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Modern theories of decision-making typically model uncertainty about

decision options using the tools of probability theory. This is exemplified by

the Savage framework, the most popular framework in decision-making

research. There, decision-makers are assumed to choose from among available

decision options as if they maximized subjective expected utility, which is

given by the utilities of outcomes in different states weighted with subjective

beliefs about the occurrence of those states. Beliefs are captured by probabil-

ities and new information is incorporated using Bayes’ Law. The primary

concern of the Savage framework is to ensure that decision-makers’ choices

are rational. Here, we use concepts from computational complexity theory to

expose two major weaknesses of the framework. Firstly, we argue that in

most situations, subjective utility maximization is computationally intractable,

which means that the Savage axioms are implausible. We discuss empirical

evidence supporting this claim. Secondly, we argue that there exist many

decision situations in which the nature of uncertainty is such that (random)

sampling in combination with Bayes’ Law is an ineffective strategy to

reduce uncertainty. We discuss several implications of these weaknesses

from both an empirical and a normative perspective.

This article is part of the theme issue ‘Risk taking and impulsive behaviour:

fundamental discoveries, theoretical perspectives and clinical implications’.
1. Introduction
In most modern theories of decision-making, uncertainty about decision options is

modelled using the tools of probability theory. This is exemplified by the

theory proposed by Leonard Savage in his book Foundations of Statistics [1]. In

this framework, a decision task is compared to that of a gambler facing a bet in a

pure game of chance [2]. Choices are represented by a utility function over state-

dependent outcomes and a probability function over states. Decision-makers act

as if they maximized (subjective) expected utility.

Importantly, all knowledge about different states of the world—or lack

thereof—is represented by probabilities. Probability distributions are usually

interpreted as carriers of incomplete information about states of the world [3].

Uncertainty is reduced by (random) sampling and new information is incorpor-

ated into probabilities using Bayes’ Law. The framework assumes, at least

implicitly, that new knowledge is generated through inference and that such

inference is solely concerned with randomness [3]. It is proposed that this way

of representing uncertainty is generic, that is, that it can capture any type of uncer-

tainty and learning. All that is needed is that the decision-maker exhibits

preferences that are rational, in a way made precise by a set of axioms.

Savage distinguished two important functions of his framework [1,2]. Firstly,

it provides a minimal model of rationality. The axioms of the framework are

widely considered to be properties that the preferences of any rational decision-

maker should have. A decision-maker whose preferences obey those axioms,
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which are often referred to as the axioms of rationality, acts

as if she maximized subjective expected utility. Thus, the

framework provides a simple decision rule for rational

decision-making. Secondly, Savage showed that if preferences

of a decision-maker obey his axioms, then their choices can be

described by a unique probability measure in combination

with a unique (up to affine transformation) utility function.

Thus, the framework provides researchers with a theoretically

sound and precise toolkit to model choices. The Savage frame-

work is often regarded as a canonical and general framework

for the modelling of decisions under uncertainty.

The framework rests on two core assumptions. Firstly, it

assumes that a decision-maker always has well-defined prefer-

ences in those situations in which the framework is applied [2].

Importantly, it assumes that preferences are transitive and

complete. Secondly, it assumes that decision-makers’ beliefs

and values can always be disentangled and tracked separately.

Another, implicit, assumption requires that the representation

of the decision task provided by the framework be appropriate,

for example, that the state space underlying beliefs is rich

enough to capture the evolution of choices (and hence, prefer-

ences) over time. For instance, if the decision-maker chooses

differently after a coin toss ends up heads, then the state

space should allow for this coin flip.

Few other theories of decision-making have attracted as

much attention as Savage’s. In the years after publication, the

theory quickly became the dominant framework in decision

theory, a status that it has held to this day [3,4]. For decades,

the Savage framework has guided empirical research on

decision-making under uncertainty. A typical decision task

asks the decision-maker to choose from a small number of

options that are characterized by pay-offs that depend on a

small number of states, which occur with certain probabilities.

Pay-offs and probabilities may be provided or have to be

learned. A classical task is the Holt–Laury task in which

decision-makers have to make a series of choices between a cer-

tain pay-off and a gamble in which they may win a reward

with probability p and nothing otherwise [5,6]. Such tasks

have been used widely to characterize utility functions, for

example, to measure risk aversion (e.g. [7–9]). They have

also been the workhorse tasks to characterize neural signals

associated with decision-making [10,11].

Over time, the Savage framework has been criticized on

both empirical and theoretical grounds. Important empirical

challenges include the behaviours first observed by Allais

[12] and Ellsberg [13], both of which demonstrate robust,

direct violations of the Savage axioms. Many more deviations

have been documented since then [14,15], including evidence

that people fail to disentangle values and beliefs in the pres-

ence of more than five states [16] and that preferences are not

measurement-invariant, for example, that they depend on the

way decisions are framed [17], that they depend on the size

of the choice set [18,19] and that preferences change with

physiological state [20].

Key theoretical challenges have focused on the limits of

expressive power of the Savage framework as well as on the

plausibility of the axioms from a logical perspective. With

regards to the former, the Savage framework requires that

knowledge or uncertainty can be expressed in terms of prob-

abilities. This is not always appropriate, for example, because

a decision-maker may not have enough information to com-

pute probabilities [2,4]. In addition, the framework is unable

to express causal relations, which means that a Savage agent
is not able to learn them [21]. Another shortcoming is the

inability to represent important logical expressions such

as universal quantifiers, which means that expressing certain

propositions (e.g. ‘all women are black’) is only possible at

the expense of vast amounts of logical resources [4,22].

In relation to logical plausibility of the framework, a core

concern has been the potential size of the preference set. In

the Savage framework, preferences are defined as binary

relations over choice options. For an agent to obey the Savage

axioms, the agent needs to have such preferences defined

over the entire choice set (all acts available to the agent), an

assumption referred to as completeness of preferences. However,

in many decision situations, this set is extremely large, and

it is not clear how an agent would either construct or represent

preferences over large sets of options [2,23,24]. Similarly, in

order to comply with the Savage axioms, an agent needs to

construct a state space that adequately reflects the decision situ-

ation. This space, too, might be very large. In addition, when

constructing this space, the agent needs to ensure that states

are mutually exclusive, which might require a large amount

of logical resources, a capability sometimes referred to as logical
omniscience [22,25]. It has been questioned whether people are

able to construct such state spaces in cases where the number of

states is large [2,4,23–26].

