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Abstract: Augmentation of intrarenal angiotensinogen (AGT) leads to further formation of intrarenal
angiotensin II (Ang II) and the development of hypertensive kidney injury. Recent studies demon-
strated that macrophages and the enhanced production of pro-inflammatory cytokines can be crucial
mediators of renal AGT augmentation in hypertension. Accordingly, this study investigated the
effects of immunosuppression by mycophenolate mofetil (MMF) on intrarenal AGT augmentation.
Ang II (80 ng/min) was infused with or without daily administration of MMF (50 mg/kg) to Sprague-
Dawley rats for 2 weeks. Mean arterial pressure (MAP) in Ang II infused rats was slightly higher
(169.7 ± 6.1 mmHg) than the Ang II + MMF group (154.7 ± 2.0 mmHg), but was not statistically dif-
ferent from the Ang II + MMF group. MMF treatment suppressed Ang II-induced renal macrophages
and IL-6 elevation. Augmentation of urinary AGT by Ang II infusion was attenuated by MMF
treatment (control: 89.3 ± 25.2, Ang II: 1194 ± 305.1, and Ang II + MMF: 389 ± 192.0 ng/day).
The augmentation of urinary AGT by Ang II infusion was observed before the onset of proteinuria.
Elevated intrarenal AGT mRNA and protein levels in Ang II infused rats were also normalized by the
MMF treatment (AGT mRNA, Ang II: 2.5 ± 0.2 and Ang II + MMF: 1.5 ± 0.1, ratio to control). Ang
II-induced proteinuria, mesangial expansion and renal tubulointerstitial fibrosis were attenuated by
MMF. Furthermore, MMF treatment attenuated the augmentation of intrarenal NLRP3 mRNA, a com-
ponent of inflammasome. These results indicate that stimulated cytokine production in macrophages
contributes to intrarenal AGT augmentation in Ang II-dependent hypertension, which leads to the
development of kidney injury.

Keywords: angiotensinogen; angiotensin II; mycophenolate mofetil; kidney injury; hypertension

1. Introduction

Hypertension accounts for approximately one fourth of all heart failure cases, of
which 60% are attributed to hypertension in the elderly [1]. The most common causes of
end-stage renal disease in the United States are hypertension and diabetes. Systemic and
local renin-angiotensin systems (RAS) play crucial roles in controlling blood pressure and
regulating electrolyte and body fluid homeostasis [2]. Since inappropriate activation of the
intrarenal RAS, which increases intrarenal angiotensin II (Ang II) formation, appears to
play a crucial role in the progression of hypertension and associated kidney injury [2,3],
mechanisms underlying regulation of intrarenal RAS components have been investigated.
In the kidneys of Ang II-infused animals and human renin/human AGT double-transgenic
mice, elevated intrarenal angiotensinogen (AGT) expression and urinary AGT levels were
observed [4–6], supporting an intrarenal Ang II-AGT amplifying mechanism in Ang II-
dependent hypertension. Thus, augmentation of renal proximal tubular AGT has been

Int. J. Mol. Sci. 2022, 23, 7680. https://doi.org/10.3390/ijms23147680 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23147680
https://doi.org/10.3390/ijms23147680
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4073-524X
https://orcid.org/0000-0002-3777-7564
https://doi.org/10.3390/ijms23147680
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23147680?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 7680 2 of 13

regarded as one of the key mechanisms leading to enhanced intrarenal Ang II production
in Ang II-dependent hypertension [2,3]. However, some in vitro studies using cultured
human renal proximal tubular cells (PTC) demonstrated that maximum AGT upregulation
by treatment with Ang II requires the presence of cytokines or co-factors such as interleukin
6 (IL-6) [7,8]. These findings suggest that a mediator and/or co-factors are required for
intrarenal AGT augmentation observed in Ang II-dependent hypertension.

