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Abstract

Influenza A virus (IAV) and SARS-CoV-2 (COVID-19) cause pandemic
infections where cytokine storm syndrome and lung inflammation
lead to high mortality. Given the high social and economic cost of
respiratory viruses, there is an urgent need to understand how the
airways defend against virus infection. Here we use mice lacking the
WD and linker domains of ATG16L1 to demonstrate that ATG16L1-
dependent targeting of LC3 to single-membrane, non-autophagosome
compartments – referred to as non-canonical autophagy – protects
mice from lethal IAV infection. Mice with systemic loss of non-canoni-
cal autophagy are exquisitely sensitive to low-pathogenicity IAV
where extensive viral replication throughout the lungs, coupled with
cytokine amplification mediated by plasmacytoid dendritic cells, leads
to fulminant pneumonia, lung inflammation and high mortality. IAV
was controlled within epithelial barriers where non-canonical autop-
hagy reduced IAV fusion with endosomes and activation of interferon
signalling. Conditional mouse models and ex vivo analysis showed
that protection against IAV infection of lung was independent of
phagocytes and other leucocytes. This establishes non-canonical
autophagy in airway epithelial cells as a novel innate defence that
restricts IAV infection and lethal inflammation at respiratory surfaces.
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Introduction

Influenza A virus (IAV) is a respiratory pathogen of major global

public health concern (Yamayoshi & Kawaoka, 2019). As with SARS-

CoV-2, animal reservoirs of IAV can contribute to zoonotic infection

leading to pandemics with a high incidence of viral pneumonia,

morbidity and mortality. IAV infects airway and alveolar epithelium

and damage results from a combination of the intrinsic pathogenicity

of individual virus strains as well as the strength and timing of the

host innate/inflammatory responses. Optimal cytokine levels protect

from IAV replication and disease but excessive cytokine production

and inflammation worsens the severity of lung injury (Davidson

et al, 2014; Iwasaki & Pillai, 2014; Teijaro et al, 2014; Herold et al,

2015; Ramos & Fernandez-Sesma, 2015). Even though infection of

the lower respiratory tract can result in inflammation, flooding of

alveolar spaces, acute respiratory distress syndrome and respiratory

failure, the factors that control IAV replication at epithelial surfaces

and limit lethal lung inflammation remain largely unknown.

The transport of viruses to lysosomes for degradation provides

an important barrier against infection. Transport to lysosomes can

be enhanced by non-canonical autophagy pathways which conju-

gate autophagy marker protein LC3 to endo-lysosome compartments

to increase lysosome fusion. In phagocytes, LC3-associated phagocy-

tosis (LAP) conjugates LC3 to phagosomes and enhances phago-

some maturation (Sanjuan et al, 2007; Delgado et al, 2008; Martinez

et al, 2015; Lamprinaki et al, 2017; Fletcher et al, 2018). In non-
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phagocytic cells, LC3 is conjugated to endo-lysosome compartments

during the uptake of particulate material such as apoptotic cells and

aggregated b-amyloid, and following membrane damage during

pathogen entry or osmotic imbalance induced by lysosomotropic

drugs (Florey et al, 2011, 2015; Roberts et al, 2013; Tan et al, 2018;

Heckmann et al, 2019). It is known from in vitro studies that LC3

can be recruited to endo-lysosome compartments during the uptake

of pathogens, but the roles played by non-canonical autophagy

during viral infection in vivo are largely unknown.

A role for non-canonical autophagy in host defence has been

implied from in vitro studies of LAP in phagocytes infected with free

living microbes with a tropism for macrophages such as bacteria (Liste-

ria monocytogenes (Gluschko et al, 2018), Legionella dumoffii (Hubber

et al, 2017)), protozoa (Leishmania major) and fungi (Aspergillus fumi-

gatus (Akoumianaki et al, 2016, Kyrmizi et al, 2018, Matte et al,

2016)). It is also known that IAV induces non-canonical autophagy

during infection of cells in culture (Fletcher et al, 2018); however, the

role played by non-canonical autophagy in controlling IAV infection

and lung inflammation in vivo is currently unknown. It is not known,

for example, whether non-canonical autophagy is important in the

control of IAV infection by epithelial cells at sites of infection or

whether it plays a predominant role within phagocytes and antigen-

presenting cells during development of an immune response. Herein

we use mice with specific loss of non-canonical autophagy to deter-

mine the role played by non-canonical autophagy in host defence

against IAV infection of the respiratory tract. The mice (dWD) lack the

WD and linker domains of ATG16L1 that are required for conjugation

of LC3 to endo-lysosome membranes (Rai et al, 2019) but express the

N-terminal ATG5-binding domain and the coiled coil domain (CCD)

and linker residues up to glutamate at position 230 (E230) of ATG16L1

that are required for WIPI2 binding and autophagy (Dooley et al,

2014). Importantly, the dWD mice grow normally and maintain tissue

homeostasis (Rai et al, 2019), and unlike mice with LysMcre-mediated

deletion of autophagy genes from myeloid cells (Lu et al, 2016), or

disruption of ATG16L1 through loss of the CCD (Saitoh et al, 2008),

the dWDmice do not have a pro-inflammatory phenotype.

We show that loss of non-canonical autophagy from all tissues

renders mice highly sensitive to low-pathogenicity murine-adapted

IAV (A/X-31) leading to extensive viral replication throughout the

lungs, cytokine dysregulation and high mortality typically seen after

infection with highly pathogenic IAV. Conditional mouse models

and ex vivo analysis showed that protection against IAV infection of

lung was independent of phagocytes and other leucocytes, and that

infection was controlled within epithelial barriers where non-canon-

ical autophagy slowed fusion of IAV with endosomes and reduced

interferon signalling. This establishes non-canonical autophagy

pathways in airway epithelial cells as a novel innate defence mecha-

nism that restricts IAV infection at respiratory surfaces.

Results

Mice with systemic loss of the WD and linker domains of
ATG16L1 are highly sensitive to IAV infection

Panels A and B of Fig EV1 show the rationale for removing the WD

and linker domains from ATG16L1 to generate mice (dWD) with a

specific loss of non-canonical autophagy (E230 mice described in

Rai et al, 2019). The consequences of loss of the WD and linker

domains of ATG16L1 on conventional autophagy and non-canonical

autophagy were confirmed using cell lines taken from controls and

dWD mice. Figure 1A shows that mouse embryo fibroblasts (MEFs)

from littermate control mice recruited LC3 to small puncta indicative

of autophagosomes when they were starved in HBSS to induce

conventional autophagy and recruited LC3 to large endo-lysosomal

vacuoles when non-canonical autophagy was induced by chloro-

quine or monensin. HBSS induced LC3 puncta in MEFs from dWD

mice, but the MEFs were unable to recruit LC3 to large vacuoles

induced by chloroquine or monensin. LC3 recruitment was quanti-

fied by imaging LC3-positive puncta and vacuoles. The graphs

(Fig 1B) show that numbers of autophagosomes induced by HBSS

were the same in each cell type but MEFs from dWD were unable to

recruit LC3 to large vacuoles when incubated with chloroquine or

monensin. The results indicated a selective loss of non-canonical

autophagy. LC3 recruitment was quantified by Western blot to

detect LC3II, the lipidated form of LC3 that binds membranes.

