearly separated from free-morphology or full-topology optimization methods [49,51],
which are beyond the analysis range and context of the current contribution. Using the
genetic algorithm elaborated upon in [65], the base material modulus Es, along with the
second S2 and first S1 material scale features required for a multiscale lattice pattern, to
yield a desirable macroscale performance, can be identified. In Figure 9a,b, the evolution
of the Pareto front for a target elastic modulus O1 and relative density O2 objective are
provided. A target modulus Et of 2 GPa and 0.1 GPa, with relative densities ρ∗ of 0.1
(O2, Figure 9a,b), respectively, are employed for a multiscale square and square reentrant
design. Accordingly, the evolution of the Pareto front solution for the case of a multiscale
honeycomb lattice pattern is provided in Figure 9c. For simplicity, the hollow element
thickness is set to be fifty percent of the outer-end element thickness to in all computations.
One of the best sorting structural patterns is provided in each case, along with the evolution
of the optimal Pareto front solution (using a population size of 30 and 150 generations).
In Figure 9d, the identified optimal effective material modulus is given in the form of an
Ashby diagram, while the base material modulus required for each target metamaterial
performance is provided in Figure 9a–c.

The results of Figure 9 provide insights into the inverse engineering potential of
the neural network multiscale metamaterial models developed. More specifically, given
the high accuracy and the low computational cost of a single model evaluation, multi-
objective, genetic-algorithm-based computations, requiring thousands of model evaluations
are feasible in a few seconds. By that means, the base material modulus Es and the
geometric features of the second (S2) and first (S1) design scale can be probed to optimally
meet the macroscale material objectives (Figure 9). Moreover, the potential of a given
multiscale cellular material to meet a set of macroscale objectives (O) can be robustly
assessed, providing quantitative estimates of its optimality in each material performance
direction. This becomes explicitly evident in Figure 9b, where none of the objectives can be
fully satisfied. However, the Pareto front solutions allow for the inverse identification of
inner multiscale cellular patterns that either fully satisfy one of the objectives, or partially
satisfy each, quantifying the relative performance discrepancies. What is more, the inferred
base-material moduli values Es can be directly used to assess the manufacturing feasibility
of the metamaterial part, confining the base-material selection range and 3D printing
technologies that could be employed in the fabrication process.
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Figure 9. Optimal Pareto front for a multiscale square lattice with a target modulus of Et = 2 GPa and
a relative density of 0.1 (a). The optimal pareto front solution for a multiscale square re-entrant and
multiscale honeycomb cellular with a target modulus of Et = 0.1 GPa and Et = 0.05 GPa and a relative
density of 0.1 are provided in (b) and (c), respectively. Inversely identified structural multiscale
cellular patterns are depicted in each case. The metamaterial (MM) effective modulus is presented in
an Ashby diagram comparative form in (d). For completeness, the modulus-density ranges for foams
(F), elastomers (E), polymers (P), metals (M), composites (Co) and ceramics (Ce) are included.

6. Discussion

While it is well established that multiscale metamaterial architectures can provide
additional degrees of freedom for design that can extend the performance limits of single-
scale patterns, the corresponding bounds remain, to a great extent, unquantified. The
employment of hollow variable-section elements provides the possibility to modulate the
normal- and bending-stiffness attributes of the inner lattice constituents. The stiffness
alteration is controlled by the variable-section inner geometry. Element profiles with a
rather small variation in their inner-thickness-to-length ratio (e/L) allow for considerable
bending stiffness enhancements (Section 2.1). The elaborated analytical stiffness forms
indicate that the bending performance can be tuned depending on the inner length L and
on the element profile geometric swelling parameter e. However, it can alter the reference
bending stiffness performance by up to one order of magnitude for rather low e/L values,
in a controlled manner (Figure 5b).

