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Fast generation of three-qubit 
Greenberger-Horne-Zeilinger state 
based on the Lewis-Riesenfeld 
invariants in coupled cavities
Xiao-Bin Huang, Ye-Hong Chen & Zhe Wang

In this paper, we propose an efficient scheme to fast generate three-qubit Greenberger-Horne-Zeilinger 
(GHZ) state by constructing shortcuts to adiabatic passage (STAP) based on the “Lewis-Riesenfeld (LR) 
invariants” in spatially separated cavities connected by optical fibers. Numerical simulations illustrate 
that the scheme is not only fast, but robust against the decoherence caused by atomic spontaneous 
emission, cavity losses and the fiber photon leakages. This might be useful to realize fast and noise-
resistant quantum information processing for multi-qubit systems.

Entanglement is not only a key resource for quantum information processing (QIP)1,2, but also an essential ingre-
dient for demonstrating quantum nonlocality3,4. Generally speaking, entanglement of multi-qubit is more useful 
for quantum applications and shows more clear nonclassical effects. For the case of three-qubit, there are two 
inequivalent classes of tripartite entanglement states, the Greenberger-Horne-Zeilinger (GHZ) state4 and the W 
state5. In contrast with the W state, the GHZ state provides a possibility to test quantum mechanics against local 
hidden theory without inequality4 and has practical applications in e.g., quantum secrete sharing6.

Thus, the manipulation of the GHZ state has attracted attention in recent years. A large number of theoretical 
and experimental proposals have been proposed for producing this entangled state7–15. However, most of the pre-
vious schemes either require a relatively long operation time (adiabatic passage) or need to control the interaction 
time accurately (quantum Zeno dynamics). These make the schemes are difficult to implement in experiments. 
Therefore, in recent year, a main goal in QIP is to overcome the drawbacks and combine advantages of adiabatic 
passage and quantum Zeno dynamics (QZD)16. Fortunately, a famous technique named “shortcuts to adiabatic 
passage” (STAP)17–27, which can fast and robustly generate entangled states, makes the above goal become true. 
This technique is related on adiabatic passage but successfully breaks the time limit in an adiabatic process. It can 
obtain the same final populations with adiabatic but is just a fast adiabatic-like process which is not really adia-
batic. The shortcut techniques mainly include counter-diabatic driving (CD)17–19 or, equivalently, transitionless 
quantum driving20,21 and inverse engineering based on Lewis-Riesenfeld invariants25–27. Among these shortcut 
techniques, the invariant-based method has been applied to accelerate the adiabatic processes for trap expansion 
or compressions26,27 and atomic transport28–30. In fact, CD and invariant-based engineering can be shown to be 
potentially equivalent methods by properly adjusting the reference Hamiltonian31.

In the last several years, many schemes have been proposed in theoretically and experiments based on 
STAP26–48. Among these schemes, del Campo et al. first presented the multi-qubit shortcuts scheme in ref. 32. 
After that, many innovative schemes have been presented, i.e., Chen et al. constructed shortcuts to perform fast 
and noise-resistant populations transfer in multi-particle systems by combining “LR invariants” with “QZD”33. 
However, most of the above STAP schemes only focus on the single cavity situation, which is still a challenge to 
manipulate a large number of qubits. The coupled-cavity systems49–55 are considered as a suitable candidate for 
the solution of the above deficiency and for the construction of a practical quantum network. In view of that, we 
wonder if it is possible to construct STAP for the generation of multi-qubit entanglement in coupled cavity sys-
tems. And this would be an interesting direction in quantum state engineering.

In this paper, we construct STAP to fast generate GHZ state in spatially separated cavities by combining “LR 
invariants” with “QZD”. Our scheme has the following advantages: (1) the operation time required for the crea-
tion of the GHZ state is relatively short. (2) This scheme is not only robust against parameters fluctuation in the 
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experimental, but need’t accurately control the operation time. (3) Numerical simulations show that the decoher-
ences such as atomic spontaneous emission, cavity losses and the fiber photon leakages have little influence on 
this scheme. (4) Individual addressing becomes relatively easy in coupled cavity systems.

