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Sciences, Smętna 12, 31-343 Kraków, Poland; danek@if-pan.krakow.pl (P.J.D.); kuban@if-pan.krakow.pl (W.K.)
* Correspondence: nfdaniel@cyf-kr.edu.pl; Tel.: +48-12-6623266; Fax: +48-12-6374500

Abstract: In order to achieve a desired therapeutic effect in schizophrenia patients and to maintain
their mental wellbeing, pharmacological therapy needs to be continued for a long time, usually
from the onset of symptoms and for the rest of the patients’ lives. The aim of our present research
is to find out the in vivo effect of chronic treatment with atypical neuroleptic iloperidone on the
expression and activity of cytochrome P450 (CYP) in rat liver. Male Wistar rats received a once-daily
intraperitoneal injection of iloperidone (1 mg/kg) for a period of two weeks. Twenty-four hours after
the last dose, livers were excised to study cytochrome P450 expression (mRNA and protein) and
activity, pituitaries were isolated to determine growth hormone-releasing hormone (GHRH), and
blood was collected for measuring serum concentrations of hormones and interleukin. The results
showed a broad spectrum of changes in the expression and activity of liver CYP enzymes, which
are important for drug metabolism (CYP1A, CYP2B, CYP2C, and CYP3A) and xenobiotic toxicity
(CYP2E1). Iloperidone decreased the expression and activity of CYP1A2, CP2B1/2, CYP2C11, and
CYP3A1/2 enzymes but increased that of CYP2E1. The CYP2C6 enzyme remained unchanged. At
the same time, the level of GHRH, GH, and corticosterone decreased while that of T3 increased,
with no changes in IL-2 and IL-6. The presented results indicate neuroendocrine regulation of
the investigated CYP enzymes during chronic iloperidone treatment and suggest a possibility of
pharmacokinetic/metabolic interactions produced by the neuroleptic during prolonged combined
treatment with drugs that are substrates of iloperidone-affected CYP enzymes.

Keywords: iloperidone; prolonged administration; rat liver; cytochrome P450 expression/activity;
hormone levels; neuroendocrine regulation

1. Introduction

Cytochrome P450 enzymes (CYPs) are a large class of heme-containing monooxygenases
that catalyze NADPH-dependent C-, N-, and S-oxidation and O-, N-, and S-dealkylation of
substrates. CYP enzymes are responsible for the metabolism of endogenous substrates,
such as hormones, vitamins, arachidonic acid, bile acid, or steroids including neurosteroids,
and for catalyzing the oxidation of exogenous substrates, such as xenobiotics and drugs of
different pharmacological groups, including psychotropics [1,2].

Iloperidone is an atypical neuroleptic drug approved for the treatment of acute
schizophrenia in adult patients [3]. Iloperidone, like other atypical neuroleptics, dis-
plays high and strong antagonistic activity and higher affinity for serotonin 5-HT2A than
dopamine D2 receptors [4]. It also has a high affinity for α1 and α2 adrenoreceptors and
for dopamine D3 receptors; moderate affinity for dopamine D4, and serotonin 5-HT6 and
5-HT7; low affinity for serotonin 5-HT1A, dopamine D1, and histamine H1 receptors; and
no affinity for cholinergic muscarinic receptors [5–7]. The drug is metabolized mainly by
CYP2D6 (via carbonyl reduction and hydroxylation) and to a lesser degree by CYP3A4 (via
O-demethylation) [3]. Compared with other typical neuroleptics, iloperidone is associated
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with a low incidence of akathisia and extrapyramidal symptoms [8] and a low propensity
to elevate prolactin levels or to change metabolic parameters [9].

The physiological and pharmacological regulation of cytochrome P450 activity in
the liver may proceed via different direct and indirect pathways. The direct mechanisms
include drug binding to the enzyme, which can lead to the inhibition of enzyme activity
via a competitive, noncompetitive, or mixed mechanism [10,11]. On the other hand, the
indirect regulation of enzyme activity may involve both peripheral (e.g., drug binding to
the hepatic membrane, and cytosolic or nuclear receptors) and central mechanisms. The
central mechanisms engage the brain’s nervous and endocrine systems, thus leading to
the neuroendocrine regulation of CYP gene expression. This kind of mechanism has been
shown to involve the brain’s dopaminergic, noradrenergic, and serotonergic systems in
combination with the hypothalamic endocrine center [12–15].