Many of the theoretical criticisms have been suggestive in

nature. For example, while concerns have been expressed that

the requirement to have complete preferences or to represent

the state space may exceed people’s cognitive capacities,

neither the cognitive resources required for such representations

nor the cognitive resources available to decision-makers have

been quantified. Nor has it been demonstrated empirically

that people’s cognitive resources are below those required to

obey the Savage axioms.

Two questions arise, related to the two functions of the

Savage framework described above. From an empirical stand-

point, it needs to be asked whether the Savage framework is

an appropriate framework to model human decision-making.

This is primarily a question about the plausibility of the

framework’s axioms. From a normative perspective, the ques-

tion is whether it is desirable for an agent to behave as the

Savage framework prescribes. Both of these questions

have been asked in the past. In this article, we address these

questions from a different perspective. We use concepts from

computational complexity theory [27–29] to quantify the

computational resources required to implement the Savage

framework. We show that the framework is computationally
intractable for both human and machine decision-makers in

many, if not most, decision situations, raising doubts about

the plausibility of the core axioms of the Savage framework.

Subsequently, we show that even in situations in which the

Savage framework is computationally tractable, it is inefficient
in the sense that reduction of uncertainty through (random)

sampling is often outperformed by more effective algorithms,

questioning the desirability of the Savage framework as a

guide to decision-making.

Lack of computational tractability has often been suggested

to be of minor concern because Savage proposed an as if
approach: the decision-maker chooses as if there exist utilities

over outcomes and beliefs over states, and learns as if she

uses Bayes’ Law. Concerns about computational plausibility,

so the claim, are besides the point since the framework does

not describe literally the computations the decision-maker per-

forms. This, however, is a false defense. If a decision-maker’s
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choices are consistent with a model whose computations are

computationally intractable, then the decision-maker’s choices

are a solution to a computationally intractable problem. This

means that the decision-maker must have solved the problem,

which would imply that the problem is not intractable [30].

In addition, if the approach is only as if , it loses its norma-

tive power, since beliefs and accompanying belief evolution

(learning) are entirely subjective. An outsider could not poss-

ibly propose a more effective way of learning, for instance, or

argue that the beliefs are misguided—one cannot ‘help’ the

decision-maker. Thus, the approach can no longer be claimed

to provide a foundation for statistical inference [31].

The second issue, related to the inefficiency of learning, is

even less appreciated. In a probabilistic setting, where laws

of large numbers hold, Savage’s approach implies Bayesian

learning, and hence, learning is as fast as one can get [32].

This is not necessarily the case in other settings. It is true that

Savage’s subjective expected utility theory is generic, and

hence, that it applies even in the absence of laws of large num-

bers. However, it must not be overlooked that the approach

assures only consistency (coherence) of choices, and not

efficiency in learning. That is, even if one were to follow

Savage’s prescription and assign a prior over unknowns,

updating this prior based on observed outcomes and Bayes’

Law, it only guarantees that one’s choices are rational and

that they will remain rational as evidence accumulates. Learn-

ing need not be fast, and certainly not as fast as possible.

Interestingly, since statistics is about inference, and Savage’s

approach is generally viewed as the foundation of statistics, it

is puzzling that it is based on choice coherence and not on

learning efficiency! But this does not concern us. Instead, we

want to shed light on behaviour of biological organisms

under complexity. One could argue there, too, that learning

efficiency is key. When an organism needs to adapt fast

because survival depends on it, learning speed should prob-

ably be given priority over choice consistency. That is, the

organism should primarily be concerned with survival,

irrespective of whether this involves ‘irrational’ choices.

The remainder of this article is structured as follows. In §2,

we briefly recall the key aspects of the Savage framework rel-

evant for our argument. In §3, we introduce two different

situations, which we will subsequently use to illustrate tractabil-

ity and effectiveness of the Savage framework. Then, in §4, we

introduce some concepts from computational complexity

theory, which we use to assess the computational tractability

of the Savage framework. In the subsequent section (§5), we

provide empirical evidence that computational complexity

theory applies to human decision-making, validating our use

of the theory to assess tractability of the Savage framework in

the context of human decision-making. Section 6 discusses

implications of our findings for decision-making research,

from both an empirical and normative perspective.
2. The Savage framework
In this section, we will briefly describe the key features of the

Savage framework relevant for our argument. At the core of

the framework are seven axioms, which are often referred to

as the axioms of rationality, that is, basic properties that every

rational decision-maker should obey. For the purposes of this

article, only the first four axioms are relevant. The last three

axioms are of a purely technical nature. Therefore, they will
not be discussed further. We start with a discussion of the

first axiom, establishing completeness of preferences, followed

by a discussion of the second, third and fourth axioms, estab-

lishing the separability of belief and value, that is, the agent’s

ability to separately track beliefs and values.
(a) Completeness of preferences
Savage’s basic setting is a situation in which an agent is faced

with the choice of an act from a set F0 of possible acts, the con-

sequences of which are uncertain. We start with defining a set

of possibilities, which we will refer to as the set of states of the
world or propositions S. This set, which is sometimes also

referred to as possible worlds or elementary outcomes, contains

the descriptions of the ways in which unknowns may turn

out. It is assumed that the elements of S are mutually exclusive

and collectively exhaustive. A set of states is referred to as event.
We also define the set C of consequences, which contains

descriptions of the ways in which the consequences of the

choice of a particular act may turn out. The elements of C
are also assumed to be mutually exclusive and collectively

exhaustive.

For each element s in S and each act f in F0, let f (s) describe

the element of C that describes the consequences of act f if

state s is the correct description of the decision-maker’s situ-

ation. Each act in F0 describes a mapping from S to C. We

denote by F the set of all mappings from S to C. We will

call all elements of F acts and the elements of F0 concrete acts.

Next, we introduce a binary relation T on the acts in F,

which we interpret as ‘is less preferred’. That is, when faced

with a decision between acts f and g, f T g will mean that the

agent either prefers g to f or is indifferent between the two.