This paper is structured as follows. In Sec. II, we give a brief description of the preliminary theory about LR 
invariants and QZD. In Sec. III, we construct STAP based on the invariant-based inverse engineering and show 
how to use STAP to fast generate GHZ state. In Sec. IV, we give the numerical simulations and discussions for our 
schemes. A discussion on experimental feasibility and a summary appear in Sec. V.

Preliminary Theory
Lewis-Riesenfeld invariants. Firstly, we briefly describe LR invariants theory25. We consider a time-de-
pendent quantum system whose Hamiltonian is H(t). Associated with the Hamiltonian there are time-dependent 
Hermitian invariants of motion I(t) that satisfies
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= .i I t
t

H t I t( ) [ ( ), ( )] (1)
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where Cn is the nth constant, |Φ n(t)〉  is the nth eigenvector of I(t) and the corresponding real eigenvalue is ςn. The 
Lewis-Riesenfeld phases αn fulfill
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Quantum Zeno dynamics. Next, we give a brief review of the quantum Zeno dynamics. According to ref. 
16, we know the main features of the QZD can be obtained by making use of a continuous coupling. We consider 
a system which is governed by the Hamiltonian

= +H H KH , (4)K C

where H is the Hamiltonian of the quantum system to be studied; HC can be viewed as an additional interaction 
Hamiltonian which plays the role of measurement; K is the coupling constant. When K →  ∞ , the subsystem of 
interest is dominated by the evolution operator

= −
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which can be shown to have the form
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where Pn is one of the eigenprojections of HC with eigenvalues ηn( η= ∑H PC n n n). So the whole system is gov-
erned by the limiting evolution operator
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Fast Preparation of GHZ State by Combining “Lewis-Riesenfeld Invariants” with 
“Quantum Zeno Dynamics”
As shown in Fig. 1, a six-level atom and two Λ -type atoms are trapped in three distant optical cavities coupled by 
two short optical fibers. The cavity C1 is bimodal-mode, the cavities C2 and C3 are single-mode. The first atom has 
two degenerate excited states |eL〉  and |eR〉 , two degenerate ground states |gL〉  and |gR〉 , and two intermediate states 
| fL〉  and | fR〉 . The others atoms have a degenerate excited state |eL〉 2 (|eR〉 3), a degenerate ground state |gL〉 2 (|gR〉 3)  
and a intermediate state | fL〉 2 (| fR〉 3). The transitions | fL〉 1(2) ↔  |eL〉 1(2) and | fR〉 1(3) ↔  |eR〉 1(3) are resonantly driven 
through classical laser fields with time-dependent Rabi frequency ΩL(t) and ΩR(t), respectively. The atomic tran-
sitions |gL〉 1(2) ↔  |eL〉 1(2) and |gR〉 1(3) ↔  |eR〉 1(3) resonantly couple to the left-circularly and right-circularly polarized 
mode of cavities with coupling constants gL and gR, respectively.

In the short-fiber limit, i.e., ν π L c2 /(2 ) 1 (where L denotes the fiber length, c denotes the speed of light, and 
ν denotes the decay of the cavity field into a continuum of fiber mode), only one resonant fiber mode interacts 
with the cavity mode56. In the interaction picture, the total Hamiltonian is

= + +H H H H , (8)tot ae ac af
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here amL (anR) denotes annihilation operator for the left-(right-) circularly polarized mode of the m (n) cavity, †b1(2) 
denotes the creation operator for the f1,(2) fiber. The states of the three qubits are represented by {|gL〉 , |gR〉 }, {| fL〉 , 
|gL〉 }, and {| fR〉 , |gR〉 }. For the sake of simplicity, we assume gL =  gR =  g, and υ1 =  υ2 =  υ. If we assume the initial 
state of the system is | fL〉 |gL〉 |gR〉 |00〉 c1|0, 0〉 c2,c3|0, 0〉 f1,f2, the whole system evolves in the subspace   spanned by:
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Under the Zeno condition ΩL, ΩR ≪  g, υ, the Hilbert subspace   is split into five Zeno subspaces according to 
the degeneracy of eigenvalues of the Hamiltonian Him =  Hac +  Haf

φ φ φ φ
φ φ φ

= =
= = =

Z Z
Z Z Z

{ , , }, { },
{ }, { }, { }, (11)