Considering the abovementioned possibilities of drug influence on cytochrome P450,
in vitro models may be used to examine the direct and indirect peripheral mechanisms
taking place in the liver (e.g., liver slices, hepatocyte cultures, liver microsomes, or cDNA-
expressed CYPs). However, studying the drug effects on CYP regulation in the liver
mediated by central mechanisms requires in vivo models, whereby the brain’s nervous
system (via its receptors located on hypothalamic endocrine cells) can act on peripheral
endocrine glands and, in turn, on liver function [15–17].

To produce and maintain the therapeutic effect in schizophrenia, neuroleptic drugs
have to be administered to patients for a long period of time (months or years). It creates
the possibility for different kinds of interactions (direct and indirect) of the applied drugs
with receptors, enzymes, or genes encoding those biologically active proteins. Thus,
drugs acting on the central nervous system should be investigated both in vitro and
in vivo to discover all possibilities of their interaction with cytochrome P450. Our previous
studies showed that iloperidone directly inhibited CYP2C19, CYP2D6, and CYP3A4 in
liver microsomes via mixed, competitive, or noncompetitive mechanisms, respectively [18],
and diminished the CYP3A4 expression in hepatocyte cultures [19]. The aim of our present
research was to find out the in vivo effect of a two-week treatment with iloperidone on the
expression and activity of liver cytochrome P450 enzymes, which are known to undergo
neuroendocrine regulation.

2. Results
2.1. The Effect of Chronic Treatment with Iloperidone on the CYP Activity in Rat Liver Microsomes

The administration of iloperidone to rats for two weeks decreased the activity of
CYP1A, i.e., C-8-hydroxylation and 3-N-demethylation, down to 68% and 71% of the
control, respectively. Iloperidone diminished the activity of CYP2B (testosterone 16β-
hydroxylation) down to 67% of the control; that of CYP2C11 (testosterone 2α- and 16α-
hydroxylation) to 69% and 67% of the control, respectively; and that of CYP3A (testos-
terone 2β- and 6β-hydroxylation) to 83% and 71% of the control, respectively. In contrast,
prolonged treatment of animals with iloperidone increased the activity of CYP2E1 (chlor-
zoxazone 6-hydroxylation) up to 115% of the control.

The activities of CYP2C6 (warfarin 7-hydroxylation) and CYP2A (testosterone 7α-
hydroxylation) were not significantly affected by iloperidone (Figure 1).
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Figure 1. The effect of two-week treatment with iloperidone on cytochrome P450 enzyme activities, measured as the rates 
of CYP-specific reactions in rat liver microsomes: caffeine 8-hydroxylation and 3-N-demethylation (CYP1A); testosterone 
7α- (CYP2A), 16β- (CYP2B), 2α-, and 16α- (CYP2C11); 2β- and 6β- (CYP3A) hydroxylation; warfarin 7-hydroxylation 
(CYP2C6); and chlorzoxazone 6-hydroxylation (CYP2E1). All values are shown as the mean ± S.E.M. (n = 12). Statistical 
significance was assessed by Student’s t-test and marked as * p < 0.05; ** p < 0.01, compared with the control. The control 
values (picomoles per milligram protein per minute) are as follows: 11.28 ± 3.07 (8-hydroxy-caffeine); 1.74 ± 0.6 (3-N-
demethyl-caffeine); 134 ± 35, 130 ± 36.5, 767.8 ± 281.1, 910 ± 372.7, 33.9 ± 7.5, and 658.4 ± 164.6 (7α-, 16β-, 2α-, 16α-, 2β-, and 
6β-hydroxy-testosterone, respectively); 4.86 ± 1.28 (7-hydroxy-warfarin); and 3.22 ± 0.34 (nmol/mg protein/min, 6-hy-
droxy-chlorzoxazone). 

2.2. The Influence of Two-Week Treatment with Iloperidone on the CYP Protein Level in Rat 
Liver Microsomes 

CYP enzymes that are important for drug metabolism, and for which significant ac-
tivity changes were detected, were then chosen for expression measurements at the 
mRNA and protein levels. The observed changes in CYP protein levels corresponded well 
with the alteration in CYP activities. The CYP1A protein level fell down to about 75% of 
the control. The levels of CYP2B1 and CYP2B2 proteins were reduced by the neuroleptic 
to 72% and 79% of the control, respectively. Iloperidone significantly decreased the 
CYP2C11 protein to 78% of the control. The CYP3A1 and CYP3A2 protein levels were 
lowered by iloperidone to 58% and 75% of the control. On the other hand, the neuroleptic 
increased the CYP2E1 protein level up to 145% of the control (Figure 2). 