Savage’s first axiom, or postulate, assumes that agents

rank all acts available to them. More precisely, it is assumed

that the relation T is a total preorder, that is, that it is both

transitive and total (and hence reflexive). Transitivity means

that, for all acts f, g and h in F, if f T g and g T h, then

f T h—that is, if the agent prefers g to f and h to g, then it

will also prefer h to f. Totality means that for all f and g, we

have either f T g or g T f—that is, for all acts available to

the agent, it either prefers f to g or g to f. This implies reflex-

ivity, that is, for all f, f T f—the agent cannot strictly prefer f
to itself. If we have both f T g and g T f , we say that the agent

is indifferent between f and g.

The plausibility of the completeness axiom is often illus-

trated with relatively simple decision situations. Indeed, if a

person is given the choice between an apple, an orange and

a banana, it seems reasonable to assume that the person is

able to rank all options and that this ranking will be

transitive—for example, that the person prefers an apple to

an orange, an orange to a banana and an apple to a banana.

Consider a different setting. Suppose a person is given the

choice between subsets of goods from a set of 10 available

goods, subject to a budget constraint. The number of subsets

that can be formed from 10 goods is 1024 (210). For the complete-

ness axiom to be satisfied, that is, for the person to establish a total

preorder over all possible acts, they would have to check the

budget constraints for all 1024 sets and make up to 102 247 563

binary comparisons (
P10

k¼0 k!S(10, k) where S is the Sterling

number of the second kind). For reference, the number of

unique items in a typical American supermarket exceeds 40 000.

Very quickly after Savage first proposed his framework,

doubts were raised over the validity of the completeness
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axiom (e.g. [23]). A discussion ensued whether Savage

assumed that preferences exist before a person is put into a

decision situation (determined ‘offline’) or whether preferences

are constructed in the decision situation (determined ‘online’)

[2]. In case of the former, it is not clear how a decision-maker

would store preference sets for all decision situations encoun-

tered in every-day life, particularly given their size. In case of

the latter, the question arises why a decision-maker would con-

struct preferences over all decision options, as is assumed in the

completeness axiom, including all options that are not chosen.

In any case, it appears unlikely that a decision-maker always

has complete preferences over all acts, pre-existing or con-

structed, given that this would require a number of binary

comparisons that would often exceed the number of neurons

in the brain (about 8.6 � 1010, [33]; cf. [30,34]).

The situation becomes more complicated in a dynamic

setting in which new information arrives continuously. Remem-

ber that the primitives in Savage’s framework are preferences

and not probabilities or utilities. Indeed, the latter are deduced

from preferences. Thus, the Savage framework is radically beha-

viourist in its approach, which is in stark contrast with many

modern approaches in cognitive science and artificial intelli-

gence [4]. Savage justified his choice arguing that preferences

could be directly observed while probabilities and utilities

could not [1,2]. This means, however, that whenever new infor-

mation becomes available about any of the states, the agent

needs to reconstruct the entire preference set, which implies,

and from which, a new probability measure can be deduced.

In §4, we will use computational complexity theory to

quantify the computational resource requirements that

implementation of the completeness axiom would require.

We will argue that these requirements quickly exceed the cog-

nitive capacities of human decision-makers—as well as the

resources of the world’s most powerful supercomputers—

and we will present empirical evidence suggesting that the

completeness axiom is indeed implausible in most decision

situations, for both human and machine decision-makers.
(b) Dissociation of belief and value
The second, third and fourth axioms of the Savage frame-

work are necessary to ensure that the decision-makers’

beliefs and values can always be disentangled, the second

core implication of the framework. Together, these axioms

assume that agents can track beliefs and values separately.

For Savage, the ability to disentangle beliefs and values

was central to the concept of rationality [1]. Our exposition

of these axioms follows Shafer [2], which is more intuitive

than the original exposition in Savage [1].

To discuss these axioms, we need to introduce some

additional notation. For each act f in F and each subset A of

S, we denote by fA the restriction of the mapping f to the set

A. A subset A of S is called null if f � g whenever f and g are

elements of F such that fAc � gAc , where Ac denotes the comp-

lement of A. This condition means that the agent’s preferences

among acts are not influenced by the consequences they have

for states in A. The subset A is called null in this case because

it is presumed that the agent’s indifference towards A indicates

the belief that the true state of the world is not in A.

Let A be a subset of S and p and q be two mappings from

A to C. We write p � q if f � g for every pair f and g of map-

pings in F such that fA � p, gA � q and fAc � gAc . We denote

by [c] the act in F that maps all s in S to c, for a given c in
C. We call such an act a constant act. We are now ready to

state the remaining axioms postulated by Savage.

Savage’s second axiom, often referred to as the sure-thing
principle, states that if f � g and fAc � gAc , then fA � gA. The

axiom says that if two acts agree on Ac, then the choice between

them should only depend on how they differ on A but not on

how they agree on Ac. This axiom has been the most controver-

sial of the Savage axioms [2]. Many empirical studies have

demonstrated that people robustly violate the axiom [14,15].

The most famous examples of such violations are the Allais

and the Ellsberg paradoxes [12,13].

The third axiom ensures that value can be separated

from belief. Formally, if A is not null, then [c]A � [d]A if

and only if [c] � [d]. This axiom says that if an agent prefers

d to c in general, then it prefers it in every event A. Specifi-

cally, if A consists of a single state s, it means that the

agent prefers d to c in every state of the world; that is, the

state of the world is irrelevant for preference—preferences

are independent of belief.

The fourth axiom assumes that belief can be discovered

from preference. Suppose [c] � [d], f is equal to c on A and

d on Ac, and g is equal to c on B and d on Bc. Suppose, simi-

larly, that [c0] � [d0], f0 is equal to c0 on A and d0 on Ac, and g0

is equal to c0 on B and d0 on Bc. Then f � g if and only if

f 0 � g0. This axiom means that value is independent of

belief, that is, that the preference for d over c is independent

of whether the true state of the world is in A or in B. Then the

only available explanation for the preference f � g is that the

agent considers B more likely than A. For this to hold,

though, the preference f � g must remain the same when c
and d are replaced by any other pair of consequences c0 and

d0 such that [c0] � [d0]. This is what the fourth axiom posits.