Studies have demonstrated intimate links between inflammation and the regulation
of hypertension in both human and experimental animal models [9,10]. Among the wide-
ranging actions of the RAS, its role in immune-promoting hypertension development has
come into focus [11–13]. Ang II induces differentiation of immune cells and augmentation
of pro-inflammatory cytokine production [14–17], both contributing to elevated blood pres-
sure and sustained hypertensive conditions. The increases in intrarenal immune cells and
pro-inflammatory cytokines have been observed in Ang II-dependent hypertension [18,19].
Furthermore, the expression of NLRP3, which is a component of inflammasome, is aug-
mented by Ang II in renal cells and in kidneys of chronic Ang II-induced hypertension
models [20–25]. In vitro studies using cultured PTC have provided evidence that elevated
pro-inflammatory cytokines contribute to AGT upregulation [7,8,26,27]. In particularly, a
study using a sequencing cell-culture system showed that macrophages activated by Ang
II treatment and, consequently, over-produced IL-6 augment AGT expression in PTC [27].
Accordingly, an activated immune system can serve as an important mediator of augmenta-
tion of proximal tubular AGT in Ang II-dependent hypertension. However, the roles of the
immune system in intrarenal AGT regulation under in vivo hypertensive conditions have
not been established. Administration of mycophenolate mofetil (MMF), an immunosup-
pressive drug, reduced intrarenal Ang II in a lead-induced hypertensive animal model [28].
Therefore, we performed this study to test our hypothesis that immunosuppression by
MMF attenuates intrarenal AGT augmentation and development of hypertensive kidney
injury in Ang II-induced hypertension rats.

2. Results
2.1. Effects of MMF on Blood Pressure

Chronic Ang II infusion increased SBP from 121.7 ± 2.5 to 189.2 ± 10.0 mmHg by day
2 and 216.7 ± 5.3 mmHg by day 13 (Figure 1, n = 6 in each group). Ang II-infused rats
treated with MMF exhibited similar increases in SBP (220.8 ± 4.2 mmHg on day 13).

Figure 1. Effects of MMF on blood pressure. SBP was measured by a tail-cuff plethysmography
system on day −2, 2, 3, 7 and 13. Mean ± SE. n = 6 in each group. Asterisk (p < 0.05) indicates
significant difference compared to the control group at each time point.
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2.2. Effects of MMF on GFR and Mean Arterial Pressure (MAP)

Glomerular function was evaluated using inulin clearance. Rats subjected to chronic
Ang II infusion had slightly lower GFR (0.90 ± 0.03, n = 6) compared to the control group
(1.07 ± 0.04, n = 6). MMF treatment of Ang II-infused rats did not significantly alter GFR
values (1.11 ± 0.04 in the Ang II + MMF group). MAP measured during the clearance
period showed significantly increased values in Ang II-infused group (126.7 ± 1.3 mmHg
in the control group vs. 169.7 ± 6.1 mmHg in Ang II-infused group). The MMF-treated
group had slightly lower MAP (156.9 ± 2.0 mmHg).

2.3. Effects of MMF on Intrarenal Immune Cells and IL-6 Levels

Levels of intrarenal monocyte/macrophage were measured by CD68 staining. Chronic
Ang II infusion increased the density of CD68 positive area in tubulointerstitium of the
renal cortex (Figure 2A, 0.169 ± 0.03 in the control group vs. 0.495 ± 0.09 in Ang II-infused
group, arbitrary density units, n = 6). In addition, the density of the IL-6 positive area in
the renal cortex was concomitantly augmented by the chronic Ang II infusion (Figure 2B,
4.27 ± 1.03 in the control group vs. 19.3 ± 2.01 in Ang II-infused group, arbitrary density
unit, n = 6). Intrarenal IL-6 mRNA levels were also markedly greater in the Ang II-infused
group than in the control group (Figure 2C, 32.4 ± 7.44-fold in the Ang II-infused group,
ratio to the control group, n = 6). The greater values of intrarenal monocyte/macrophage,
IL-6 mRNA and protein in the Ang II-infused group were prevented by MMF treatment
(Figure 2A–C).