Figure 1. The effect of two-week treatment with iloperidone on cytochrome P450 enzyme activities, measured as the rates
of CYP-specific reactions in rat liver microsomes: caffeine 8-hydroxylation and 3-N-demethylation (CYP1A); testosterone
7α- (CYP2A), 16β- (CYP2B), 2α-, and 16α- (CYP2C11); 2β- and 6β- (CYP3A) hydroxylation; warfarin 7-hydroxylation
(CYP2C6); and chlorzoxazone 6-hydroxylation (CYP2E1). All values are shown as the mean ± S.E.M. (n = 12). Statistical
significance was assessed by Student’s t-test and marked as * p < 0.05; ** p < 0.01, compared with the control. The control
values (picomoles per milligram protein per minute) are as follows: 11.28 ± 3.07 (8-hydroxy-caffeine); 1.74 ± 0.6 (3-N-
demethyl-caffeine); 134 ± 35, 130 ± 36.5, 767.8 ± 281.1, 910 ± 372.7, 33.9 ± 7.5, and 658.4 ± 164.6 (7α-, 16β-, 2α-, 16α-,
2β-, and 6β-hydroxy-testosterone, respectively); 4.86 ± 1.28 (7-hydroxy-warfarin); and 3.22 ± 0.34 (nmol/mg protein/min,
6-hydroxy-chlorzoxazone).

2.2. The Influence of Two-Week Treatment with Iloperidone on the CYP Protein Level in Rat
Liver Microsomes

CYP enzymes that are important for drug metabolism, and for which significant
activity changes were detected, were then chosen for expression measurements at the
mRNA and protein levels. The observed changes in CYP protein levels corresponded well
with the alteration in CYP activities. The CYP1A protein level fell down to about 75% of
the control. The levels of CYP2B1 and CYP2B2 proteins were reduced by the neuroleptic to
72% and 79% of the control, respectively. Iloperidone significantly decreased the CYP2C11
protein to 78% of the control. The CYP3A1 and CYP3A2 protein levels were lowered by
iloperidone to 58% and 75% of the control. On the other hand, the neuroleptic increased
the CYP2E1 protein level up to 145% of the control (Figure 2).

2.3. The Effect of Iloperidone Treatment on the mRNA Level of CYP Enzymes in the Liver

In parallel with the changes in activity and protein levels, the investigated neuroleptic
produced a significant decrease in the mRNA level of the CYP1A2 gene down to 77%
of the control. Iloperidone reduced the CYP2B1 and CYP2B2 mRNA levels to 77% and
74% of the control. The level of CYP2C11 mRNA was diminished to 77% of the control
after iloperidone treatment. The CYP3A1 and CYP3A2 mRNA levels were reduced by the
investigated drug to 68% and 82% of the control, respectively. The examined drug did
not produce any significant changes in the CYP1A1 mRNA levels. On the other hand, the
neuroleptic increased the CYP2E1 mRNA level to 138% of the control (Figure 3).
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analysis. The results are presented as representative blots from six (for the control and for iloperidone treatment) separate 
rats per treatment. The data are expressed as the mean ± S.E.M. (n = 12). Statistical significance was assessed by Student’s 
t-test and marked as * p < 0.05, ** p < 0.01, **** p < 0.0001, compared with the control. 
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Figure 2. The effect of two-week treatment with iloperidone on the protein levels of CYP1A, CYP2B, CYP2C11, CYP3A, and
CYP2E1 enzymes in rat liver microsomes. Microsomal proteins (10 µg) were subjected to the Western immunoblot analysis.
The results are presented as representative blots from six (for the control and for iloperidone treatment) separate rats per
treatment. The data are expressed as the mean ± S.E.M. (n = 12). Statistical significance was assessed by Student’s t-test and
marked as * p < 0.05, ** p < 0.01, **** p < 0.0001, compared with the control.
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revealed a significant decrease in the serum concentration of corticosterone and growth 
hormone (to 84% and 90% of the control, respectively) and an increase in the thyroid hor-
mone triiodothyronine (T3) (to 111% of the control). The concentration of thyroxine (T4) 
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Figure 3. The effect of two-week treatment with iloperidone on the mRNA levels of CYP1A, CYP2B, CYP2C11, CYP3A, and
CYP2E1 genes in the liver. The results are expressed as the fold-change in relation to the ACTB housekeeping gene. All the
values are the mean fold-change calculated by the comparative delta-delta Ct method for the control and iloperidone-treated
rats. All values are the means ± S.E.M. (n = 10). The significance of differences between the results was calculated using
Student’s t-test. Statistical significance is shown as * p < 0.05 vs. control group.
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2.4. The Effect of Two-Week Treatment with Iloperidone on the Pituitary GHRH and Serum
Concentrations of Hormones and Cytokines