Figure 1C shows that control MEFs expressed the full-length a and b
forms of ATG16L1 at 70 kDa and generated increased levels of LC3II

following starvation in HBSS or incubation with monensin or

chloroquine. MEFs from dWD mice expressed a truncated ATG16L1

at 30 kDa (Fig 1C). The LC3II signal in dWD cells increased after

starvation to levels that were similar to starvation controls. LC3II

also increased in dWD MEFs incubated with monensin and chloro-

quine. Monensin and chloroquine raise lysosomal pH, and the

consequent inhibition of proteolysis slows the efflux of amino acids

from the lysosome. This in turn inhibits the Ragulator-Rag:MTORC1

complex and induces autophagy. Previous work (Fletcher et al,

2018) has shown that monensin activates conventional autophagy

and at the same time raised lysosomal pH slows fusion of

autophagosomes with lysosomes. This explains the accumulation of

small LC3 puncta and increased LC3II observed in dWD cells incu-

bated with monensin or chloroquine. Quantification of Western

blots (Fig 1D) showed that there was no significant difference

between LC3II signals in control and dWD MEFs after starvation

suggesting that autophagy was equally active in the two cell types.

The LC3II signal in dWD MEFs incubated with monensin or chloro-

quine was however lower than controls but not significantly dif-

ferent. Studies in phagocytic cells have shown that non-canonical

autophagy/LAP is downstream of Rubicon and PHOX:NOX2 ROS

signalling (Martinez et al, 2015). Addition of diphenyliodonium

(DPI), an inhibitor of NOX2, to cells incubated with monensin or

chloroquine inhibited recruitment of LC3 to large vacuoles (Fig-

ure EV1C) indicating that WD domain-dependent non-canonical

autophagy is also downstream of ROS signalling in non-phagocytic

cells. Microscopy and line profile analysis were used to determine

whether recruitment of LC3 to phagosomes in bone marrow-derived

macrophages (BMDM) induced by Zymosan also required the WD

domain of ATG16L1. Figure 1E-H shows that LC3 was recruited to

phagosomes in control BMDM, but was not recruited to phagosomes

in BMDM from dWD mice. Taken together, the results show that the

dWD mice have specific loss of non-canonical autophagy in both

myeloid and non-myeloid cells.

IAV enters airway and lung epithelial cells by endocytosis, and in

tissue culture IAV induces non-canonical autophagy leading to

ATG16L1-WD domain-dependent conjugation of LC3 to the plasma

membrane and peri-nuclear structures (Fletcher et al, 2018). To test
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whether non-canonical autophagy has a host defence function

in vivo, dWD mice were infected with IAV. We used a low-

pathogenicity murine-adapted IAV (A/X31) that does not normally

lead to extensive viral replication throughout the lungs, or cause the

cytokine storm syndrome and death typically seen after infection

with highly pathogenic viral strains. The results (Fig 2) showed that

dWD mice became moribund and showed severe signs of clinical

illness (rapid breathing, piloerection). They also displayed rapid

weight loss compared to littermate controls (Fig 2A) and had

increased mortality with survivors recovering more slowly from

infection (Fig 2B). Virus titres in the lungs of both mice increased

with time (Fig 2C) and increased weight loss in dWD mice was

A B E

F

G H

C

D

Figure 1. Deletion of the WD and linker domains of ATG16L1 leads to selective loss of non-canonical autophagy.

A MEFs from dWD and littermate control mice were incubated with HBSS, chloroquine or monensin for 2 h as indicated. Cells were fixed and permeabilised and
stained for LC3. Arrows indicate LC3 vacuoles where a ring of LC3 signal surrounds vacuoles ranging between 2 and 8 lm diameter.

B Numbers of fluorescent LC3 puncta and LC3 vacuoles in each cell were quantified by fluorescence microscopy. LC3 puncta were identified using spot function
software to locate puncta ranging from 0.5 to 1.0 lm diameter. LC3 vacuoles were identified by eye as rings of fluorescence ranging between 2 and 8 lm
diameter. Data from 10 cells are shown, and bars represent the mean � SD and were compared by Student’s t-test (*P < 0.05, ****P < 0.0001).

C–E MEFs from dWD and littermate control mice were incubated with HBSS, chloroquine or monensin for 2 h as indicated and cell lysates analysed by Western blot
for ATG16L1, dWD and LC3 as indicated. Control MEFs express a and b isoforms of ATG16L1 at 70 kDa, and MEFs from dWD mice express a truncated ATG16L1 at
30kDa. (D) shows the level of conversion of LC3 to LC3II estimated by densitometry from a mean (�SD) of three replicate blots. (E) shows fluorescence images of
phagosomes following engulfment of Zymosan (red) by bone marrow-derived macrophages (BMDM) from control and dWD mice. White line indicates track used
for line profile analysis to compare the LC3 signal on the limiting membrane of the phagosome with the centre.

F Shows examples of line profile analysis
G, H (G) shows the percentage of LC3-positive phagosomes per cell, and (H) shows line profile analysis of data from 10 cells, and bars represent the mean � SD and

were compared by Student’s t-test (****P < 0.0001).
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associated with an approx. log increase in lung virus titre at 5 days

post-infection (d.p.i). Furthermore, histopathology and immunohis-

tochemistry (IH) analysis of lungs from dWD mice showed fulmi-

nant viral pneumonia with large numbers of IAV-positive cells

(Fig 2D). Lungs from control and dWD mice did not show signs of

inflammation before infection (Fig EV2).

Non-canonical autophagy controls lung inflammation after
IAV infection

Innate protection against IAV is provided by type 1 (a, b) and III (k)
interferon (IFN) with severe IAV infection causing excessive airway

inflammation and pulmonary changes attributable in part to IFNab
and TNF-a (Szretter et al, 2007; Davidson et al, 2014). Measurement

of cytokine expression at 2 d.p.i showed that IAV induced a tran-

sient increase in transcripts for interferon-stimulated genes (ISGs),

ISG15 and IFIT1 (Iwasaki & Pillai, 2014) and pro-inflammatory

cytokines (IL-1b, TNF-a and CCL2 [MCP-1]) in the lungs of both

control and dWD mice (Fig 3A). This increase in cytokine expres-

sion was resolved by 3 d.p.i. before a second wave of increased

cytokine expression at 5 d.p.i. This second wave of cytokine expres-

sion was resolved by 7 d.p.i in control mice, but dWD mice showed

sustained increases in ISG15, IFIT1, IL-1b, TNF-a and CCL2 tran-

scripts, coincident with exacerbated weight loss. At 3 d.p.i, lungs of

dWD mice showed increased expression of neutrophil chemotaxis

factor CXCL1 mRNA (Fig 3A), coincident with increased neutrophil

infiltration of airways and parenchyma, and extensive neutrophil

extracellular traps (NETs) as a consequence of neutrophil degenera-

tion as shown by IH (Fig 3B and Appendix Fig S1). Increased

neutrophil infiltration of airways in dWD mice at 2 d.p.i. was con-

firmed and quantified using flow cytometric analysis of bron-

choalveolar lavage (BAL; Fig 3C). At 5–7 d.p.i., increased

expression of CCL2 mRNA in dWD mice was coincident with exten-

sive macrophage/monocyte infiltration into lung parenchyma

observed by IH (Fig 3B and Appendix Fig S2) which was not seen in

controls or the lungs of dWD mice before infection with virus (EV2).

This increased macrophage/monocyte infiltration in dWD mice was

confirmed and quantified using flow cytometric analysis of single-

cell suspensions from lung tissue (Fig 3D). It is known that, in

severe IAV infection, a cytokine storm occurs that is amplified by

plasmacytoid dendritic cells (pDCs) (Davidson et al, 2014). pDCs

detect virus-infected cells and produce large amounts of cytokines,

in particular IFNab, that in severe infections can enhance disease.

In these cases, depletion of pDCs can decrease morbidity (Davidson

et al, 2014). Depletion of pDCs in IAV-infected dWD mice using

anti-PDCA-1 led to markedly decreased weight loss as compared

with isotype control-treated mice and that was similar to that seen

in littermate controls (Fig 3E). This indicates that excessive cytokine

A

D

B C

Figure 2. Systemic loss of non-canonical autophagy increases susceptibility to IAV infection.