Figure 2. Effects of MMF on intrarenal immune cells and IL-6 levels. Quantified scores of positive
areas for CD68 (monocyte/macrophage staining) and IL-6 protein and representative images are
shown in panels (A,B), respectively, (n = 6. The brown color indicates positive area. The bar graphs
show the percentile of density of the positive area in the total image). The scoring method for the
images are described in the Method section. Panel (C) indicates renal cortical IL-6 mRNA levels
(n = 6). Asterisk (p < 0.05) indicates significant difference between groups.
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2.4. Effects of MMF on Intrarenal and Urinary AGT Levels

As mentioned, renal proximal tubular AGT regulation has been shown to play crucial
roles in the development of kidney injury in hypertension. Thus, renal cortical AGT mRNA
and protein levels were evaluated. Renal cortical AGT mRNA levels in Ang II-infused
group were 2.44 ± 0.23-fold greater than in the control group (Figure 3A, n = 6). Western
blot analysis showed that renal cortical AGT protein levels were also increased in Ang II-
infused group (Figure 3B, 1.91 ± 0.10 in the control group vs. 5.83 ± 0.32 in Ang II-infused
group, arbitrary density unit, n = 6). In immunological staining of AGT, AGT protein was
detected mainly in proximal tubules as previously demonstrated in rat kidneys [29,30].
Results obtained by immunological staining support the finding in Western blot analysis
indicating augmentation of renal cortical AGT protein in Ang II-dependent hypertension
(Figure 3B, 0.81± 0.31 in the control group vs. 5.82± 2.40 in Ang II-infused group, arbitrary
density units, n = 6). Importantly, MMF treatment attenuated the increases in AGT mRNA
and protein levels in the renal cortex of Ang II-infused rats (Figure 3A–C).

Figure 3. Effects of MMF on intrarenal and urinary AGT levels. Panel (A) indicates renal cortical AGT
mRNA levels (n = 6). Panels (B,C) show renal cortical AGT protein levels detected by Western blot
analyses and immunological staining, respectively (n = 6). The brown color in the images indicates
positive areas. The bar graphs show the percentile of density of positive areas in the total image. The
scoring method for the images is described in the Method section. Urinary AGT levels determined by
an ELISA are presented in panel (D) (n = 6). In panels (A–C), an asterisk (p < 0.05) indicates significant
difference between the groups. In panel (D), an asterisk (p < 0.05) indicates significant difference
compared to the control group and the dagger (p < 0.05) shows significant difference between Ang
II-infused and Ang II + MMF groups.
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It has been proposed that urinary AGT levels reflect intrarenal AGT production lev-
els and serve as a marker of hypertensive kidney injury during the early stage of the
injury [31–33]. There are no differences in urinary AGT levels among the three groups at
baseline (Figure 3D, n = 6). Urinary AGT levels were increased, even on day 1 of Ang II
infusion (84.5 ± 16.4 in the control group vs. 732.5 ± 212.2 in Ang II-infused group on day 1,
AGT ng/day, n = 6). In Ang II-infused group, urinary AGT levels were increased further on
day 7 (1153.1± 338.2 in Ang II-infused group on day 7, AGT ng/day, n = 6) and the elevated
levels were sustained until day 12 (1194.6 ± 305.1 in Ang II-infused group on day 12, AGT
ng/day, n = 6). A group receiving Ang II infusion and MMF treatment exhibited a lesser
elevation of urinary AGT levels (Ang II + MMF group: 339.1 ± 96.9 on day 1, 569.8 ± 197.0
on day 7 and 389.6 ± 192.0 on day 12, AGT ng/day, n = 6); however, these values are not
statistically different compared to the control group at each time point (one-way ANOVA
followed by post hoc Tukey multiple comparison test). The urinary AGT levels in Ang II +
MMF-treated group was significantly lower than in Ang II-infused group on day 12.

2.5. Effects of MMF on Hypertensive Kidney Injury

Ang II-infused rats developed proteinuria. Urinary protein levels in the group were
significantly greater than in the control group by day 7 (Figure 4A, 9.0 ± 1.4 in the control
group vs. 33.7 ± 5.7 in Ang II-infused group on day 7, mg/day, n = 6) and day 12 (6.7 ± 1.6
in the control group vs. 109.3 ± 24.6 in Ang II-infused group on day 12, mg/day, n = 6).
MMF treatment prevented the development of proteinuria by Ang II infusion compared to
the control group and the levels were significantly lower than in Ang II-infused group on
day 12 (Ang II + MMF group: 46.7 ± 5.1 on day 12, mg/day, n = 6).