The multiscale designs modify the macroscale metamaterial performance in a non-
linear manner, which depends on both the first-scale S1 pattern and on the second-scale
design. In particular, while a specific shear stiffness increase is recorded for all the multi-
scale lattice patterns in Figure 7a (rs, s, h), denoting a shear strengthening per unit weight
for all design cases, different behaviors with respect to the normal and bulk metamaterial
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attributes are observed. More specifically, variable-section multiscale honeycombs allow
for increased normal moduli with an invariable specific bulk modulus (Figure 7), while
multiscale square patterns retain invariance both in their specific bulk and normal stiffness
characteristics. This observation indicates that the resistance of certain multiscale metama-
terial designs to shape changes can be controlled through appropriate modifications of the
second, innermost scale, with volume changes favored over shape changes. Moreover, there
exist first-scale (S1) lattice designs for which a simultaneous increase in the specific normal,
shear and bulk stiffness is induced; this is the case for multiscale square-re-entrant pat-
terns (Figure 7), with the relative volumetric and shape metamaterial resistance remaining
practically invariable (Figure 7d).

The decoupled second- and first-scale geometry allows for the preservation of the
connectivity of the upper-scale S1 lattice pattern. All the multiscale lattice cases investigated
above have a nodal connectivity that is less than 6, so that the bending stiffness of their
inner constituents is significant [67,68], for the metamaterial’s macroscale performance.
Multiscale designs of this kind can yield enhanced density-scaling laws, which substantially
differ from the single-scale metamaterial architecture, as demonstrated for the multiscale
honeycomb case (Figure 5c).

However, the estimation of a complete set of effective mechanical properties can be a
substantially cumbersome process due to the different scales and the number of parameters
involved. The results of Section 5 indicate that a direct link between the inner multiscale
geometric and material design attributes and the macroscale metamaterial performance is
feasible, with the use of appropriately architected neural network models. In particular,
rather low-computational-cost neural network architectures have been identified that can
robustly predict the complete set of effective elastic properties, including the bulk and
shear metamaterial response. The accuracy of the networks is in the third decimal order
for all quantities of interest (Figure 8), with the model execution time amounting to some
fractions of a second on an ordinary personal computing system.

The low computing cost of the neural network models elaborated allows for their
coupling with inverse, genetic-algorithm-based, multi-objective optimization schemes
(Figure 9) in a single-step process. By that means, a wide range of optimization engineering
tasks can be performed. In particular, metamaterial designs that can optimally satisfy
a combination of macroscale performance objectives can be inversely identified in the
form of Pareto front solutions. This allows for the rigorous assessment of the engineering
feasibility of a certain design; moreover, it allows for the identification of solution sets that
can concurrently best meet performance requests within a given multiscale metamaterial
class, as demonstrated in Figure 9b. In the inverse identification process, both the geometric
and the base material modulus requirements are identified with the necessary moduli
specifications and can be directly probed.

7. Conclusions

Overall, the current work investigated multiscale variable-element-section cellular
metamaterial designs, combining analytical, numerical and experimental testing methods.
Analytical expressions for the effect of variable-section, hollow element designs on the
inner-axial and bending strut-scale stiffness were elaborated. The mechanical performance
of a wide range of multiscale cellular designs were evaluated. It was observed that:

1. Hollow, variable-section inner structural designs allow for an enhanced, specific
normal, shear and bulk metamaterial response, well beyond the range of single-scale
metamaterial architectures.

2. The insertion of a second inner scale affects the macroscale metamaterial performance
in a non-unique manner, which depends on the uppermost-scale cellular pattern
design.

3. Multiscale designs can modify the stiffness-to-density scaling of cellular materials
from a bending-dominated towards a stretching-dominated response.
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4. Low-numerical-cost neural network models can derive a robust link between the dif-
ferent inner scales and the complete set of effective elastic cellular material properties.

5. Inverse multi-objective engineering tasks can, therefore, be performed, identifying
the optimal multiscale cellular patterns that best satisfy the macroscale performance
requests.