A–D Littermate control and dWD mice were challenged intranasally with IAV strain X31 (103 pfu). (A) Mice were monitored for weight loss at indicated time points.
(n = 8). Data represent the mean value � SEM. Comparisons were made using a repeated-measures two-way ANOVA (Bonferroni post-test (**P < 0.01,
***P < 0.001)). (B) Survival was assessed at indicated time points (n = 15). Comparisons were made using log-rank (Mantel–Cox) test ***P < 0.001. (C) IAV titre in
lungs was determined by plaque assay at 5 d.p.i. (n = 6). Data for individual animals are shown, and bars represent the mean � SD. Mann–Whitney U-test was
used to determine significance (**P < 0.01. (D) The presence of IAV antigen was assessed by IH at 7 d.p.i. (representative images from n = 6).
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Figure 3.
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production amplified by pDCs is responsible for the increased

morbidity seen in the dWD mice.

Thus, mice with systemic loss of non-canonical autophagy failed

to control lung virus replication and inflammation, leading to

increased cytokine production, morbidity and mortality.

Systemic loss of the WD and linker domains of ATG16L1 does not
lead to gross changes in inflammatory threshold or
immunological homeostasis

Macrophages cultured from embryonic livers from mice with loss of the

coiled coil domain of ATG16L1 are unable to activate canonical autop-

hagy and secrete high levels of IL1-b (Saitoh et al, 2008). Similarly,

LysMcre-mediated deletion of genes essential for conventional autop-

hagy (e.g. Atg5, Atg7, Atg14, Atg16L1, FIP200) in mice leads to raised

pro-inflammatory cytokine expression in the lung. This has been

reported to increase resistance to IAV infection (Lu et al, 2016), and this

was also observed in mice used in our study (Appendix Fig S3) where

LysMcre-mediated loss of Atg16L1 resulted in weight loss similar to

controls (Appendix Fig S3A) and reduced overall virus titre

(Appendix Fig S3B). This led us to test the possibility that the dWD

mutation to ATG16L1 could also increase IL-1b secretion and cause the

increased inflammation observed during IAV infection. This was

tested by incubating BMDM with LPS and purine receptor agonist,

BzATP (Appendix Fig S4A), or by challenging mice with LPS (Appendix

Fig S4B). Mice with a complete loss of ATG16L1 in myeloid cells

(Atg16L1fl/fl-lysMcre) showed threefold increases in IL-1b in serum and

increased secretion IL-1b from BMDM in vitro. In contrast IL-1b secre-

tion in dWD mice did not differ significantly from littermate controls

(Appendix Fig S4A and B). This was consistent with lack of elevated

cytokines in lungs prior to infection (see day 0 in Fig 3A), and our previ-

ous work shows that serum levels of IL-1b, IL-12p70, IL-13 and TNF-a
in dWD mice are the same as in littermate controls at 8-12 and

20-24 weeks (Rai et al, 2019). The exaggerated inflammatory response

to IAV in dWDmice did not therefore result from a raised pro-inflamma-

tory threshold or dysregulated IL-1b responses in the lung. Also, the

frequencies of T cells, B cells and macrophages were similar in dWD

mice to littermate controls (Appendix Fig S5). These data suggest that

the exaggerated responses of dWDmice to IAV do not occur because the

mice have a raised inflammatory threshold or abnormal immunological

homeostasis.

Non-canonical autophagy limits IAV infection independently of
phagocytic cells

The link between non-canonical autophagy, TLR signalling, NADPH

oxidase activation and ROS production (Sanjuan et al, 2007;

Delgado et al, 2008; Martinez et al, 2015) provides phagocytes with

a powerful mechanism to limit infections in vivo. To test whether

wild-type bone marrow-derived cells could protect susceptible dWD

mice from lethal IAV infection, we generated radiation chimaeras

(Fig EV3). When challenged with IAV, dWD mice reconstituted with

either wild-type or dWD bone marrow remained highly sensitive to

IAV (Fig 4A and B) with body weight reduced by up to 25% and

decreased survival by 5 d.p.i. As seen for dWD mice, weight loss

was associated with a 10-fold increase in lung viral titre (Fig 4C),

fulminant pneumonia and inflammatory infiltration into the lung

(Fig 4D). This increased susceptibility to IAV was not observed for

control mice reconstituted with wild-type bone marrow, showing

that non-canonical autophagy pathways in phagocytes and other

leucocytes from control mice were not able to protect dWD mice

against lethal IAV infection. In a reciprocal experiment (Fig 5), mice

expressing Cre recombinase in myeloid cells (LysMcre) were used

to generate mice (called dWDphag), where the truncated

Atg16L1dWD gene was restricted to phagocytic cells (Appendix Fig

S6). In these mice, non-canonical autophagy was absent in cultured

phagocytes (BMDM) but it was present in skin fibroblasts

(Appendix Fig S6E). After infection with IAV, dWDphag mice showed

comparable weight loss and virus titres to those seen in littermate

control mice (Fig 5A and B). Likewise, the raised IL-1b levels

(Fig 5C) and profuse macrophage and neutrophil lung infiltration

observed in dWD mice were absent (Fig EV4) and similar to litter-

mate controls. The ability of the WD and linker domains of

ATG16L1 to protect epithelial cells against IAV infection was tested

ex vivo to further exclude any contribution from recruited leuco-

cytes. Virus titres in precision-cut lung slices (Fig 5D) increased

over 3 days and similar to the kinetics seen in vivo titres from dWD

mice rose to 10-fold greater than controls. Thus, the sensitivity of

dWD mice to IAV was not due to the loss of non-canonical autop-

hagy from myeloid cells, making it likely that non-canonical autop-

hagy mediated by the WD and linker domains of ATG16L1 protects

against lethal IAV infection in non-myeloid tissue.

Non-canonical autophagy slows IAV fusion with endosomes and
reduces interferon signalling

IAV enters cells by receptor-mediated endocytosis where acidifi-

cation of late endosomes results in fusion with the endosomal

membrane and delivery of viral ribonuclear proteins (RNPs) into

the cytoplasm (Wharton et al, 1994; Skehel & Wiley, 2000). RNPs

are then imported into the nucleus for genome replication (Boulo

et al, 2007). Figure 6A shows that the generation of infectious virus

was greater in dWD MEFs compared to control. IAV binding was

analysed using fluorescent virus, and Fig 6B shows that binding

◀ Figure 3. Systemic loss of non-canonical autophagy leads to extensive lung inflammation and damage.

A–E Littermate control and dWD mice (n = 5) were challenged with IAV X31 (103 pfu). (A) At the indicated time points, cytokine mRNA transcripts in lung tissue (n = 5)
were evaluated by qPCR. Data for individual animals are shown, and bars represent the mean � SD and were compared by 2-way ANOVA with Bonferroni post-
tests (*P < 0.05, **P < 0.01, ***P < 0.001). (B) Representative lung sections from animals (n = 6) taken at 3 d.p.i. were stained by IH for neutrophils (Ly6G) or
neutrophil extracellular traps (NET; anti-H3). Sections at 7 d.p.i. were stained for macrophages (Iba-1). Further micrographs are shown in Appendix Figs S1 and S2.
(C) BAL (n = 5) was taken at 2 d.p.i and evaluated by flow cytometry, with pre-gating on CD45+. The percentage of neutrophils (CD11b+, Ly6G+) cells is
shown � SEM and was compared using Mann–Whitney U-test (*P < 0.05). (D) Single-cell suspensions were prepared from lungs taken at 5 d.p.i and evaluated by
flow cytometry, with pre-gating on CD45+. The percentage of macrophage/monocytes (CD11b+, F4/80+) cells is shown � SEM and was compared using Mann–
Whitney U-test (*P < 0.05). (E) dWD mice were treated with either anti-PCDA-1 (to deplete plasmacytoid DC) or an isotype-matched control. Littermate control
mice were used as comparator. Weight loss was measured at the indicated days p.i. (n = 5). Comparisons were made using a repeated-measures two-way ANOVA
(Bonferroni post-test, *P < 0.05).
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was similar between control and dWD MEFs suggesting that subse-