Urinary 8-isoprostane levels were measured to evaluate the development of renal
oxidative stress. The urinary 8-isoprostane levels were not statistically different among the
three groups during the tested period (Figure 4B, n = 6). To evaluate further, we measured
phosphorylation levels of renal cortical p47 phox, an indicator of tissue oxidative stress,
by Western blot analysis. The phosphorylation levels were not altered by either Ang II
infusion or MMF treatment during the 14 day period (Figure 4C, n = 6).

Glomerular and cortical tubular damage was evaluated by histological analyses.
Glomerular fibrosis, which was detected by MT staining, was induced by Ang II infu-
sion (Figure 4D, 0.127 ± 0.01 in the control group vs. 0.198 ± 0.02 in Ang II-infused group,
% positive area in glomerulus, n = 6). MMF treatment did not prevent the development of
glomerular fibrosis (0.178 ± 0.02 in the Ang II + MMF group, % positive area in glomerulus,
n = 6). Conversely, MMF treatment attenuated glomerular mesangial expansion, indi-
cated by PAS staining, in Ang II-infused rats (Figure 4E, 6.21 ± 0.38 in the control group,
12.66 ± 0.78 in Ang II-infused group and 8.90± 0.29 in the Ang II + MMF group, % positive
area in glomerulus, n = 6). Ang II infusion elicited tubulointerstitial fibrosis (Figure 4F,
0.88 ± 0.12 in the control group vs. 1.91 ± 0.33 in Ang II-infused group, % positive area in
glomerulus, n = 6), which was attenuated by MMF treatment (1.12 ± 0.11 in the Ang II +
MMF group, % positive area in glomerulus, n = 6).

The levels of NLRP3 and AIM2 mRNA, inflammasome-associated genes, were de-
termined to investigate the development of renal inflammation. As mentioned, ddPCR
technique was employed due to relatively low amounts of these target genes. NLRP3
mRNA levels in the renal cortex of Ang II-infused rats were significantly higher than in the
cortex of the control group (Figure 4G, 4.12 ± 0.96 in the control group vs. 9.96 ± 1.62 in
the Ang II-infused group, mRNA copies in 1 ng RNA, n = 6). Rats receiving Ang II infusion
in the presence of MMF treatment did not show significant augmentation of NLRP3 mRNA
expression (6.24 ± 1.32 in the Ang II + MMF group, mRNA copies in 1 ng RNA, n = 6).
AIM2 mRNA copy numbers in the renal cortex were much lower than NLRP3 levels and
not different among the three tested groups (Figure 4H, n = 6).



Int. J. Mol. Sci. 2022, 23, 7680 6 of 13

Figure 4. E Effects of MMF on hypertensive kidney injury. Panel (A) indicates urinary protein levels
(n = 6). Panels (B,C) show markers of renal oxidative stress, urinary 8-isoprostane and renal cortical
phosphor-p47 phox levels, (n = 6). Panels (D–F) are scores and representative pictures of glomerular
fibrosis (MT staining, blue color indicates positive area. The bar graph shows the percentile of blue
positive area in the total image or glomerulus.), glomerular mesangial expansion (PAS staining,
pink color indicates positive area. The bar graph shows the percentile of pink positive area in the
glomerulus.) and tubulointerstitial fibrosis (MT staining), respectively (n = 6). Panels (G,H) indicate
mRNA copy numbers of NLRP3 and AIM2 in the renal cortex detected by ddPCR (n = 6). Asterisk
(p < 0.05) indicates significant difference between groups.
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3. Discussion

The results obtained in the present study demonstrated that immunosuppression by MMF
attenuates intrarenal AGT augmentation in Ang II-dependent hypertension, which is associated
with mitigation of proteinuria, mesangial expansion and renal tubulointerstitial fibrosis.