We hope that the methodology elaborated and the results provided act as a frame-
work in the analysis and design of multiscale cellular materials beyond the design cases
investigated herein.
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Appendix A

The approximation of the sin(x) function entering the geometric definitions of Equation
(A1) is given by the Bhaskara formula, as follows [66]:

sin(x) = 16x(π − x)/
(

5π2 − 4x(π − x)
)

(A1)

With the use of the Bhaskara approximation of Equation (A1), the constants c1 − c3
entering the analytical stiffness computations are computed as a function of to, ti, topl , tv

opl
and of the element swelling parameter e, defined in Figure 1. For the axial stiffness case,
we obtain:

c1 = 2
√

tv
opl(2e + ti)− topl(2e + to)/

√
8e
(

tv
opl − topl

)
− tv

oplti + toplto

c2 = 8e
(

tv
opl − topl

)
− tv

oplti + toplto, c3 =
√

tv
opl(2e + ti)− topl(2e + to)

(A2)

Accordingly, the constants c4 to c6, entering the stiffness definitions of Equation (5),
are given as follows:

c4 = −3572e3 − 3268e2to − 364et2
o + 360e(2e + to)

2(log
[
5L2to

]
− log

[
4L2(2e + to)

])
c5 = 30 e ·

(
784 e3 + 581 e2 to + 318 e t2

o + 18 t3
o
)
acoth

[
2
√

2e+to√
8e−to

]
c6 = (−to + 8e)9/2 · (to + 2e)5/2

(A3)

Accordingly, the constants c7 to c9, entering the stiffness definitions of Equation (5),
are given as:

c7 = −3572e3 − 3268e2ti − 364et2
i + 360e(2e + ti)

2(log
[
5L2ti

]
− log

[
4L2(2e + ti)

])
c5 = 30e ·

(
784e3 + 581e2ti + 318et2

i + 18t3
i
)
acoth

[
2
√

2e+ti√
8e−ti

]
c6 = (−ti + 8e)9/2 · (ti + 2e)5/2

(A4)
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16. Bilski, M.; Wojciechowski, K.W.; Stręk, T.; Kędziora, P.; Grima-Cornish, J.N.; Dudek, M.R. Extremely Non-Auxetic Behavior of a
Typical Auxetic Microstructure Due to Its Material Properties. Materials 2021, 14, 7837. [CrossRef] [PubMed]

17. Theocaris, P.S.; Stavroulakis, G.E.; Panagiotopoulos, P.D. Negative Poisson’s ratios in composites with star-shaped inclusions: A
numerical homogenization approach. Arch. Appl. Mech. 1997, 67, 274–286. [CrossRef]

18. Ai, L.; Gao, X.-L. An analytical model for star-shaped re-entrant lattice structures with the orthotropic symmetry and negative
Poisson’s ratios. Int. J. Mech. Sci. 2018, 145, 158–170. [CrossRef]

19. Gaspar, N.; Ren, J.; Smith, C.; Grima, J.; Evans, K. Novel honeycombs with auxetic behaviour. Acta Mater. 2005, 53, 2439–2445.
[CrossRef]

20. Zhang, Y.; Qiu, X.; Fang, D. Mechanical Properties of two novel planar lattice structures. Int. J. Solids Struct. 2008, 45, 3751–3768.
[CrossRef]

21. Mahbod, M.; Asgari, M. Elastic and plastic characterization of a new developed additively manufactured functionally graded
porous lattice structure: Analytical and numerical models. Int. J. Mech. Sci. 2019, 155, 248–266. [CrossRef]

22. Wang, Q.; Li, Z.; Zhang, Y.; Cui, S.; Yang, Z.; Lu, Z. Ultra-low density architectured metamaterial with superior mechanical
properties and energy absorption capability. Compos. Part B Eng. 2020, 202, 108379. [CrossRef]

23. Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A
brief review. Prog. Mater. Sci. 2018, 94, 114–173. [CrossRef]

24. Karathanasopoulos, N.; Dos Reis, F.; Reda, H.; Ganghoffer, J.-F. Computing the effective bulk and normal to shear properties of
common two-dimensional architectured materials. Comput. Mater. Sci. 2018, 154, 284–294. [CrossRef]