quent steps of endocytosis and viral fusion may be increased in

dWD MEFs. The possibility that the WD domain of ATG16L1

affected replication of IAV independently of endocytosis was tested

using an acid bypass assay. IAV was bound to cells at 4° and

warmed to 37°C for 2 min at pH 6.8 (control) or pH 5 to induce

direct fusion with the plasma membrane. When early stages of repli-

cation were assessed by staining for nuclear protein, there was no

difference between dWD MEFs and control (Fig 6C). This made it

unlikely that the WD domain has a direct role in facilitating IAV

replication. The effect of non-canonical autophagy on IAV entry was

tested using fluorescence de-quenching assay where the envelope of

purified IAV was labelled with green (DiOC18) and red (R18) lipo-

philic dyes. Individual fusion events in cells estimated by automated

confocal microscopy (Fig 6D) show that the number of fusion

events per cell was increased after 60 min at 37°C in dWD MEFs

compared to control. Similarly, FACS analysis (see also Fig EV5) of

the percentage of cells with de-quenched signal showed greater

A

D

B C

Figure 4. Bone marrow-derived lymphoid tissue cannot reverse sensitivity to IAV infection.

A–D Bone marrow from wild-type (Atg16L1+/+) was used to reconstitute irradiated littermate control mice (B6 WT ? control [●]) or dWD mice (B6 WT ? dWD [○]).
Bone marrow from dWD mice was used to reconstitute irradiated dWD mice (dWD ? dWD [▲]). After 12 weeks, mice (n = 5 per group) were challenged with IAV
X31 (103 pfu). (A) Mice were monitored for weight loss at indicated time points. Data represent the mean value � SEM. Comparisons were made using a repeated-
measures two-way ANOVA (Bonferroni post-test, **P < 0.01, ***P < 0.001). (B) Survival was assessed at indicated time points. Comparisons were made using log-
rank (Mantel–Cox) test **P < 0.01). (C) IAV titre in lungs was determined by plaque assay at 5 d.p.i. (n = 6). Data for individual animals are shown using symbols
described in (A) and (B), and bars represent the mean � SD. A one-way ANOVA with Tukey’s post hoc analysis was used to determine significance (*P < 0.05,
**P < 0.01). (D) Lungs taken at 5 d.p.i. were analysed for neutrophils (Ly6G), neutrophil extracellular traps (NET; anti-H3) and macrophages (Iba-1).
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fusion in dWD MEFs (60%) compared to controls (40%) at 30 min

and this increased at 60 min (73% versus 56% for controls; Fig 6E),

as did mean fluorescence intensity (Fig 6F). Endocytosed viruses

were also estimated by automated confocal microscopy (Fig 6 G and

H) of permeabilised cells and again there was a significant increase

in endocytosis of IAV in dWD MEFs at 30 min. Taken together, the

results showed that the WD domain of ATG16L1 slowed fusion of

IAV with endosome membranes. The recognition of viral RNA by

interferon sensors following delivery of RNPs into the cytoplasm

was used as a second assay for IAV entry. MEFs from dWD mice

showed between three- and fivefold increases in expression of IFN

responsive genes, ISG15 and IFIT1 (Fig 6I and J), and this was also

observed in the lung in vivo (Fig 3A). Taken together, the results

demonstrate for the first time that the WD and linker domains of

ATG16L1 allow non-canonical autophagy to provide a novel innate

defence mechanism against lethal IAV infection within the epithelial

barrier in vivo.

Discussion

Respiratory viruses such as influenza A virus (IAV) and SARS-CoV-

2 can move from animal reservoirs to create human pandemics with

high morbidity and mortality. The danger posed by pandemic

A B

C D

Figure 5. Loss of non-canonical autophagy from phagocytes does not increase sensitivity to IAV infection.

A–C dWDphag mice lack non-canonical autophagy in myeloid (LysMcre) cells (for construction see Appendix Fig S6A). Offspring negative for LysMcre were used as
littermate controls. Mice (n = 6 per group) were challenged intranasally with IAV X31 (103 pfu). (A) Mice were monitored for weight loss at indicated time points.
Data represent the mean value � SEM. Comparisons were made using a repeated-measures two-way ANOVA (Bonferroni post-test). (B) IAV titre in lungs was
determined by plaque assay at 5 d.p.i. (n = 6). Data for individual animals are shown, and bars represent the mean � SD. Mann–Whitney U-test was used to
determine significance. (C) IL-1b mRNA transcripts in lung at 5 d.p.i. were determined by qPCR. Mann–Whitney U-test was used to determine significance
(**P < 0.01).

D Precision-cut lung slices from control and dWD mice were infected with IAV. Virus titres were determined at indicated time points. Comparisons were made using
two-way ANOVA with Bonferroni post-tests (**P < 0.01).
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spread of respiratory viruses underlines an urgent need to under-

stand how the airways defend against viral infection. In this study,

we have analysed the role played by non-canonical autophagy in

defending the respiratory tract against infection by IAV in vivo. Mice

with systemic loss of non-canonical autophagy (dWD) showed

profound sensitivity to infection by a low-pathogenicity murine-

adapted IAV (A/X31) leading to extensive viral replication through-

out the lungs, dysregulated cytokine production and fulminant

pneumonia leading to high mortality and death usually seen after

infection with virulent strains (Belser et al, 2011). These signs

mirror the cytokine storms and mortality seen in humans infected

with highly pathogenic strains of IAV such as the 1918 “Spanish”

Influenza (Belser et al, 2011).

The observation that bone marrow transfers from wild-type

mice were unable to protect dWD mice from IAV suggested that

protection against IAV infection in vivo was independent of leuco-

cytes and did not require non-canonical autophagy in leucocyte

populations (e.g. macrophages, dendritic cells, neutrophils, granu-

locytes, lymphocytes). In a reciprocal experiment, the linker and

WD domains of ATG16L1 were deleted specifically from myeloid

cells. These mice, which lack non-canonical autophagy in phago-

cytic cells (LAP), but maintain non-canonical autophagy in other

tissues, failed to show increased sensitivity to IAV infection.

Thus, protection against severe IAV-associated disease in the

respiratory tract of the host relies heavily on non-canonical autop-

hagy in non-leucocyte populations.

Activation of non-canonical autophagy in phagocytic cells leads

to LC3-associated phagocytosis (LAP) where TLR signalling and

reactive oxygen species (ROS) recruit LC3 to phagosomes. A lack of

involvement of non-canonical autophagy/LAP in protection against

IAV disease in vivo was surprising because the activation of LAP in

phagocytic cells such as macrophages, dendritic cells and neutro-

phils would provide a powerful means of recognising and control-

ling microbial infection in vivo. In vitro studies show that activation

of acid sphingomyelinase by Listeria monocytogenes (Gluschko et al,

2018) and subsequent ROS production by NOX2 recruit LC3 to

phagosomes. Similarly, activation of TLR2 and NOX2 by Legionella

dumoffii in vitro signals ULK1-independent translocation of LC3 to

single-membraned vacuoles containing Legionella (Hubber et al,

2017). In both cases, LC3 promotes fusion with lysosomes. The

observation that virulence factors such as the GP63 metalloprotease

of Leishmania major and melanin of Aspergillus fumigatus prevent

recruitment of NOX2 to phagosomes to prevent LAP (Akoumianaki

et al, 2016; Matte et al, 2016; Kyrmizi et al, 2018) further suggests

that non-canonical autophagy in phagocytes should provide a

defence against infection. One reason for the discrepancy may be

that the studies cited above have focused on in vitro experiments

using microbes with a tropism for macrophages, rather than in vivo

studies where pathogens encounter epithelial barriers.