Many criticisms have been raised against the third and

fourth axioms [2]. Perhaps the most serious one is the implicit

assumption that the agent constructs the state space and set of

consequences in a way that is suitable for the decision task at

hand. The two sets are interdependent and all states in the

state space as well as all consequences in the set of conse-

quences need to be mutually exclusive and collectively

exhaustive in order to comply with the assumptions of the fra-

mework, a task that quickly demands enormous logical

resources [25]. Moreover, the state space needs to be refined

enough to capture all decision-relevant aspects of uncertainty.

In most decision situations, it is not obvious how to set up the

state space and it is even less obvious how a decision-maker

would always design the state space in such a way that is opti-

mal to solve the decision task at hand. If, on the other hand, the

design of the state space was made part of the decision task,

then the agent could easily end up in an infinite regress [2].
(c) Representation
The Savage axioms imply the existence of a probability

measure m on S and a real-valued function U on C such that

f � g if and only if Em[U( f )] , Em[U(g)]—that is, an agent’s

preferences among acts can be represented by subjective

expected utility. It means the weighted average of utilities of

outcomes for f is less that of g, with the weights provided by

the decision-maker’s beliefs that the states occur. The axioms

thus imply that an agent’s behaviour can be represented in a

way that appears as if the agent maximized subjective expected

utility. Details of the proof of this result are not relevant for our

argument. The interested reader is referred to Savage [1].
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serve both an empirical and a normative function. Regarding

the former, if it can be assumed that the preferences of a

decision-maker obey the rationality axioms, then choices can

be described by a unique probability measure in combination

with a unique (up to affine transformation) utility function.

Thus, the framework provides a theoretically sound and precise

toolkit to model choices. In the following, we will primarily be

concerned with this function of the Savage framework.
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3. Two examples
We now present two examples of canonical decision situations.

The first example will look familiar to decision-making

researchers, while the second example has a structure not com-

monly encountered in decision science. We will use these

examples to expose some of the limits of the Savage framework.

(a) Selection of securities
In the first situation, a decision-maker is faced with a choice to

select securities from a set of 10 securities to maximize her sub-

jective expected utility. Each security eventually pays off either

$ 1 dollar or nothing. The type of each security (pay-off) is

determined by chance with probability 0.5. The decision-

maker can collect information over 30 periods to learn the

types prior to selecting the set of securities. In each period

(trial), the decision-maker receives a signal from each of the

securities, which is positive with probability 0.7 and negative

with probability 0.3 if the final dividend of the security is 1,

and positive with probability 0.3 and negative with probability

0.7 otherwise.

Application of the Savage framework to this situation is

straightforward. Given that there are 10 securities and each

pays off either $ 1 or $ 0, these 10 securities collectively can

be in 1024 (210) different states in each period, or 2300 after 30

periods. Each of those states is one possible combination of

pay-offs, for example, all 10 securities pay $ 0. The set of conse-

quences would be the dollar amount received in each of the

states, ranging from $ 0 to $ 10, depending on the subset of

securities chosen. As the decision-maker has to choose three

securities from the ten available, the set of acts are all the map-

pings from the state space to the set of consequences, for each of

the different available choices of three securities.

Each time the decision-maker receives a signal from each

of the securities, she uses Bayes’ Law to update her beliefs

about the final pay-offs, given by a probability measure

over the state space. Assuming a quadratic loss function,

her initial valuation of the securities equals the posterior

mean, starting from an unconditional estimate of 0.5.

Importantly, the decision-maker has to express prefer-

ences over all possible states, since it is preferences (choices)

that reveal her beliefs, and the evolution of her beliefs (e.g.

she could imagine that the signals are dependent across secu-

rities, or over time). As we pointed out in the previous

section, we can only observe preferences (choices) but not

beliefs, which means that we would have to deduce beliefs

from observed preferences.

(b) Backpacking
In the second example, the decision-maker is faced with

the following task. There are 10 items, with the following
values (first number) and weights (second number): (31, 21),

(141, 97), (46, 32), (30, 21), (74, 52), (105, 75), (119, 86), (160,

116), (59, 43), (71, 54). The decision-maker has to find a

subset of items from the 10 items available with the maxi-

mum total value but whose total weight does not exceed

265. This is an instance of the 0–1 knapsack problem [35].

We also assume that there is a security for each available

item, that is, there are 10 securities in total, one corresponding

to each item. If an item is in the optimal solution, then the

corresponding security’s pay-off will be $ 1; otherwise, it

will expire worthless.

As in the previous example, the decision-maker can select

securities from a set of 10 securities and does so with the

goal to maximize her subjective expected utility. We

assume that the decision-maker can try out (sample) different

combinations of items before choosing the securities. Each

time she receives a sample, she updates her beliefs using

Bayes’ Law.

In this example, we can set up the state space in the same

way we did in the previous example. Each state is one poss-

ible combination of pay-offs, and the set of consequences

would be the dollar amount received in each of the states,

ranging from $ 0 to $ 10. And like in the previous example,

the set of acts are all the mappings from the state space to

the set of consequences, for each of the different available

choices of three securities.

How would the decision-maker apply Bayes’ Law to the

samples in this situation? The decision-maker could assign

a prior probability to each security, which can be completely

arbitrary. For example, she could assign the value 0.5 to each

security, which could be interpreted as the belief that each

item has 50% chance of being part of the solution. She

could then gradually adjust her beliefs by sampling, as fol-

lows. In each ‘sample’, she randomly picks a subset of

items until she reaches the weight limit. She then computes

the value of this subset and compares it to the maximum

value obtained in previous samples. She then constructs ‘sig-

nals’ of the likelihood that an item is in the optimal solution,

as follows. If the new value of the subset is less than the pre-

vious maximal value, then the signal for an item equals 1 if it

was in the earlier (better) solution, and 0 otherwise. If the

new total value is higher than the trailing maximum, then

the signal equals 1 if the item is in the current solution; other-

wise, the signal is 0. The decision-maker then updates her

beliefs in each sample t (t ¼ 1, . . ., T) by weighing the belief

in the previous trial (t 2 1) by (t 2 1)/t and the signal in

the present trial by 1/t. This may not appear to be in accord-

ance with Bayes’ Law because it does not use the true

likelihoods (of observing a particular subset value given the

optimal solution). However, this is without consequence,

because Savage only requires the decision-maker to use

some prior, not the true distribution. That is, our decision-

maker is allowed to start with an incorrect set of beliefs.