Although a relatively mild dose of Ang II infusion (80 ng/min) was used in this
study, the chronic Ang II infusion markedly elevated the SBP of rats, even on day 2, and
the SBP was increased further to >200 mmHg after seven days Ang II infusion. Since
a previous study demonstrated that MMF treatment suppressed high blood pressure
in several hypertensive models and patients, including lead-induced hypertension [28],
patients with psoriasis and rheumatoid arthritis [34], DOCA-salt hypertensive rats [35]
and spontaneously hypertensive rats [36], attenuation of elevated SBP accompanied by
inhibition of intrarenal AGT augmentation by MMF was anticipated in the present study.
However, MMF did not exhibit a significant anti-hypertensive effect, which was shown
by a tail-cuff plethysmography system. Therefore, it is possible that the ability of MMF
to reduce blood pressure depends on the co-existing Ang II levels, but further specific
investigations of the anti-hypertensive effects of MMF need to be performed.

Chronic Ang II infusion enhances the number of immune cells in kidneys [18,19],
and Ang II has been shown to directly stimulate IL-6 expression in macrophages [27,37].
In the present study, MMF prevented the accumulation of macrophage/monocyte and
augmentation of IL-6 mRNA and protein levels in the renal cortex of Ang II-infused rats
as expected. Recent studies revealed that there are kidney-resident macrophages derived
from embryo, in addition to bone-marrow-derived macrophages in adult kidneys [38,39].
Although the source of macrophages contributing to pro-inflammatory cytokine elevation in
the kidneys of Ang II-dependent hypertension has not been identified, production of IL-6, a
stimulus of proximal tubular AGT expression [27], has been demonstrated in kidney-resident
macrophages [40]. Therefore, both kidney-resident and bone-marrow-derived macrophages
may be able to augment renal cortical IL-6 levels in Ang II-dependent hypertension.

The augmentation of renal cortical AGT mRNA and protein in hypertensive rats
was prevented by immunosuppression with MMF. Furthermore, elevated urinary AGT
levels by Ang II infusion was also suppressed by MMF. The crucial role of elevated IL-6
produced by Ang II-treated macrophages in proximal tubular AGT augmentation was
demonstrated in a previous study using sequencing cell culture system [27]. Thus, atten-
uation of the increases in intrarenal macrophages and IL-6 by MMF may have resulted
in the inhibition of renal cortical AGT upregulation and, consequently, elevated urinary
AGT levels. Supplemental Figure S1 compares temporal changes in urinary AGT, protein
and 8-isoprostane levels during Ang II infusion, which are shown in Figures 3D and 4A,B,
respectively. Importantly, significant elevation of urinary AGT levels was observed before
the onset of proteinuria (Figure S1). This temporal dissociation indicates that the elevation
of intrarenal AGT production, resulting from the urinary AGT excretion rates, occurs in a
proteinuria-independent manner. Furthermore, augmentation of urinary AGT can serve as
an early marker for hypertensive kidney injury, as previously proposed [2]. Renal oxidative
stress has also been identified as a strong enhancer of proximal tubular AGT expression
under diabetic conditions [41–44]. In the present study, however, renal oxidative stress,
indicated by urinary 8-isoprostane and phosphorylation of renal cortical p47 phox, was
not observed during the 2-week Ang II infusion period. This result supports the previ-
ous finding that elevated urinary 8-isoprostane was not observed on day 21 or later in
Ang II infused (60 ng/min) rats [45]. Therefore, although renal oxidative stress is a key
pathological factor in the late stage of hypertensive kidney injury, the oxidative stress is
unlikely to contribute to renal AGT augmentation that occurs during the early stage of Ang
II-dependent hypertension. These results suggest that the sequential mechanisms leading
to intrarenal AGT augmentation in hypertension and diabetes mellitus are different.