0 1 2 3 1 4

2 5 3 6 4 7

where the eigenstates of Him are

Figure 1. Experimental setup and level configuration for each atom. 
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the corresponding eigenvalues are ς0 =  0, ς1 =  g, ς2 =  − g, ς υ λ= + =g23
2 2 , ς υ λ= − + = −g24

2 2  with 
the projections (k =  0, 1, 2, 3, 4)
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Under the Zeno condition, according to the ref. 16, the Hamiltonian of the current system is approximately 
dominated by
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As the initial state is |ψ0〉  =  | fL〉 |gL〉 |gR〉 |00〉 c1|0, 0〉 c2,c3|0, 0〉 f1,f2, the system will always evolve in the Zeno sub-
space Z0, and the effective Hamiltonian of the current system reduces to

υ
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(15)eff L R1 2 1 2 7

On the other hand, if the initial state is ψ ′ = f g g 00 0,0 0,0R L R c c c f f0 1 2, 3 1, 2
, the whole system evolves 
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ψ

ψ

ψ

ψ

ψ

ψ

ψ

=

=

=

=

=

=

= .

′

′

′

′

′

′

′

f g g

e g g

g g g

g g g

g g g

g g e

g g f

00 0, 0 0, 0 ,

00 0, 0 0, 0 ,

01 0, 0 0, 0 ,

00 0, 0 0, 1 ,

00 0, 1 0, 0 ,

00 0, 0 0, 0 ,

00 0, 0 0, 0 (16)

R L R c c c f f

R L R c c c f f

R L R c c c f f

R L R c c c f f

R L R c c c f f

R L R c c c f f

R L R c c c f f

1 1 2, 3 1, 2

2 1 2, 3 1, 2

3 1 2, 3 1, 2

4 1 2, 3 1, 2

5 1 2, 3 1, 2

6 1 2, 3 1, 2

7 1 2, 3 1, 2

Then, performing similar processes from Eq. (11) to Eq. (14), we obtain the effective Hamiltonian of the cur-
rent system

υ
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φ ψ φ ψ′ = Ω ′ ′ + Ω ′ ′ + . . .H H c( )
(17)eff L R1 2 1 2 7

According to the above analysis, we can draw a conclusion that the states | fL〉 |gL〉 |gR〉 |00〉 c1|0, 0〉 c2,c3|0, 0〉 f1,f2 and 
| fR〉 |gL〉 |gR〉 |00〉 c1|0, 0〉 c2,c3|0, 0〉 f1,f2 do not interact with each other during the evolution because they evolve in 
different Zeno invariant subspaces, respectively. The global phase of the quantum Zeno dynamics does not play 
any role in the evolution because of the resonant interaction and the symmetry structure. If the initial state is 
prepared in the state +f f g g( ) 00 0,0 0,0L R L R c c c f f

1
2 1 2, 3 1, 2

, the system evolves in Zeno subspace 
spanned by ′{ , }  , and the effective Hamiltonian of the current system becomes
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Then we use six orthogonal vectors
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to rewrite the Hamiltonian in Eq. (18) as
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It is obvious that when the initial state is |ϑ+〉 , the terms containing |μ−〉 , |ϑ−〉  and |ξ−〉  are negligible because 
they are decoupled to the time evolution of initial state. Then we can obtain the final effective Hamiltonian
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In order to speed up preparation of target state by using the dynamics of invariant-based inverse engineering, 
we need to find out the Hermitian invariant operator I(t), which satisfies =∂
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where tf is the total interaction time. Similarly, in our case α0 =  0, and
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In order to generate GHZ state, we choose the parameters as
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where  is a time-independent small value and tf is the interaction time. Then, we obtain
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In the present case, when t =  tf,
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t i

i i
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f
2 2  

   

where α π α= = ±/(2 sin ) . When we choose α =  2Nπ(N =  1, 2, 3 ···), ξ|Ψ 〉 = −| 〉+t( )f . Therefore, the whole 
system quickly evolves from the initial state |ϑ+〉  to the final state − |ξ+〉 . That is to say, the three-qubit GHZ state 
can be obtained
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Numerical Simulations and Discussions
In this section, we make the numerical simulations for the GHZ state by numerically solving the Schrödinger 
equations. We also discuss the influence of the decoherence caused by atomic spontaneous emission, cavity losses 
and the fiber photon leakages.