Indeed, as we will show below, it is unreasonable to

assume that the decision-maker knows the true likelihoods

as this would require for the decision-maker to know the

solution of the problem.

At the outset, these two examples may look very similar.

In both tasks, the decision-maker tries to maximize subjective

expected utility by selecting a set of securities from 10

securities available. Yet, as we will show below, the two

decision tasks are fundamentally different in terms of their

mathematical properties. While it may appear that the
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Savage framework can be applied to both tasks, we will

show that the framework is computationally intractable

in the second type of task, and that it is ineffective for

such tasks. To demonstrate that this is indeed the case,

we now introduce some key concepts from computational

complexity theory.
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4. Computational complexity
The Savage framework assumes that decision-makers act in a

way that is consistent with the axioms of rationality described

in §2. In particular, it requires that the decision-maker always

choose the most preferred act from all acts available, which

means that the decision-maker needs to determine the most

preferred act. The latter implies a computational problem.

Our concern in this section is to determine the computational

resources required to solve such problems.

Computation can occur in multiple physical and formal

systems. To study properties of computation (e.g. its complex-

ity), Alan Turing provided an elegant mathematical model

called the Turing machine, which is capable of simulating all
types of physically realizable computation [36,37]. It is

widely believed that Turing machines can also simulate the

human brain—a notion captured by the so-called Church-
Turing thesis. Computation generally involves reading an

input (e.g. the values and weights of all available items in the

backpacking example in §3) and producing an output (e.g. 1

if an item is in the optimal solution and 0 otherwise). The

number of computational steps required is often represented

as a function of the size of the input. Computational efficiency

of an algorithm can be measured based on how the number

of atomic computational steps (i.e. compute time) scales as a

function of input size.

A complexity class is a set of computational problems

whose solution can be computed within certain resource

bounds [29]. Complexity classes have typically been studied

in the context of decision problems, that is, computational

problem with a yes/no answer. However, the analysis can

be extended to more general types of problems.

A (decision) problem is in the complexity class P if all

instances of size n of this problem can be solved by an algor-

ithm that takes at most knc computational steps (time), for

some constants k and c. Informally, this means that for a pro-

blem in complexity class P with input size n, one may need to

wait an amount of time—in the worst case—that is poly-

nomial in n. Problems in class P are often called tractable
since they can be solved efficiently, that is, with a reasonable

amount of resources.

In contrast to problems that can be efficiently solved, the

complexity class NP contains problems whose solutions can

be efficiently verified. Many important computational pro-

blems are in class NP, including the travelling salesperson

problem (decision version), the satisfiability problem, the

set cover problem and the 0–1 knapsack problem (decision

version). At present, it is an open question whether NP is a

strict superset of P, known as the P versus NP problem [38].

The second example in §3 is an optimization problem (the

optimization version of the 0–1 knapsack problem): its

answer is the solution of the problem, here, the value of the

optimal knapsack. Optimization problems generally consist

of two parts: (i) feasibility conditions (e.g. the sum of weights

of items in a knapsack must not exceed a given constraint)
and (ii) one variable to optimize (e.g. the sum of values of

the items in the knapsack).

A decision variant of an optimization problem can be

solved by first computing the optimum of the optimization

problem, and then checking the optimal value against its

decision threshold. Hence, if one could solve the optimization

variant efficiently, it would imply that the decision variant can

also be solved efficiently. Or, in other words, the optimization

problem is at least as hard as its decision variant. The complex-

ity class NP-hard contains problems that are as at least as hard

as the hardest problems in the class NP. The optimization

version of the 0–1 knapsack problem is NP-hard. The

amount of computational resources (time, memory) required

to solve them quickly becomes astronomical.

As the definitions indicate, complexity classes such as P

and NP are defined in terms of the asymptotic worst-case

use of a computational resource, such as time, as a function

of the size of the problem’s input. However, for a given

size of a problem’s input, the use of resources may vary sub-

stantially. For example, sorting an array of the same set of

numbers—that is, the same input length—that is already in

the desired order will tend to take less time than sorting

an array that is completely out of order (depending on the

algorithm used).

We call a particular input to a computational problem an

instance of the problem. For example, a particular array of

numbers is an instance of the sorting problem. The second

example in the previous section is an instance of the 0–1

knapsack problem. To analyze the computational resource

requirements of decision tasks, it is important to know

which computational resources are required for the instances

of computational problems encountered by decision-makers.

For example, decision-makers may never encounter the worst

case of the 0–1 knapsack problem and therefore the worst-

case behaviour of solution algorithms for this problem may

be irrelevant for every-day decision-making.

It has been shown that some intractable (NP-hard) pro-

blems become tractable (solvable in polynomial time) if the

input is restricted to certain instances. More precisely, for

these problems compute time scales super-polynomially

with input size. However, compute time only scales polyno-

mially with certain other parameters of the input. This means

that these problems can be solved in polynomial time, that is,

are tractable, for certain values of input parameters [30,39].

But even in this kind of analysis, referred to as parame-
trized complexity, the focus is on the worst-case behaviour of

resource requirements. Researchers have started to character-

ize the computational complexity of individual instances of

computational problems, with the aim to link properties of

individual instances to computational resource requirements

[40–45]. An important set of results has been able to achieve

this goal for a number of important computational problems

in the class NP-complete, the class of the hardest problems in

NP, including the decision version of travelling salesperson

problem [41], the satisfiability problem [42] and the (decision

version of) the 0–1 knapsack problem [46]. For these pro-

blems, researchers have shown that the instances with the

highest computational resource requirements tend to lie in a

narrow range of values of certain instance parameters. At

this point, little is known about what the parameter values

are of instances typically encountered in real life. In those

cases that have been studied, it has been shown that many

real-world instances have high degrees of complexity [41,47].
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These results on the computational complexity of

instances do not rely on a particular computational model

or algorithm. The fact that it has been possible to relate com-

putational resource requirements of instances to particular

properties of instances indicates that computational complex-

ity may be an inherent feature of instances and, by extension,

classes of computational problems, as opposed to a feature of

a particular computational model [46].
5. Computational complexity and human
decision-making

In this section, we briefly review empirical evidence suggesting

that computational complexity, as quantified by computatio-

nal complexity theory, affects human decision-making. This

is not immediately obvious. Absent a formal description

of the principles of computation in the human brain, it is basi-

cally an open empirical question. Assuming that people’s

computational resources, in particular time (energy) and

memory are limited, we would expect that people can only

solve those instances of computational problems whose com-

putational resource requirements are below the resource

limits and that human ability to solve instances decreases as

computational complexity increases [34].