The level of growth hormone-releasing hormone (GHRH) in the pituitary gland
decreased to 76% of the control after chronic treatment with iloperidone. The ELISA test
revealed a significant decrease in the serum concentration of corticosterone and growth
hormone (to 84% and 90% of the control, respectively) and an increase in the thyroid
hormone triiodothyronine (T3) (to 111% of the control). The concentration of thyroxine
(T4) was not significantly changed by iloperidone treatment (Figure 4). No changes in the
serum concentration of the investigated interleukins (IL-2 and IL-6) were observed after
chronic iloperidone treatment (Figure 4).
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Figure 4. The effect of two-week treatment with iloperidone on the levels of pituitary and serum hormones and serum
cytokine concentrations. All the values are the mean ± S.E.M. of the control (n = 12) and iloperidone-treated (n = 12) group.
Statistical significance was assessed by Student’s t-test and is shown as * p < 0.05 or *** p < 0.001 compared with the control.
The absolute control values were 34.14 ± 4.02 ng/mg for pituitary growth hormone-releasing hormone (GHRH) and
6.3 ± 0.16 ng/mL, 18.19 ± 2.91 ng/mL, 1.12 ± 0.054 ng/mL, 3.03 ± 1.18 ng/mL, 66.06 ± 8.39 ng/mL, and 1.1 ± 0.15 ng/mL
for serum growth hormone (GH), corticosterone (CRT), triiodothyronine (T3), thyroxine (T4), interleukin-2 (IL-2), and
interleukin-6 (IL-6), respectively.

3. Discussion

To achieve a desired therapeutic effect in schizophrenia patients and to maintain
their mental wellbeing, pharmacological therapy needs to be continued for a long time,
usually from the onset of symptoms and for the rest of the patient’s lives. Such a long
therapy, which is often prescribed in combination with different drugs, may influence
the expression of biologically active proteins including drug metabolizing enzymes and
may lead to metabolic interactions. This work is the first report showing changes in the
expression and activity of cytochrome P450, the main enzyme responsible for oxidative
drug metabolism, which are produced by chronic treatment with pharmacological doses of
the novel atypical neuroleptic iloperidone.

The results show a broad spectrum of changes in liver CYP enzymes, which are
important for the metabolism of drugs (CYP1A, CYP2B, CYP2C, and CYP3A) and small
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toxic xenobiotics (CYP2E1). It is worth noting that the observed decreases in the CYP
enzyme activities correlate well with simultaneous lowering in the enzyme protein and
mRNA levels, which points to the inhibition of the transcription of genes coding for
those CYP proteins (i.e., CYP1A2, CYP2B1, CYP2B2, CYP2C11, CYP3A1, and CYP3A2).
Interestingly, the decreases in the expression and activity of the abovementioned CYP
genes were accompanied with parallel changes in CYP-regulating hormone levels.

The diminished levels of pituitary growth hormone-releasing hormone (GHRH)
and serum growth hormone (GH) correlated positively with the decreased expression
of CYP2C11 and CYP3A1/2 in the rat livers. GH produced by the pituitary and acting via
its hepatic membrane receptor (GHR) is the main positive regulator of CYP2C11 expression
and plays an important role in the upregulation of CYP3A genes [20,21]. The diminished
concentration in serum corticosterone, a positive regulator of the CYP1A, CYP2B, and
CYP3A genes acting via its nuclear receptor (GR) [22–26], also positively correlated with
the observed reduction in the expression of those genes in the iloperidone-treated rats. On
the other hand, an increase in the serum concentration of thyroid hormone T3, which is
known to negatively influence the cytochrome P450 expression via its nuclear receptor
(THR) [27–29], negatively correlated with the decreased expression of the CYP1A, CYP2B,
CYP2C, and CYP3A enzymes found after prolonged administration of iloperidone. Our
results are in line with the known molecular mechanisms of cytochrome P450 regulation
by the cytosolic aryl hydrocarbon receptor (AHR) or the nuclear receptors: pregnane X
receptor (PXR), constitutive androstane receptor (CAR), and retinoic X receptor (RXR).
GR receptors contribute to the regulation of CYP3A, CYP2B, and CYP2C genes through a
direct or an indirect molecular mechanism, including a functional cross-talk among GR,
PXR, CAR, and RXR. The expressions of PXR, CAR, and RXR are activated by glucocorti-
coids and xenobiotics [25,30–32]. AhR, which is primarily responsible for the regulation
of CYP1A enzymes, is also modulated by physiological levels of glucocorticoids and sex
hormones [23]. Natural steroids, such as androgens or pregnanes, which are ligands for
the nuclear receptors PXR and/or CAR, can directly affect CYP2B, CYP2C, or CYP3A ex-
pression in the liver [33]. Therefore, it seems that iloperidone indirectly affects cytochrome
P450 via a decrease in corticosterone concentration and, in turn, decreased activation of GR,
though a direct action on one of the abovementioned nuclear receptors cannot be excluded.
It is worth noting that the serum concentrations of interleukins, which downregulate CYP
enzymes (IL-2 and IL-6), were not changed by iloperidone. The activity of CYP2C6 enzyme,
which is less vulnerable to hormonal changes, was not affected by iloperidone treatment.