25. Zheng, X.; Smith, W.; Jackson, J.; Moran, B.; Cui, H.; Chen, D.; Ye, J.; Fang, N.; Rodriguez, N.; Weisgraber, T.; et al. Multiscale
metallic metamaterials. Nat. Mater. 2016, 15, 1100–1106. [CrossRef] [PubMed]

26. Al Nashar, M.; Sutradhar, A. Design of Hierarchical Architected Lattices for Enhanced Energy Absorption. Materials 2021, 14,
5384. [CrossRef] [PubMed]

27. Karathanasopoulos, N.; Dos Reis, F. Extending the elastic and plastic design space of metamaterials through load-specific,
multiscale inner material architectures. Int. J. Mech. Sci. 2020, 175, 105523. [CrossRef]

28. Sha, Y.; Jiani, L.; Haoyu, C.; Ritchie, R.O.; Jun, X. Design and strengthening mechanisms in hierarchical architected materials
processed using additive manufacturing. Int. J. Mech. Sci. 2018, 149, 150–163. [CrossRef]

29. Queheillalt, D.T.; Wadley, H.N. Pyramidal lattice truss structures with hollow trusses. Mater. Sci. Eng. A 2005, 397, 132–137.
[CrossRef]

30. Wu, W.; Tao, Y.; Xia, Y.; Chen, J.; Lei, H.; Sun, L.; Fang, D. Mechanical properties of hierarchical anti-tetrachiral metastructures.
Extreme Mech. Lett. 2017, 16, 18–32. [CrossRef]

31. Zhu, X.; Xu, L.; Liu, X.; Xu, J.; Hu, P.; Ma, Z.-D. Theoretical prediction of mechanical properties of 3D printed Kagome honeycombs
and its experimental evaluation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 6559–6576. [CrossRef]

32. Karathanasopoulos, N.; Dos Reis, F.; Hadjidoukas, P.; Ganghoffer, J. LatticeMech: A discrete mechanics code to compute the
effective static properties of 2D metamaterial structures. SoftwareX 2020, 11, 100446. [CrossRef]

http://doi.org/10.1016/j.commatsci.2017.06.035
http://doi.org/10.3390/ma13163605
http://www.ncbi.nlm.nih.gov/pubmed/32824029
http://doi.org/10.1016/j.matdes.2020.108520
http://doi.org/10.1016/j.eml.2020.100769
http://doi.org/10.1016/j.ijsolstr.2017.04.010
http://doi.org/10.1126/science.1252291
http://doi.org/10.1115/1.4044494
http://doi.org/10.3390/ma15041439
http://doi.org/10.3390/sym13071127
http://doi.org/10.1007/s00158-009-0377-1
http://doi.org/10.1002/pssb.200572717
http://doi.org/10.1016/j.eml.2016.09.001
http://doi.org/10.3390/ma14247837
http://www.ncbi.nlm.nih.gov/pubmed/34947430
http://doi.org/10.1007/s004190050117
http://doi.org/10.1016/j.ijmecsci.2018.06.027
http://doi.org/10.1016/j.actamat.2005.02.006
http://doi.org/10.1016/j.ijsolstr.2007.10.005
http://doi.org/10.1016/j.ijmecsci.2019.02.041
http://doi.org/10.1016/j.compositesb.2020.108379
http://doi.org/10.1016/j.pmatsci.2017.12.003
http://doi.org/10.1016/j.commatsci.2018.07.044
http://doi.org/10.1038/nmat4694
http://www.ncbi.nlm.nih.gov/pubmed/27429209
http://doi.org/10.3390/ma14185384
http://www.ncbi.nlm.nih.gov/pubmed/34576608
http://doi.org/10.1016/j.ijmecsci.2020.105523
http://doi.org/10.1016/j.ijmecsci.2018.09.038
http://doi.org/10.1016/j.msea.2005.02.048
http://doi.org/10.1016/j.eml.2017.08.004
http://doi.org/10.1177/0954406219860538
http://doi.org/10.1016/j.softx.2020.100446


Materials 2022, 15, 3581 18 of 19
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