Intranasal infection of mice with IAV results in rapid infection of

principally airway and pulmonary epithelial cells (Akram et al,

2018). The results of in vivo challenge of radiation chimaeras and

dWDphag mice strongly suggest that non-canonical autophagy in the

epithelium rather than leucocytes is responsible for restricting IAV

infection. This was supported by ex vivo experiments where virus

titres and interferon responses were five- to 10-fold greater in preci-

sion-cut lung slices and MEFs from dWD mice. Furthermore, loss of

non-canonical autophagy increased fusion of IAV envelope with

◀ Figure 6. Non-canonical autophagy reduces virus replication, endosome fusion and interferon signalling.

A The WD domain of ATG16L1 reduces IAV replication in MEFs. Cells were infected with IAV, and virus titres were estimated at 8 h post-infection by plaque assay.
Graphs show three individual experiments with a bar (� SD) at the mean and were compared using two-way ANOVA with Bonferroni post-tests ***P < 0.001).

B IAV binding is similar between control and dWD MEFs. Cells were bound with IAV X31 labelled with AF488 on ice for 1 h and fixed immediately. The cells were
stained with anti-HA (H3SKE, red) without permeabilisation to visualise extracellular IAV particles and counterstained with Hoechst (nuclei) and WGA-AF647 to
label the cell membrane. Cells were imaged by automated confocal microscopy using a 40x objective, and the maximum intensity projection images were
analysed to quantify the number of bound IAV particles per cell. The results and means (horizontal line) of n = 3 independent experiments (50-100 cells per
experiment) are shown.

C IAV infection following acid bypass is comparable between control and dWD MEFs. IAV was bound on ice for 1 h and warmed at either neutral pH (6.8) or low pH
(pH 5.0) for 2 min, followed by incubation in STOP medium containing NH4Cl for 18 h. Cells were fixed and stained for NP and Hoechst, imaged by automated
confocal microscopy and maximum intensity projection images analysed to quantify viral infectivity. The results from N = 3 independent experiments (5,000-
10,000 cells quantified per experiment), and the means are shown. Scale bar; 500 µm.

D IAV fusion with endosomes is increased in dWD MEFs. Cells were infected with dual-labelled (R18/SP-DiOC18) IAV for 1 h, fixed and counterstained with Hoechst
(nuclei blue) and WGA-AF647 (cell perimeter in white). Cells were imaged by automated confocal microscopy, and the number of fusion events per cell
(represented by number of SP-DiOC18 puncta) was quantified. Fused and non-fused viral particles are shown as green and red spots, respectively. The results and
means (horizontal lines) of n = 3 independent experiments (30-60 cells per experiment) are shown. Representative cells overlayed with the cell boundary
segmented from the WGA staining are shown on the right.

E, F Numbers of fusion-positive cells are increased for dWD MEFs. MEFs from dWD (white circles) or littermate control mice (black circles) were incubated with dual-
labelled (SP-DiOC18/R18) IAV at 4°C for 45 min and warmed to 37°C for 30 ad 60 min. Cells were harvested by trypsinisation, fixed in PFA and analysed by flow
cytometry to determine to determine percentage of cells positive for fusion (E) and median fluorescence intensity (MFI) of de-quenched SP-DiOC18 signa (F).
Graphs show individual replicates (n = 3) with a horizontal line at the mean and were compared using two-way ANOVA with Bonferroni post-tests **P < 0.01,
***P < 0.001). pH-dependent fusion was assessed by adding bafilomycin A1 to the infection assay (Fig EV5).

G, H Endocytosis of IAV increases in dWD MEFs. MEFs from dWD or littermate control mice were incubated with Alexa Fluor 488-labelled IAV at 4°C for 1hr and
warmed to 37°C for 15. Cells were fixed and permeabilised and stained with antibody against HA (red). The blue line indicates the plasma membrane of the cell.
Green arrows indicate examples of viruses only labelled with green fluorescence. Double-labelled virus particles (green-red) represent non-endocytosed particles
bound at the cell surface, whereas green particles represent endocytosed particles. The results and means of n = 3 independent experiments (50-100 cells per
experiment) are shown. Student’s t-test; P < 0.01. The dotted square in the top row panels is enlarged in the bottom row. Scale bars; 10 µm (top row) and 5 µm
(bottom row).

I, J Interferon signalling increases in dWD MEFs. MEFs from dWD or littermate control mice were infected with IAV. At the indicated time points, mRNA transcripts
were evaluated by qPCR for IFIT1 (I) and ISG15 (J). Data from 3 replicates are shown, and bars represent the mean � SD and were compared by two-way ANOVA
with Bonferroni post-tests (***P < 0.001)
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endosomes and increased activation of interferon signalling path-

ways. Both assays suggest that non-canonical autophagy reduces

IAV entry and delivery of viral RNA to the cytoplasm. This would

explain reduced interferon signalling, and at the same time the

delayed escape of IAV into the cytoplasm would increase the trans-

fer of endocytosed virus to lysosomes for degradation. The precise

mechanisms employed by non-canonical autophagy to reduce virus

entry from endosomes are unknown. This may involve recruitment

of LC3 to endosomes by TMEM59 (Boada-Romero et al, 2016) to

increase fusion with lysosomes, or by maintaining membrane repair

during virus entry, as observed for bacteria such as S. Typhimurium

and Listeria monocytogenes (Kreibich et al, 2015; Tan et al, 2018). A

p22phox-NOX2 pathway that recruits LC3 to vacuoles containing S.

Typhimurium in epithelial cells (Huang et al, 2009) may also be

activated during IAV entry and hamper lethal infection.

dWD mice infected with IAV appeared to be unable to resolve

inflammatory responses resulting in sustained expression of pro-in-

flammatory cytokines, morbidity and a striking lung changes char-

acterised by profuse migration of neutrophils into the airway at day

3 followed by macrophages on day 7. pDCs detect IAV-infected cells

and produce large amounts of cytokines, in particular IFNab, that in
severe infections can enhance disease (Davidson et al, 2014). The

fact that morbidity in dWD mice could be decreased by depleting

pDCs indicates that excessive cytokine production, amplified by

pDCs, was a major factor. This is not due to a lack of non-canonical

autophagy/LAP in pDC as bone marrow chimaeras of dWD mice

with wild-type leucocytes have the same phenotype as dWD mice.

IAV is recognised by endosomal TLR3 in respiratory epithelial cells

and RIG-I detects virus replicating in the cytosol leading to activa-

tion of IRF3 and NFkB with subsequent induction of interferon, ISG

and pro-inflammatory cytokine production (Iwasaki & Pillai, 2014).

Increased inflammation may result directly from increased virus in

the lungs, but the increased fusion of IAV envelope with endosomes

in dWD mice may increase delivery of viral RNA to the cytoplasm

resulting in the sustained pro-inflammatory cytokine signalling. A

similar pro-inflammatory phenotype resulting from decreased traf-

ficking of inflammatory cargoes is observed following disruption of

non-canonical autophagy by LysMcre-mediated loss of Rubicon

from macrophages or microglia (Martinez et al, 2016; Heckmann

et al, 2019). Studies also show that the WD domain of ATG16L1 can

modulate endocytosis of cytokine receptors (Serramito-G�omez et al,

2020). Interaction of the WD domain with the IL10 receptor (IL10-

R), for example, promotes formation of endosomes containing IL-

10/IL-10 receptor complexes leading to an enhanced anti-inflamma-

tory signalling, that would be lost in dWD mice. Impaired recycling

of Toll-like receptor 4, CD36 and the b-amyloid receptor TREM2 is

also observed in microglia lacking the WD domain of ATG16L1 lead-

ing to neuroinflammation (Heckmann et al, 2020). Inhibition of

receptor recycling results from slowed return of receptors to the

plasma membrane, rather than increased endocytosis (Heckmann

et al, 2019). This makes it unlikely that the increased fusion of IAV

with endosomes we see in dWD cells results from upregulation of

endocytosis following loss of the ATG16L1 WD domain.