In one study, participants were presented with a set of

instances of the 0–1 knapsack problem, the same problem as

in the second example in §3 [35]. In each instance, participants

had to find from a number of items—between 10 and 12—the

subset with the maximum total value subject to a total weight

constraint. To do so, people could try out different sets of items

on a computer interface, which automatically computed total

value and weight of the items selected (figure 1a). Participants

were given 5 min to solve an instance, but could submit a sol-

ution as soon as they thought they had found the solution.

However, participants almost never exhausted the time limit.

Participants were rewarded based on the proximity of their

suggested solution to the optimal solution of an instance.

To quantify the computational complexity of each

instance, the Sahni-k metric was computed. The metric is pro-

portional to the number of computational operations and the

amount of memory required to solve an instance. It is based

on the Sahni algorithm, an algorithm designed to solve the
0–1 knapsack problem [48]. Intuitively, the Sahni algorithm

works as follows. Firstly, it computes all subsets of items of

cardinality k that can be formed from the set of available

items. Then it considers each of these subsets and uses the

greedy algorithm to fill the remainder of the knapsack to

capacity. The greedy algorithm selects items in the reverse

order of their value-to-weight ratio and terminates once the

knapsack has reached capacity. That is, if the Sahni algorithm

is executed with k equal to 0, it uses the greedy algorithm to

fill the knapsack. This is the algorithm’s proposed solution. If k
is equal to 1, then the algorithm considers subsets of cardinality

1, one for each of the items available, and extends these

subsets using the greedy algorithm. The proposed solution is

the subset with the highest total value. Instances of the 0–1 knap-

sack problem differ in the value of k required for the algorithm’s

candidate solution to be the instance’s actual solution. The

higher the value of k, the higher the computational complexity

of instances, because the higher the computational resource

requirements necessary to solve the instance.

If human behaviour was affected by computational com-

plexity, then we would expect a participant’s ability to find

the solution of an instance to decrease as the value of Sahni-k
increases. This is exactly what was found [35]. While for

those instances with Sahni-k equal to 0, about 77% of partici-

pants found the instances’ solutions, this proportion dropped

to about 7% for instances for which Sahni-k was equal to 4

(figure 1b). This result demonstrates that participants’ ability

to solve instances of the 0–1 knapsack problem was affected

substantially by computational complexity. The study repli-

cated findings of an earlier study that had used the same set

of instances of the 0–1 knapsack problem [49].

The study also considered effort extended by participants on

instances. Participants extended more effort on instances with

higher levels of Sahni-k, that is, higher levels of computational

complexity. This means that participants adjusted their effort

to the level of computational complexity, which could be inter-

preted as if participants allocated more computational resources

to the decision task when the level of computational complexity

was higher. Nevertheless, participants’ ability to solve instances

decreased with increasing computational complexity. This

suggests that the computational resource requirements on

instances with higher levels of computational complexity

exceeded the resources available.
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Similar results have since been obtained in other studies.

For example, it has recently been shown that the ability of

human participants to find the optimal solution to the set

cover and maximum coverage problems can be predicted

from a set of mathematical properties of the graph represen-

tations of the problem instances [50]. This study used

structural properties of instances to quantify computational

complexity, as opposed to algorithm-based measures, and con-

firmed that people’s ability to solve computational problems

decreased with increasing levels of computational complexity.

Together, these results strongly suggest that computational

complexity affects human decision-making, that is, human

ability to solve computational problems decreases with

increasing levels of computational complexity [34]. This, in

turn, means that we can apply computational complexity

theory to the Savage framework to assess the framework’s

tractability and, thus, the plausibility of its axioms.
.Soc.B
374:20180138
6. Limits of the Savage framework
In this section, we discuss the implications of computational

complexity for human decision-making theory, in particular,

for the Savage framework. We focus on two key issues.

Firstly, we will ask whether the assumptions of the Savage

framework are plausible, given the computational complexity

of the computational problems decision-makers have to solve

in order for their behaviour to be compliant with the Savage

axioms. To this end, we will investigate whether decision

tasks implied by the Savage framework are computationally

tractable. Secondly, we will ask whether the Savage frame-

work is effective in representing the type of uncertainty

encountered in decision tasks with high computational

complexity such as the second example in §3.

(a) Tractability
To assess the computational tractability of the Savage frame-

work, we first consider the completeness axiom (see §2). This

axiom requires that decision-makers have preferences that are

both transitive and complete. This, however, means that in

any decision situation, they make binary comparisons of all

acts available to them. While the number of such compari-

sons may be small in some decision situations, in many

decision tasks it quickly becomes astronomical (see §4). We

can therefore assume that in most decision situations, it

would be implausible to presuppose that decision-makers

have, or are able to construct, a transitive and complete set

of preferences over all acts.

One might argue that in order to identify the most pre-

ferred act, decision-makers use strategies that do not involve

a comparison of all available acts. However, many decision

tasks, in particular in economic decision-making, have a struc-

ture similar to that of the knapsack problem, have the knapsack

problem as a subproblem or have similar levels of compu-

tational complexity [34]. The knapsack problem is NP-hard,

which means that there is no known algorithm that (i) is guar-

anteed to always find the solution of an instance, and (ii) runs

in polynomial time. While human decision-makers may use

many different strategies, which may differ from computer

algorithms, it is unreasonable to assume that they would

overcome the computational complexity of the problem.

This means that many decision tasks are computationally

intractable. In the light of the studies discussed in §5, it is
therefore unreasonable to assume that people are able to solve

them, which would require somehow identifying the most pre-

ferred, that is, the highest ranked act. It has been shown that

rational choice in the general case is not computable [24].

A second, related issue arises in relation to beliefs in the

Savage framework. As discussed in §2, the framework

assumes that decision-makers have a set of beliefs over all

states of the world and that they update these beliefs in a

way that is consistent with Bayes’ Law. Remember, however,

that the primitive in the framework are preferences rather

than beliefs (and values). Beliefs (and values) are only used

to represent preferences. Therefore, beliefs—and changes of

beliefs—have to be inferred from (changes of) preferences.