Firstly, we plot the fidelity F of the target state |Ψ (tf)〉  versus the value of  and gtf in Fig. 2, where the fidelity of 
the state is defined as F =  |〈 ψ|ρ(tf)|ψ〉 |. Figure 2 shows that the ideal value of  for the highest fidelity is slightly 
different from the condition = = ⋅⋅ ⋅− N N(sin ) 4 ( 1, 2, 3 )1  in ref. 34. The reason for this difference has been 
discussed in ref. 33 in detail: in the present case, the Zeno condition is satisfied but not very ideally because speed-
ing up the system requires relatively large laser intensity. Therefore, under the premise that the interaction time 
for the entangled operation is short. In order to satisfy the Zeno condition as well as possible, the parameters 
should be chosen as = . =t g0 2561, 30/f . Meanwhile, we analyse the relation between the cavity-fibre coupling 
υ and the interaction time tf since υ plays a very important role in the evolution. The fidelity F versus υ and gtf is 
shown in Fig. 3 with  = .0 2561. Figure 3 shows that the increasing value of υ does not help to shorten the inter-
action time. The reason is that the relation between the coupling υ and the amplitude of the laser pulses Ω0 at that 
time was not taken into consideration. In fact, shortening the time requires increasing the amplitude of the laser 
pulses. The amplitude of the laser pulses in Eq. (29) inverses the proportion to the coupling υ, i.e., the amplitude 
is smaller, the interaction time is longer. Consequently, it is wisely to choose υ =  g in our method. Moreover, Fig. 3 
shows that in the present case, the shortest interaction time required for an ideal population transfer from the 
initial state |ϑ+〉  to target state |Ψ (tf)〉  is only about 9/gs. It means that the entangled state can be fast generated. In 
Fig. 4, we plot the scaled Rabi frequencies ΩL(t)/g and ΩR(t)/g versus gt when = .0 2561 , gtf =  30 and υ =  g. The 
amplitude of the laser pulse Ω0 is 1.05 g which meets the conditions mentioned above, and such an intensity is safe 
to assume linear optic models. The population curves of state |ϑ+〉  and |ξ+〉  versus gt are depicted Fig. 5. From 
Fig. 5, we can see a perfect population transfer from the initial state |ϑ+〉  to the target state |ξ+〉  after the whole 
evolution, and a GHZ state can be generated according to Eq. (30). We contrast the interaction time required for 
achieving the target state via an adiabatic process with the present STAP method in Fig. 6. We can see from Fig. 6, 
the present STAP method effectively shortens the interaction time of the adiabatic method.

To check the robustness against to the variation of different parameters, in Fig. 7, we calculate the fidelity ver-
sus the deviation of the classical Rabi frequencies with the deviation parameter η =  δΩL/ΩL =  δΩR/ΩR. It is appar-
ent that the fidelity of prepared state |Ψ (tf)〉  is always higher than 97.2%, when η =  ± 0.1 with = .0 2561  and 
tf =  30/g. Furthermore, The fidelity versus the deviation δT/T and δg/g is shown in Fig. 8. As one can see from 
Fig. 8 that the the fidelity is very insensitive to the variation of g and tf since it always higher than 99.4% under 
condition T =  tf =  30/g. Thus, we can draw a conclusion that our scheme is robust against variation of the param-
eters, such as ΩL, ΩR, g, tf and so on.

Next, we will investigate the influence of various decoherence caused by the atomic spontaneous emission, 
cavity losses and the fiber photon leakages. The master equation of the whole system reads
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Figure 2. The fidelity of the GHZ state versus parameter  when gtf = 30 and υ = g.
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Figure 3. The fidelity of the GHZ state versus parameters υ and gtf. 

Figure 4. Dependence on gt of ΩL/g and ΩR/g. 

Figure 5. Dependence on gt of the populations for the initial state |ϑ+〉 and the target state |ξ+〉. 
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Figure 6. The comparison of the operation times required for achieving the target state via the adiabatic 
method with those via the present STAP method. 

Figure 7. The fidelity F versus the deviation of the classical Rabi frequencies with the deviation parameter 
η = δΩL/ΩL = δΩR/ΩR, and other parameters .= 0 2561 , tf = 30/g and υ = g.