Our histological analyses showed that MMF mitigated the progression of mesangial
expansion and renal tubulointerstitial fibrosis in Ang II-infused rats. MMF also attenuated
the elevation of renal IL-6 and subsequent renal AGT, suggesting that increased AGT and
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activated intrarenal RAS participate in the development of these kidney injuries. Impor-
tantly MMF did not attenuate the development of glomerular fibrosis in Ang II-dependent
hypertension, suggesting that glomerular fibrosis is caused by pathological factors other
than elevated IL-6 and augmented renal AGT. Interestingly, MMF suppressed the aug-
mentation of NLRP3 expression in kidneys of Ang II-infused rats, which downregulates
NLRP3 inflammasome complex formation. While augmentation of NLRP3 expression by
Ang II in renal cells and in kidneys of chronic Ang II-induced hypertension models has
been demonstrated [20–25], mitigation of the NLRP3 expression by immunosuppression
in hypertension is a novel observation. Although NLRP3 inflammasome is activated by
ATP-P2Y7 axis and reactive oxygen species, the expression of pro-NLRP3 is promoted by
NF-κB activated by cytokines or PAMPs/DAMPs [46,47]. As mentioned previously, the
elevation of oxidative stress was not induced during the 2-week Ang II infusion period.
Thus, reactive oxygen species might not be a regulator of renal NLRP3 in the present study.
MMF suppressed the accumulation of renal macrophages that produce NF-κB activating
pro-inflammatory cytokines such as TNF-α and IL-1β. Therefore, MMF may inhibit eleva-
tion of NLRP3 via attenuation of these pro-inflammatory cytokines and NF-κB activation
in Ang II-dependent hypertension. Future studies will elucidate further these interesting
mechanisms. AIM2 forms inflammasome complex by viral or bacterial infections [47]. Thus,
no changes in intrarenal AIM2 levels in Ang II-infused rats are expected and the results
highlight specific regulation of renal NLRP3 in hypertension. Furthermore, AIM2 mRNA
copy numbers in the renal cortex were much lower than NLRP3 mRNA copy numbers in
all groups.

In this study, the histological and molecular analyses demonstrated the development
of glomerular injury by Ang II infusion. However, differences in inulin clearance values
among the groups were not observed. This may be due to partial maintenance of glomerular
pressure and GFR by the increases in blood pressure.

In conclusion, this study demonstrated that stimulated IL-6 production in activated
macrophages contributes to intrarenal AGT augmentation in the early stages of Ang II-
dependent hypertension, which leads to the development of kidney injury. MMF blocks
the activation of the sequential pathological cascade.

4. Materials and Methods
4.1. Animals and Sample Collection

Animal procedures were performed in accordance with the Mexican Federal Reg-
ulation for animal experimentation and care (NOM-062-ZOO-2001) and protocols were
approved by the Investigation Committee of the Instituto Nacional de Cardiología “Igna-
cio Chávez”, (INC-CICUAL/012/2019, 17-1142). All rats had free access to water and a
standard chow diet.

4.2. Induction of Hypertension

Rats were infused with Ang II (Sigma, St Louis, MO, USA) via subcutaneous osmotic
minipumps (Alzet model 2002, Alza Corp, Palo Alto, CA, USA) implanted under isoflurane
anesthesia. Mini-pumps delivered AngII 80 ng/Kg/min. Experiments were performed
14 days after the implant.

Three groups of rats were studied: Sham operated rats and AngII-infused groups
(n= 6 per group) received either vehicle or Angiotensin II. The third group consisted of rats
(n = 6) that received Angiotensin II + mycophenolate mophetil (MMF, 50 mg/kg per day by
gastric gavage) during the AngII infusion (AngII-MMF). The MMF was suspended in water
by vigorous agitation immediately before administration because it is insoluble in water, as
described in previous communications [48]. Systolic blood pressure measurements and
24 h urine collections were taken at −2, 2, 3, 7 and 13 days.

On day 14, the rats were anesthetized with pentobarbital sodium (30 mg.Kg, i.p);
the kidneys were harvested and weighed, one kidney was fixed in 4% paraformaldehyde
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and cortex and medulla were separately collected from the other kidney, frozen in liquid
nitrogen and stored at −80 ◦C until they were processed for molecular biological analyses.

4.3. Blood Pressure Measurements

Systolic blood pressure (SBP) measurements were performed in conscious, restrained
rats by tail-cuff plethysmography (IITC Life Science). The rats were conditioned before
blood pressures were measured at −2, 2, 3, 7 and 13 days.