Two issues arise. Firstly, if completeness of preferences is

intractable, the completeness axiom is violated and the

representation theorem no longer holds. This, in turn, means

that inference of beliefs from preferences may no longer

be possible.

Secondly, for the completeness axiom to be obeyed dyna-

mically, the decision-maker would have to update her beliefs

in accordance with Bayes’ Law whenever new information

becomes available. Technically, this means that the decision-

maker would have to change her preferences so that they

remain consistent with Bayes’ Law. It has been shown that

some of the computational problems involved in such updat-

ing are computationally intractable [51]. Note also that these

preferences effectively have to be determined dynamically

over time. In the first example in §3, preferences would have

to be complete over 2300 possible binary choices.

It has sometimes been argued that people do not literally

implement the subjective expected utility maximization but

that their behaviour closely approximates it. Technically, this

would mean that decision-makers are somehow able to appro-

ximate the optimal solution of the computational problem

implied by the Savage framework. In computer science, an

approximation algorithm is an algorithm that is inexact in the

sense that it is not guaranteed to find the optimal solution

but is guaranteed to closely approximate it. It has been

shown that many computational problems do not allow for

approximation, in the sense just defined, in polynomial time

[29,30,52]. That is, it is often as hard to compute an approximate

solution as it is to compute the value of an optimal solution.

Therefore, it is implausible to expect decision-makers to

always be able to approximate subjective expected utility max-

imization, as this would at least sometimes require them to solve

intractable problems.

We conclude that the Savage framework is computationally

intractable not only from the perspective of completeness,

but also from the perspective of maintaining a set of beliefs

consistent with Bayes’ Law.
(b) Effectiveness
We now turn to a different question, asking whether the

Savage framework is an effective way to represent decision

situations, in particular, whether it is effective in representing

the kind of uncertainty encountered in decision situations. To

this end, we will draw on the two examples introduced in §3.

In the first example, the decision-maker is presented with

the task of selecting three securities with probabilistic pay-offs.

Probabilities can be learned by sampling. Using Bayes’ Law to

update beliefs means that beliefs quickly converge to the under-

lying (true) probabilities (figure 2a). Notice how valuations
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quickly separate between those that will end up paying $ 1 and

those that expire worthless. The final payoffs of the securities are

0, 0, 0, 0, 0, 0, 0, 1, 1 and 1 for securities 1 to 10, respectively. As

such, using repeated sampling, beliefs quickly converge to the

(true) probabilities. As time progresses, the chance of a valuation

veering off (say, from close to 1 down to 0) is drastically reduced.

Even with a finite (and small number of) samples (signals), the

valuation estimate is probably approximately correct [53,54].

Indeed, it can be shown that in this situation, updating beliefs

using Bayes’ Law is not only rational but also the optimal way

of processing information [32]. In this particular example,

belief updating is tractable (in class P). Note, however, that in

general, computing probability distributions both exactly and

approximately is NP-hard [55,56].

We now turn to the second example in §3. In this example,

uncertainty is of a different nature. It is not probabilistic but

arises from computational complexity: computing the optimal

solution requires a high degree of computational resources.

As we described in §3, a decision-maker could still use the

Savage framework to represent uncertainty in this example.

Probabilities would represent the degree of belief that a certain

subset of items is the optimal solution. Information gained by

trying out another randomly chosen possible combination of

items could be integrated into beliefs using Bayes’ Law, as

described in §3. In the example, items 2, 5 and 8 are in the opti-

mal solution and, hence, the corresponding securities end up

paying $ 1; all others expire worthless (figure 2b).

In this example, beliefs do not converge quickly to reflect

the optimal solution (figure 2b). Indeed, even after 30 trials, it

is still unclear which items are in the optimal solution, and

hence, which securities will pay $ 1. To make matters worse,

beliefs evolve arbitrarily, that is, they move from high to low

and vice versa even in later trials. This behaviour of beliefs is

in stark contrast with the previous case, where uncertainty

was reduced steadily by random sampling (figure 2a).

Since there are only a finite number of possible capacity-

filled knapsacks, our decision-maker should eventually come

across the optimal solution. This will happen when, just by

chance, the best knapsack is sampled. But this will take

time. In the present situation, there are (only!) 82 possible

capacity-filled knapsacks, so the chance of drawing the best

knapsack in any trial equals 1/82; this implies, among

others, that the chance that the algorithm finds the optimal

knapsack within 30 trials is only about 5%.
To demonstrate how ineffective (random) sampling is in

this example, notice that it takes approximately 400 trials to

increase to 95% the chance of coming across the optimal

knapsack. But there are only 82 capacity-filled knapsacks,

so in this case it would have been much more effective to

list all 82 possibilities and pick the optimum. In other

words, brute-force search would find the optimal solution

in 82 steps, while the sampling approach will only find it

with 95% probability even after five times as many steps

(samples). This shows that (random) sampling in this

example is not an effective way to reduce uncertainty.

Indeed, it has been shown that in tasks like the one in this

example, participants do not use random sampling to find

the optimal solution but instead use more effective algor-

ithms such as the greedy algorithm or branch-and-bound.

In an experiment where participants were paid to solve

different instances of the 0–1 knapsack problem, they per-

formed far better than if they had used random sampling

of potential solutions [35]. Their initial choices reflected the

greedy algorithm. However, greedy algorithms often do not

lead to the optimal solution. Many participants deviated

from greedy algorithms later in the trials, in ways that look

like branch-and-bound algorithms, specialized algorithms

to solve the knapsack problem.

A critical issue arises in such situations in which the

decision-maker acts in a way that is not optimal relative to

the Savage framework: it is not always possible to define

state spaces and beliefs that, on the one hand, accurately rep-

resent choices and learning of the agent and, on the other

hand, obey the Savage axioms [16].