We have dissected the roles played by conventional autophagy

and non-canonical autophagy in vivo by removing the linker and

WD domain from ATG16L1 to prevent conjugation of LC3 to single-

membraned endo-lysosome compartments (Rai et al, 2019). Quanti-

tative analysis of conventional autophagy by fluorescence

microscopy of LC3 puncta (Fig 1B) and Western blot of LC3II

(Fig 1C&D) did not reveal a loss of canonical autophagy in cells

from dWD mice compared to controls. Nevertheless, it is not possi-

ble to exclude the possibility that removal of the WD and linker

domains of ATG16L1 has a minor effect on canonical autophagy

that might affect infection “in vivo”. There are however examples

where the WD domain of ATG16L1 has roles during infection that

are separate from conventional autophagy, and this may be true

also for control of IAV. The WD domain of ATG16L1 maintains

membrane repair during Listeria infection independently of conven-

tional autophagy (Tan et al, 2018). The Salmonella T3SS effector

protein SopF reduces recruitment of LC3 to vacuoles containing S.

Typhimurium by inhibiting the interaction between the WD domain

of ATG16L1 and the vacuolar ATPase recruited to sites of vacuole

damage (Xu et al, 2019). This promotes growth and virulence of S.

Typhimurium, but is independent of FIP200, an essential compo-

nent of conventional autophagy. An alternative approach to study-

ing non-canonical autophagy “in vivo” has been to target pathways

upstream of LC3 conjugation where deletion of Rubicon produces a

selective block in LAP (Martinez et al, 2015; Heckmann et al, 2019).

Rubicon stabilises the PHOX:NOX2 complex (Yang et al, 2009)

allowing reactive oxygen species (ROS) to induce binding of

ATG16L1 to endo-lysosome membranes (Martinez et al, 2015).

Mouse models relying on loss of Rubicon show defects in the clear-

ance of bacterial and fungal pathogens and apoptotic cells (Martinez

et al, 2015; Martinez et al, 2016), but have not yet been studied in

the context of viral infection. Furthermore, disruption of Rubicon

leads to upregulation of IL-1b, IL6 and TNF-a secretion, and the

mice fail to gain weight and develop an autoimmune disease that

resembles systemic lupus erythematosus (Martinez et al, 2016;

Heckmann et al, 2017). This exaggerated inflammation might make

it difficult to predict if any altered responses to infection observed in

Rubicon-/- mice, particularly lung inflammation, resulted directly

from loss of non-canonical autophagy, or from upstream changes in

cytokine regulation caused by loss of Rubicon.

Several non-canonical pathways leading to recruitment of LC3 to

endo-lysosomal compartments, rather than phagosomes, are begin-

ning to emerge. Non-canonical autophagy in microglia facilitates

endocytosis of b-amyloid and TLR receptors to reduce b-amyloid

deposition and inflammation in mouse models of Alzheimer’s

disease (Heckmann et al, 2019). This may involve interaction

between the WD domain and TMEM59 which is required for b-
amyloid glycosylation (Ullrich et al, 2010). Lysosomotropic drugs,

which stimulate direct recruitment of LC3 to endosomes, create pH

and osmotic changes that may mimic the consequences of viral

infections that perturb endosome membranes or deliver viroporins

to endo-lysosome compartments. It will be interesting to see if the

WD and linker domains of ATG16L1 limit infection by other

microbes at epithelial barriers in vivo, particularly infection of the

respiratory tract by SARS-CoV-2. This may be true for picor-

naviruses where LC3 is recruited to enlarged endosomes during

entry of foot-and-mouth disease virus (Berryman et al, 2012) and

following LC3 accumulation on megaphagosomes in pancreatic

acinar cells during coxsackievirus B3 infection (Kemball et al,

2010). In the specific cases of IAV and SARS-CoV-2, non-canonical

autophagy at epithelial barriers is likely important for innate control

of new pathogenic strains, where acquired immunity from previous

infection may be absent or less effective. It will be valuable to assess
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whether human allelic variants of ATG16L1 confer altered resis-

tance/susceptibility to respiratory infections such as IAV and

whether drug-based manipulation of non-canonical autophagy can

increase resistance at the respiratory epithelial barrier.

Materials and Methods

Cell culture and virus

Influenza virus A/HKx31 (X31, H3N2) was propagated in the allan-

toic cavity of 9-day-old embryonated chicken eggs at 35°C for 72 h.

Titres were determined by plaque assay using MDCK cells with an

Avicel overlay.

Mice

All experiments were performed in accordance with UK Home Office

guidelines and under the UK Animals (Scientific procedures)

Act1986.

The generation of dWD mice (Atg16L1dWD/dWD) has been

described previously (Rai et al, 2019) where they are called “E230”

mice to distinguish them from E226 mice described in the same

paper which lack both canonical and conventional autophagy.

Generation of dWDphag and Atg16L1fl/fl-LysMCre mice is described

in detail in Appendix Fig S7. Comparisons were made using age-

and sex-matched littermate control mice for each individual geno-

type. Generation and breeding of mice was approved by the Univer-

sity of East Anglia Animal Welfare and Ethical Review Body and

performed under UK Home Office Project License 70/8232.

Influenza infection studies were performed at the University of

Liverpool, approved by the University of Liverpool Animal Welfare

and Ethical Review Body and performed under UK Home Office

Project License 70/8599. Studies used 2- to 3-month-old male and

female mice that had been back-crossed to C57BL/6J. Mice were

maintained under specific pathogen-free barrier conditions in indi-

vidually ventilated cages (Greenline GM500, Tecniplast) at a

temperature of 22°C (� 2°C), humidity 55% (� 10%), light/dark

cycle 12/12 h (7 am to 7 pm), food CRM(P) and RO or filtered

water ad lib. Colonies were screened using the Charles River

surveillance plus PRIA health screening profile every 3 months to

ensure SPF status.

For IAV infection, animals were randomly assigned into multiple

cohorts, anaesthetised lightly by the i.m. route with 150 mg/kg

ketamine (Ketavet, Zoetis UK Ltd) and separate cohorts inoculated

intranasally with 103 PFU IAV strain X31 in 50 µl sterile PBS. Mice

were infected between 9 and 11 AM. Animals were sacrificed at

variable time points after infection by cervical dislocation. Tissues

were removed immediately for downstream processing. Sample

sizes of n = 6 were used as determined using power calculations

and previous experience of experimental infection with these

viruses. For survival analysis, a humane endpoint was determined

using a scoring matrix that included excessive (>20%) weight loss.

To specifically deplete plasmacytoid dendritic cells (pDCs), mice

were treated with anti-PDCA-1 (Cambridge Bioscience) or IgG2b

isotype-matched control, using a dose of 500 mg per 200 ml via the

i.p. route on day 1 of infection with IAV and every 48 h thereafter

(Davidson et al, 2014).

Generation and analysis of radiation chimaeras

The general strategy is shown in Fig EV3. Mice were subjected to

whole body irradiation with 11 Gy in two doses 4 h apart using a
137Cs source in a rotating closed chamber. Bone marrow was

collected from male wild-type C57BL/6-Ly5.1 (B6.SJL-PtprcaPepcb/

BoyCrl; Atg16L1+/+) mice that are congenic for the CD45.1 allele or

from dWD mice (that are congenic for CD45.2). The C57BL/6

CD45.1 marrows were used to enable confirmation of chimaerism

by FACS analysis of bone marrow-derived cells as littermate control

and dWD mice are CD45.2 (Fig EV3B). The femur and tibia of the

donor mouse was collected and sterilised for 2 min in 70% ethanol.