4.4. Urine Assays

Urinary protein and 8-isoprostane levels were determined by Protein Assay Rapid kit
(Wako) and an 8-isoprostane EIA kit (Cayman). Urinary AGT levels were measured by
AGT ELISA kit (IBL, Minneapolis, MN, USA).

4.5. Clearance Experiments

On day 14 after the initiation of the Ang II infusion, the rats were anesthetized with
sodium pentobarbital (30 mg/kg, i.p.) and supplementary doses were administered as
required. The rats were placed on a thermos-regulated table with the temperature main-
tained at 37 ◦C. Polyethylene tubing was used to catheterize the trachea (PE-240), jugular
vein, the right femoral artery (PE-50), and the left ureter (PE-10). The left kidney was
exposed and placed in a lucite holder, and the kidney surface was bathed with Ringer’s
solution. A 6% albumin solution (1% of body weight, Sigma, St Louis, MO, USA) was
infused through the jugular catheter. Immediately after, a blood sample was taken and a
bolus injection of 100 mg of polyfructosan (Inutest, Fressenius Pharma, Graz, Austria) in
0.5 mL in 0.9% sodium chloride solution was given, following which a sustaining infusion
of 10% polyfructosan saline solution was started at a rate of 2.2 mL/h. After a 60 min
equilibration period, blood samples were taken before and after a 45–60 min urine sample
collection. Blood was replaced with red blood cells resuspended in a sodium chloride
solution. Polyfructosan was measured in the plasma and the urine samples, as previously
described [49]. Mean arterial pressure (MAP) was continuously monitored via the femoral
arterial catheter connected to a pressure transducer (Model p23 LX, Gould. Hato Rey,
Puerto Rico) and recorded on a polygraph (Grass Instruments, Quincy, MA, USA).

4.6. Real-Time RT-PCR

Quantitative real-time RT-PCR (qRT-PCR) was performed to evaluate intrarenal AGT
and IL-6 mRNA levels using the TaqMan PCR system. Total RNA was isolated using a
commercially available RNA isolation kit (Qiagen, Germantown, MD, USA). RNA con-
centration was quantified using Nanodrop 2000 (Thermo Scientific, Waltham, MA, USA).
Subsequently, qRT-PCR was performed, as previously described [7]. All samples were
analyzed in triplicate, and the data were normalized based on expression levels of rat
β-actin mRNA.

4.7. Droplet Digital PCR

We evaluated changes in inflammasome-associated genes, NLRP3 and AIM2, as
markers of renal inflammation [47]. NLRP3 inflammasome is activated by ATP-P2Y7 axis
and reactive oxygen species, and the expression of pro-NLRP3 is promoted by NF-κB
activated by cytokines [47]. Therefore, augmentation of NLRP3 was expected in Ang
II-dependent hypertension. On the other hand, AIM2 forms another type of inflammasome
complex by viral or bacterial infections [47]. Since their mRNA levels are much lower
than AGT and IL-6 mRNA in kidneys, droplet digital PCR (ddPCR) technique, a sensitive
gene analysis, was employed. ddPCR was performed using a Bio-Rad ddPCR system
as previously described [44]. Primers, probes, and reagents for the One-step RT-ddPCR
system were purchased from Bio-Rad to generate cDNA and quantify gene expression.
After droplet generation and PCR amplification, droplets were analyzed on the QX200
droplet reader and target cDNA concentration was determined using the QuantaSoft
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analysis software (Bio-Rad, Hercule, CA, USA). Data are expressed as copy numbers of the
target gene in 1 ng total RNA. Experimental and biologic replicates were applied.