Our second example indicates that the Savage framework is

only effective in representing a particular type of uncertainty

(lack of knowledge), namely, uncertainty that can effectively

be represented by probabilities. It assumes that uncertainty is

entirely due to randomness, and that uncertainty is reduced

through statistical inference, that is, inference that is only con-

cerned with randomness, using the rules of probability theory

[3]. Many decision tasks, however, involve a kind of uncer-

tainty—uncertainty due to computational complexity—for

which such a representation is not appropriate. Here, other

forms of inference are often more effective than statistical infer-

ence, for example, deduction. Indeed, algorithms designed to

solve the 0–1 knapsack problem exploit the structure of the

problem and typically only explore a small proportion of the
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search space to generate enough information to solve an

instance. Importantly, people seem to reduce uncertainty in

problems like the knapsack problem using strategies that

much closer resemble effective computer algorithms than

statistical inference based on random sampling [34,35].

The inefficiency of random search has been analyzed

theoretically using so-called randomized algorithms. Such

algorithms inject randomness in the computation of the sol-

ution, either at the level of the input or at the level of the

algorithm itself [57]. As a result, different executions of

such algorithms may result in different solutions and differ-

ent execution times [58]. An algorithm may execute in

polynomial time but may return an output whose value is

a random variable (‘Monte Carlo’ algorithms). Alternatively,

the algorithm may always return the optimal solution but

have an execution time that is a random variable (‘Las

Vegas’ algorithms). Currently, it is unknown if there exists

a polynomial-time randomized algorithm that can compute

an optimal solution for an NP-hard problem [59]. Thus, at

present, randomized algorithms do not overcome the chal-

lenges posed by computational complexity. In particular,

they do not provide a generic approach to overcoming the

computational resource requirements of decision tasks.
 138
(c) Implications for modelling of decisions
As we pointed out in the Introduction, the Savage framework

has not only been the most popular framework for modelling

of decisions under uncertainty. It has also been suggested to

be a generic framework that can capture any decision situation.

Indeed, the Savage framework has inspired the development

of many new frameworks that capture one or more situations

in which the Savage axioms are violated, such as the Allais

and Ellsberg paradoxes. Such frameworks include Gilboa–

Schmeidler preferences [60], disappointment version [61],

cumulative prospect theory [62] and rank-dependent expected

utility [63]. However, all of these theories assume that the agent

behaves optimally, as if it maximized a weighted average of

utilities over states.

In this section, we discussed two severe weaknesses of

the Savage framework. Firstly, we used tools from compu-

tational complexity theory to show that the Savage

framework is computationally intractable, rendering its core

axioms implausible. Secondly, we showed that the Savage

framework is ineffective in representing decision tasks with

high degrees of computational complexity.

To address the first of the above issues, future models of

decision-making should take into account the computational

complexity of decision tasks. For such models to be plausible,

the computational requirements necessary to solve a particular

decision task should not exceed the decision-maker’s compu-

tational capacities. Future work will need to (i) characterize

the computational resource requirements of decision tasks

encountered in ecologically relevant settings and (ii) character-

ize the computational resources available to decision-makers in

such settings [30,34,64].

The latter is complicated by the fact that the brain likely

allocates computational resources dynamically. At this point,

it is an open question which mechanism the brain uses for

the allocation of computational (cognitive) resources, a pro-

blem referred to as cognitive control or meta-decision-making
[34,65,66]. Most frameworks of cognitive control are based on

the concept of optimization: decision-makers optimally
allocate resources to tasks, trading off (expected) rewards

gained from the task and costs of the resources deployed in

the task [66,67]. These frameworks suffer from the same weak-

nesses as the Savage framework: many of those models imply

computational problems with high degrees of computational

complexity. Therefore, many of those models are not plausible

from a computational perspective [34].

To address the second issue above—ineffectiveness of the

Savage framework in representing certain types of uncer-

tainty—frameworks will need to be developed that allow

more general representations of knowledge (and learning)

than those afforded by probabilities. Such frameworks should

include conceptual and computational primitives such as rep-

resentations of objects, structured, algebraic representations,

operations over variables, causality and reasoning with

counterfactuals, among others [21,68,69].

The latter is particularly relevant for recently proposed

models of cognition based on the Bayesian Brain Hypothesis

[70]. In those models, all knowledge is represented by—that

is, reduced to—probabilities and new information is incorpor-

ated using Bayes’ Law. Both issues raised earlier in this section

in relation to the Savage framework also apply to those

models: they are generally computationally intractable and

ineffective in representing knowledge (and its reduction).

Indeed, it has recently been shown that several components

of those models have degrees of computational complexity

even higher than that of the knapsack problem discussed ear-

lier [51]. It is therefore unlikely that these models provide an

accurate account of cognition, including decision-making [21].
7. Conclusion
Modern theories of decision-making typically model uncer-

tainty about decision options using the tools of probability

theory, as exemplified by the Savage framework, the most pop-

ular framework in decision-making research [1]. In this article,

we used concepts from computational complexity theory

to argue that in many situations, the Savage framework is

computationally intractable and, in situations in which compu-

tational complexity is high, ineffective in representing

uncertainty. We also discussed new empirical evidence sup-

porting our claims, casting further doubt on the plausibility

of the framework’s axioms.

The empirical evidence, in particular, calls for new theories

of decision-making that are plausible from a computational as

well as biological perspective. This means that computational

resource requirements implied by such theories need to be

within the resources available to decision-makers. Com-

putational complexity theory provides a candidate framework

for quantifying computational resource requirements. The

endeavour will be complicated by the fact that allocation of

cognitive resources in the brain is likely dynamic, dependent

on motivation, physiological state and other context-dependent

factors.

Some immediate questions arise for the future study of

decision-making. On the one hand, it will be important to

characterize the computational complexity of decisions

encountered in every-day life, that is, the distribution of

real-world instances of key computational problems encoun-

tered in ecologically relevant settings. On the other hand, it

should be investigated which strategies people use to make

complex decisions, how they adapt to varying levels of
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computational complexity and how resources are allocated to

decision-making.

More accurate theories of decision-making are desirable not

only from a scientific perspective but also from the perspective

of public policy, including regulation. In some domains such as

financial markets, regulation of goods and services is premised

on rational-actor models. That is, consumers are assumed to

make rational choices in the sense of Savage—despite the fact

many decisions consumers face have high degrees of compu-

tational complexity. Those decisions include savings and

investment decisions or the selection of insurance contracts.
In the light of the evidence presented in this article, this

assumption is clearly implausible. Computationally (and bio-

logically) plausible models of decision-making will improve

the design of products, services and markets as well as their

regulation, with the potential for substantial gains in welfare.
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