The ends of the bones were removed, and PBS was used to flush

out the bone marrow through a 40 lm cell sieve. Red blood cell

lysis was performed using 0.83% ammonium chloride, and the cells

were washed twice in PBS and resuspended at a concentration of

107 cells/ml. T-cell depletion was performed prior to transfusion by

using a commercial mouse hematopoietic progenitor cell isolation

kit (EasySep, STEMCELLTM Technologies, #19856).

After depletion, 106 donor bone marrow cells were injected into

each irradiated mouse by tail vein injection 3 h following irradia-

tion. Mice were then allowed to recover for 12 weeks with daily

monitoring of mouse weights and general condition for at least the

first two weeks to monitor for any severe radiation sickness or

illness due to being immunocompromised.

For chimaerism analysis, approximately 106 spleen cells were

analysed by flow cytometry using fluorochrome-conjugated mono-

clonal antibodies specific for CD45.1 (clone A20 eBioscience) and

CD45.2 (clone 104 eBioscience). As shown in Fig EV3B, in the

groups where CD45.1 marrow was transplanted, all mice

were > 95% chimaeric.

Flow cytometric analysis of cells

Bronchoalveolar lavage (BAL) fluid was obtained by lavage of mice

via the trachea using 1 ml ice-cold RPMI containing 5% FCS. For

lung tissue, single-cell suspensions were made from minced lung

and subjected to collagenase and DNase I digestion and then treated

with ACK buffer to remove red blood cells. In both cases, approxi-

mately 106 cells were incubated in 100 µl of Fc block (clone 2.4G2,

BD Biosciences) diluted in PBS, 2% FCS (PBS-FCS) for 15 min at

4°C prior to the addition of fluorochrome-conjugated monoclonal

antibodies and incubation for 30 min at 4°C in the dark. Cells were

then washed in PBS-FCS, fixed in 4% paraformaldehyde in PBS for

15 min at 20°C prior to analysis on a MACSQuant Analyzer 10 (Mil-

tenyi Biotec UK). Data were analysed using FlowJo (FlowJo, LLC).

Antibodies used included CD45, Ly6G, CD11c, CD11b and F4/80 (all

eBioscience). Neutrophil populations in BAL were identified as

CD45+, CD11c-, CD11b+ and Ly6G+. Macrophage/monocyte popula-

tions in lung tissue were identified as CD45+, CD11c-, CD11b+ and

F4/80+.

Histology, immunohistochemistry

Tissues were fixed in 4% buffered paraformaldehyde (PFA; pH7.4)

for 24 h and routinely paraffin wax embedded. Consecutive sections

(3-5 µm) were either stained with haematoxylin and eosin (HE) or

used for immunohistochemistry (IH).
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IH was performed to detect influenza antigens and to identify

neutrophils and neutrophil extracellular traps (NETs) and macro-

phages using the horseradish peroxidase (HRP) and the avidin–

biotin complex (ABC) method. The following primary antibodies

were applied: goat anti-IAV (Meridian Life Sciences Inc., B65141G),

rat anti-mouse Ly6G (clone 1A8, BioLegend; neutrophil marker),

rabbit anti-Iba-1 (antigen: AIF1; Wako Chemicals; microglia/ma-

crophage specific marker) and rabbit anti-histone H3 (citrulline

R2 + R8 + R17; Abcam; NET marker). Briefly, after deparaffiniza-

tion, sections underwent antigen retrieval in citrate buffer (pH 6.0,

20 min at 98°C) followed by blocking of endogenous peroxidase

(peroxidase block, S2023, Dako) for 10 min at room temperature

(RT). Slides were then incubated with the primary antibodies (di-

luted in dilution buffer, Dako) for a) Iba-1 (60 min at RT), followed

by a 30 min incubation at room temperature with the secondary

antibody (Envision mouse and rabbit, respectively, Dako) in an

autostainer (Dako), and b) Ly6G (60 min at RT), followed by rabbit

anti-rat IgG and the ABC kit (both 30 min at RT; Ventana). Staining

for histone H3 was undertaken with an autostainer (Discovery XT,

Ventana), using citrate buffer, dilution buffer and detection kits

provided by the manufacturer. The antibody reaction was visualised

with 3,3’-diaminobenzidine, and sections were counterstained with

haematoxylin.

Statistical analysis

Data were analysed using the Prism package (version 5.04

GraphPad Software). P values were set at 95% confidence interval.

A repeated-measures two-way ANOVA (Bonferroni post-test) was

used for time-courses of weight loss; two-way ANOVA (Bonferroni

post-test) was used for other time-courses; log-rank (Mantel–Cox)

test was used for survival curves; one-way ANOVA (Tukey’s post

hoc) was used to compare three or more groups side-by-side;

Mann–Whitney U-test was used to compare two groups. Numbers

of replicates are shown in the individual figure legends. All dif-

ferences not specifically stated to be significant were not significant

(P > 0.05). For all figures, *P < 0.05, **P < 0.01, ***P < 0.001, and

****P < 0.0001.

Primary cell culture

Mouse embryonic fibroblasts (MEFs) were generated by serial

passage of cells taken from mice at embryonic day 13.5 and cultured

in DMEM (Thermo Fisher Scientific, 11570586) with 10% FCS. Bone

marrow-derived macrophages (BMDMs) were generated from femur

and tibia flushed with RPMI-1640 (Sigma, R8758). Macrophages

were generated from adherent cells in RPMI-1640 containing 10%

FCS and M-CSF (Peprotech, 315-02) (30 ng/ml) for 6 d. Macrophage

populations were quantified by FACS using antibodies against

CD16/CD32, F4/80 and CD11b (BioLegend, 101320, 123107).

Precision-cut lung slices

Infection of ex vivo lung slices was used to examine the responses of

lungs without any contribution from recruited leucocytes, which

could not be present. Mouse lungs were inflated with 2% low melt-

ing point agarose in HBSS and then sliced into 300 µm sections

using a vibrating microtome. They were then cultured overnight in

DMEM/F12 medium (Thermo Fisher 21331020) prior to infection

with IAV.

IAV binding and endocytosis assay

IAV X31 was labelled with Alexa Fluor 488 (Thermo Fisher Scien-

tific) as described (Hoffmann et al, 2018). IAV entry assays were

performed as previously described (Banerjee et al, 2013; Banerjee

et al, 2014; Miyake et al, 2019). Sub-confluent monolayers of MEFs

cultured on optical 96-well plates (Greiner 655090) in DMEM 10%

FBS were incubated with the labelled virus on ice for 1 h in infec-

tion medium (DMEM, 50 mM HEPES pH 6.8, 0.2% BSA) and

warmed for 0 (for binding experiments) 15 and 30 min at 37°C by

addition of warmed infection medium and transfer of the plates to

37°C, followed by fixation with 4% paraformaldehyde in PBS. Fixed

cells were blocked for 1 h with 1% BSA in PBS before incubation

with a mouse anti-haemagglutinin monoclonal antibody (H3SKE)

for 1h at RT, followed by a 30-min incubation with a second goat

anti-mouse-Alexa Fluor 594 antibody (Thermo Fisher Scientific,

A11005), together with Hoechst 33342 (Thermo Fisher Scientific)

and Wheat Germ agglutinin labelled with Alexa Fluor 647 (WGA-

AF647, Thermo Fisher Scientific, W32466). Image acquisition was

performed with a Yokogawa CQ1 spinning disc confocal micro-

scope, using a 40x air objective with an NA of 0.95, in 4-channel

mode. Image analysis was performed using the Cell Path Finder

version 3.04.03.02 (Yokogawa Electric Corporation). Briefly, images

were subjected to segmentation analysis, wherein overlap between

red (H3SKE/goat anti-mouse-AF594) and green (X31-AF488) signals

was quantified within the boundaries of a segmented cell outline

generated by the same programme, thus allowing the quantification

of endocytosed virus per cell. Signals colocalising with the nucleus

(Hoechst) were omitted. Double-labelled virus particles (Green-Red)

represent non-endocytosed particles bound at the cell surface,

whereas green particles represent endocytosed particles. Within

cell outlines, the number of green (endocytosed) particles normal-

ised against the total number of particles (surface-bound and

endocytosed, Green-Red + Green) gives the fraction of endocytosed

particles.