Figure 8. The fidelity F versus the deviation of δg/g and δT/T when T = tf = 30/g, and other parameters 
 = 0.2561 and υ = g.
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where γk denotes the atomic spontaneous decay rate of the kth atom; κk and βk denote the decay rates of the kth 
cavity and fiber, respectively. For simplicity, we set γ1 =  γ2 =  γ3 =  γ, κ1 =  κ2 =  κ3 =  κ and β1 =  β2 =  β. The master 
equation can be numerically solved in the subspace ψ∈ ′ = g g g{ , , 00 0,0 0,0 ,L L R c c c f f1 8 1 2, 3 1, 2    
ψ ′ = g g g 00 0,0 0,0 }R L R c c c f f8 1 2, 3 1, 2

. We plot the fidelity versus the dimensionless parameters γ/g, κ/g 
and β/g in Fig. 9. We can see from Fig. 9 that the fidelity of GHZ state is almost unaffected by the cavity decay, 
since the probability of the system evolving beyond the Zeno subspace is very small. Thus, The atomic spontane-
ous emission and the fiber loss become the main sources of decoherence. As shown in Fig. 10, the fiber loss and 
the atomic spontaneous emission has a little influence on the fidelity, the GHZ state has a high fidelity 97.52% 
when we set γ =  β =  0.01 g. This means that the proposed scheme is robust against the decoherence since the 
fidelity nearly never varied while the parameters are diversifications.

Experimental Feasibility and Conclusions
Finally, let us consider the experimental feasibility of the proposed scheme. The bimodal cavity can sustain two 
degenerate modes with the same coupling strengths in the experiment reported by ref. 57 and the required atomic 
level configuration can be implemented with 40Ca+ 57 and 198Hg+ 58. The Zeeman substates |− 1/2, P1/2〉  and |1/2, P1/2〉  

Figure 9. The fidelity F versus the decoherence parameters γ/g, κ/g and β/g with the parameters  = 0.2561, 
tf = 30/g and υ = g.

Figure 10. Dependences on the decoherence parameters γ/g and β/g of the fidelity of the GHZ state via 
STAP with the parameters  .= 0 2561, tf = 30/g and υ = g.
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act as the states |eL〉  and |eR〉 , respectively. The substates |1/2, S1/2〉  and |− 1/2, S1/2〉  act as the states |gL〉  and |gR〉 , 
respectively. The substates |− 3/2, D3/2〉  and |1/2, D3/2〉  equally couple to |− 1/2, P1/2〉  by the classical fields, while |− 
1/2, D3/2〉  and |3/2, D3/2〉  equally couple to |1/2, P1/2〉 . If the atom is initially in the symmetric superposition state 
+ = − +D D( 3/2, 1/2, )L

1
2 3/2 3/2  or + = − +D D( 1/2, 3/2, )R

1
2 3/2 3/2 , the classical fields induce the 

effective transition |+ L〉  ↔  |eL〉  or |+ R〉  ↔  |eR〉 . Therefore, the superposition states |+ L〉  and |+ R〉  can act as the states 
| fL〉  and | fR〉 , respectively. Furthermore, a set of cavity quantum electrodynamics (QED) parameters (λ, γ, 
κ)/2π =  (750, 2.62, 3.5) MHz is predicted to be available59, with the cavity wavelength is about 850 nm. The fiber loss 
at the 852 nm wavelength is 2.2 dB/km60, corresponding to a fiber decay rate β =  0.152 MHz. In this condition, the 
fidelity of the GHZ state is 99.81% in our scheme.

In summary, we have proposed an efficient theoretical scheme to fast generate a GHZ state for three atoms 
trapped in coupled cavities linked by optical fibers based on STAP by combining “LR invariants “ with “QZD”. The 
influences of the decoherence such as atomic spontaneous emission, cavity losses and the fiber photon leakages 
are numerically studied. Numerical simulations demonstrate that our scheme is not only fast, but also robust 
against the decoherence. Additionally, numerical simulations also demonstrate our scheme is robust against var-
iation of the parameters, such as ΩL, ΩR, g, υ, tf and so on. We believe the shortcut method is useful to realize fast 
and noise-resistant quantum information processing for multi-qubit systems.
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