4.8. Western Blot Analysis

Expression levels of intrarenal AGT were detected using Western blot analysis. In
addition, phosphorylation levels of p47 phox, a subunit of NADPH oxidase, in the renal
cortex were detected to evaluate renal oxidative stress levels. The Western blot analysis
was previously described [7]. The renal cortex was dissected and homogenized with 80 µL
of lysis buffer containing 1% Triton X-100, 150 mM NaCl, 1 mM EDTA, 1% Nonidet P-40,
1 mM Na3VO4, and 0.25% Protease Inhibitor Cocktail (Sigma). The lysates were sonicated
3 times for 10 sec each and centrifuged at 13,000 rpm at 4 ◦C for 30 min. Total protein
concentration of the supernatant was quantified using Micro BCA Protein Assay Kit (Pierce,
Singapore, Singapore). Then, 20 µg of total protein was applied to a pre-cast NuPAGE
4–12% gel (Invitrogen, Waltham, MA, USA). The separated proteins were transferred to a
nitrocellulose membrane (Bio-Rad). An anti-AGT antibody (1 µg/mL, IBL) and an IRDye
labeled anti-goat IgG antibody (1:15,000, Li-Cor, Tokyo, Japan) were used for the detection
of AGT. An anti-phospho- p47 phox antibody (Ser370, 1:1000, Assay Biotech, Fremont,
CA, USA) and an IRDye labeled anti-goat IgG antibody (1:15,000, Li-Cor) were used to
determine phosphorylation levels of p47 phox. Total p47 phox levels were determined
using p47 antibody (1:500, Santa Cruz, Dallas, TX, USA). A mouse anti-β-actin antibody
(1:1000, Abcam, Cambridge, UK) and an IRDye labeled anti-mouse IgG antibody (1:15,000,
Li-Cor) were used for the detection of rat β-actin. Detection was performed using the
Odyssey System (Li-Cor). AGT levels were normalized based on β-actin protein levels, and
phospho-p47 phox levels were normalized based on a total of p47 phox protein levels.

4.9. Histological Analysis

Glomerular mesangial expansion was evaluated by periodic acid-Schiff staining (PAS).
Levels of renal tubule interstitial fibrosis were determined by Masson’s trichrome (MT)
stain. Kidney tissues were fixed in 10% buffered formalin for 24 h, embedded in paraffin
and cut into 4 µm sections. Images were taken in a blinded manner with an Olympus
BX51 microscopic system. Twenty glomeruli in a kidney section were randomly selected
for PAS scoring. MT scores were obtained from 20 pictures in the renal cortex, as well
as in 20 glomeruli for each animal. Image Pro-plus software (Media Cybernetics, Inc.,
Rockville, MD, USA) was used to mechanically score MT and PAS staining to avoid
bias. Randomly selected images for each stain were used to determine threshold levels.
Thereafter, fibrosis and mesangial expansion were automatically quantified by the software,
based on the previously mentioned thresholding. Fibrosis is expressed as a percentage of
the positive area within the total area of the image for the interstitium. Glomerular fibrosis
and mesangial expansion are shown as percentages of the positive area within the total
area of the glomerulus.

4.10. Immunohistological Staining

The AGT and IL-6 protein levels were evaluated by immunostaining. Moreover, levels
of CD68 in the renal cortex were analyzed by immunostaining to evaluate immune cell
activation and/or infiltration into the kidneys. Formalin fixed kidney sections (4 µm) were
deparaffinized with xylene and dehydrated with ethanol. The samples were heated at
100 ◦C for 60 min in citrate buffer, and target proteins were visualized by using primary
antibodies, a Vectastain ABC kit (VECTOR laboratories, Burlingame, CA, USA) and 3,3′-
diaminobenzidine substrate kits. Samples were co-stained with hematoxylin before analysis.
The staining was performed with an Autostainer Plus (Dako, Carpinteria, Carpinteria, CA,
USA). Immunoreactivity was semi-quantitatively evaluated in a blinded test as described
in histological analysis section. Density was determined as intensity beyond the threshold
of the background signal (darker brown in contrast with lighter brown) and was measured
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automatically by the Image Pro-plus software (Media Cybernetics, Inc., Rockville, MD,
USA). This was then divided by the total area within the image.

4.11. Statistical Analysis

Data are expressed as means ± SE. The data were analyzed using Student t-test or
one-way ANOVA followed by post hoc Tukey multiple comparison test. A value of p < 0.05
was considered statistically significant.
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