IAV endosome fusion assessed in cell populations by FACS

The envelope of purified IAV (0.1 mg protein mL-1) was labelled

using an ethanol solution containing 33 µM 3,3’-dioctadecyloxacar-

bocyanine (DIOC18) and 67 µM octadecyl rhodamine B (R18).

Aggregated virus was removed by a 0.22 µm filter (Millipore). Sub-

confluent monolayers of MEFs cultured in DMEM (50 mM HEPES,

0.2% BSA) were incubated with the labelled virus at 40°C for

45 min and warmed to 37°C for increasing times. Cells were

harvested by trypsinisation and fixed in 4% PFA for 20 min. Cell

pellets (2500 rpm, 4 min) were resuspended in 100 µL FACS buffer

(1xPBS 1%BSA) and analysed by FACs using a NovoCyte Flow

cytometer FlowJo software. pH independent fusion was assessed by

adding bafilomycin A1 to the infection assay.

IAV fusion assessed in single cells by microscopy

X31/R18 double-labelled X31 was prepared as herein described. For

the fusion experiment, MEF cells were incubated in binding media
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for 1h on ice and then warmed for 1h at 37°C by addition of warm

binding media and transfer of the plates to 37°C, followed by fixa-

tion with 4% paraformaldehyde in PBS. The cells were then labelled

with Hoechst and WGA-AF647 as herein described. Image acquisi-

tion was performed with a Yokogawa CQ1 spinning disc confocal

microscope, using a 40x air objective with an NA of 0.95, in 4-chan-

nel mode. Image analysis was performed using the Cell Path Finder

version 3.04.03.02 (Yokogawa Electric Corporation).

IAV acid bypass assay

Sub-confluent monolayers of MEFs cultured on optical 96-well

plates (Greiner 655090) in DMEM 10% FBS were incubated with

IAV X31 on ice for 1 h in infection medium (DMEM, 50 mM HEPES

pH 6.8, 0.2% BSA) and warmed for 2 min at 37°C by addition of

warm medium (pH 6.8) or warm medium adjusted to low pH (pH

5.0) by citrate buffer, on a metal block immersed in a 37°C water

bath. Another warm metal block was placed on top of the plate. The

medium was replaced with STOP medium (DMEM, 50mM HEPES

pH7.4, 20 mM NH4Cl) to block viral entry through the endocytic

route, and the plate was transferred to 37°C and incubated for 18 h,

fixed with 4% paraformaldehyde in PBS. Fixed cells were blocked

for 1 h with 1% BSA in PBS before incubation with a mouse anti-

nucleoprotein monoclonal antibody (HB-65, ATCC) for 1h at RT,

followed by a 30-min incubation with a second goat anti-mouse-

Alexa Fluor 647 antibody (Invitrogen, A21235), together with

Hoechst 33342 (Thermo Fisher Scientific). Image acquisition was

performed with a Yokogawa CQ1 spinning disc confocal micro-

scope, using a 10x air objective with an NA of 0.40, in 2-channel

mode. Image analysis was performed using the Cell Path Finder

version 3.04.03.02 (Yokogawa Electric Corporation).

Image acquisition by spinning disc confocal microscopy

Image acquisition was performed with a Yokogawa CQ1 spinning

disc confocal microscope, using a 10x air objective with an NA of

0.40, or a 40x air objective with an NA of 0.95. Imaging was

performed with up to four excitation laser lines (405/488/561/

640nms) with spinning disc confocal. For 10x objective, images were

acquired with 5 z-stacks to cover 40 µm; for 40x objective, images

were acquired with 20 z-stacks to cover 30 µm. Maximum intensity

projected images were used for image analysis using the Cell Path

Finder version 3.04.03.02 (Yokogawa Electric Corporation).

Autophagy and non-canonical autophagy

Autophagy was activated by incubating MEF cells in Hanks

balanced salt solution (HBSS) (Thermo Fisher, 11550456) for 2 h at

37°C. Non-canonical autophagy was stimulated in MEFs

with monensin (Sigma-Aldrich, M5273) or chloroquine (Sigma-

Aldrich, C6628) with a final concentration of 100 µM for 2 h.

Numbers of fluorescent LC3 puncta were quantified by fluorescence

microscopy using spot function software (IMARIS package

[BITPLANE sScientific Software]) to locate puncta ranging from 0.5–

1.0 lm diameter. LC3 vacuoles were identified by eye as rings of

fluorescence ranging between 2 and 8 lm diameter. Non-canonical

autophagy/LAP was assessed in BMDMs by incubation with

Zymosan A (Alexa Fluor 594-labelled; Thermo Fisher Z23374).

Phagosomes containing Zymosan were observed by eye using

immunofluorescence microscopy. Line profile analysis was applied

across the centre of the phagosome using ImageJ. The extent of

recruitment of LC3 to the phagosome was calculated by subtracting

the LC3 pixel intensity at the centre of the phagosome from intensity

observed at the perimeter. Conjugation of LC3 to PE was also

assessed by Western blot from the ratio of LC3II.

qPCR for cytokine transcription

Lung lobes were snap-frozen and homogenised using a TissueLyser

(Qiagen). Tissue culture cells were washed twice using PBS. Total

RNA was extracted by TRIzol–chloroform (Thermo Fisher 15596018)

and purified by RNeasy MinElute Cleanup Kit (Qiagen 74204). RNA

was analysed by qPCR using SYBR Green/7500 (Thermo Fisher

S7563) Standard Real-Time PCR System (Applied Biosystems, Grand

Island, NY) and primer sets as detailed in Table S1. Relative amounts

of mRNA expression were normalised to 18S rRNA (Table 1).

Western blotting

Cells were lysed using M-PER reagent (Thermo Fisher 78501) with

complete protease inhibitor cocktail (Sigma, 04693159001) and clar-

ified by centrifugation. Extracted proteins (20 µg) were separated on

a precast 4–12% gradient SDS–PAGE gels (Expedeon, NBT41212),

transferred to immobilon PVDF (Millipore, IPFL00010) and probed

using antibodies for ATG16L1 (MBL M150-3), LC3A/B (Cell Signal-

ing 41085) and actin (Sigma, A5441). Primary antibodies were

detected using IRDye-labelled secondary antibodies (LI-COR bios-

ciences, 926-32211, 926-68020) and visualised by Odyssey infrared

system (LI-COR).

Fluorescence imaging

Cells were fixed in ice-cold methanol, and non-specific binding was

blocked using 5% goat serum plus 0.3% Triton X-100 in PBS

followed by incubating with anti LC3A/B (Cell Signaling 4108) or

anti-ATG16L1 (MBL M150-3). Cells were washed and then incu-

bated with anti-rabbit-Alexa 488 (Thermo Fisher 10729174). After

washing, cells were counterstained with 4’, 6 diamidino-2-phenylin-

dole (DAPI) (Thermo Fisher Scientific, 10116287) and mounted with

Fluoromount-G (Cambridge Bioscience). Cells were imaged on a

Zeiss Imager M2 Apotome microscope with a 63x, 1.4 NA oil-

immersion objective.

Table 1. Primer sequences for mRNAs analysed by RT–qPCR

Target Catalogue numbera

ISG15 QT00322749

IFIT1 QT01161286

IL-1b QT01048355

TNF-a QT00104006

CXCL1 QT00115647

CCL2/MCP-1 QT00167832

18S ribosomal RNA QT02448075

aCatalogue numbers refer to validated QuantiTect primer sets (Qiagen).
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Expanded View for this article is available online.
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