In contrast with the above-discussed decreases in the expression and activity of the
CYP1A, CYP2B, CYP2C11, and CYP3A enzymes, the expression and activity of the CYP2E1
enzyme was increased by chronic iloperidone treatment. The CYP2E1 enzyme is less
engaged in drug metabolism compared with other members of CYP2 family and is involved
only in the biotransformation of a few drugs (chlorzoxazone, acetaminophen, isoniazid,
lidocaine, coumarin derivatives, and gaseous anesthetics). However, it is important for
the metabolism of small-molecular hydrophobic compounds, such as acetone or alcohol,
and catalyzes the oxidation of procarcinogens (vinyl chloride or bromide, dimethyl- or
diethyl-nitrosamine, acrylonitrile, urethane, styrene, benzene, CCL4, chloroform, and
trichloroethylene) [34]. Therefore, the induction of CYP2E1 is not desirable for maintaining
the correct (safe) rate of biochemical processes in the organism [35,36]. Alcohol, acetone,
and long starvation induce the enzyme, and iloperidone seems to have a similar property,
though its effect on the enzyme activity is less potent. CYP2E1 is known to be induced
at different levels, i.e., at the transcriptional, posttranscriptional, and posttranslational
levels [37–41]. In the case of the investigated neuroleptic, regulation at the transcriptional
level occurs, as the drug increases the CYP2E1 mRNA, CYP2E1 protein, and enzyme activity
with good positive correlation. The observed increase in CYP2E1 expression and activity
may be connected (at least partially) with iloperidone-evoked inhibition of the GHRH-GH
hormonal axis and increased T3 serum concentration. It has been demonstrated in different
animal models that CYP2E1 is negatively regulated by GH [42–48] but positively by T3 [49].
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Since the CYP2E1 enzyme is well conserved among species, its regulation may be similar
in rats and humans. Thus, further studies in this direction concerning human CYP2E1 in
relation to different iloperidone doses are advisable to find out whether the drug is capable
of enhancing the enzyme activity in the human liver.

Considering our previous results obtained using in vitro models and the present re-
sults obtained in vivo after chronic treatment with iloperidone, it can be concluded that the
neuroleptic can affect liver cytochrome P450 via different direct and indirect mechanisms
operating at the level of the liver and the whole organism, which involve (1) direct inhi-
bition by binding to the enzyme via mixed, competitive, or noncompetitive mechanism,
as shown for CYP2C19, CYP2D6, and CYP3A4, respectively, in liver microsomes [18];
(2) reduction in enzyme expression and activity at the level of hepatocyte, as shown for
CYP3A4 in cell culture [19]; and (3) neuroendocrine regulation, as shown in the present
in vivo study for many CYP enzymes after chronic treatment with iloperidone (Figure 5).
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Figure 5. The effect of iloperidone on liver cytochrome P450 shown in different experimental models. The engagement of
direct and indirect mechanisms in the interaction between the neuroleptic and CYP enzymes.

The observed inhibitory effect of iloperidone on the CYP1A, CYP2B, CYP2C, CYP2D,
and CYP3A subfamilies may lead to pharmacokinetic (metabolic) interactions with co-
administered drugs. Considering the similarities in regulation, amino acid sequence
homology, and function between the tested rat CYPs and respective human CYPs, pharma-
cokinetic interactions with CYP-metabolized substrates (steroids, drugs, and carcinogens)
can be expected in iloperidone-treated patients. Thus, the presented results may have
serious medical implications. Changes in patient susceptibility to drugs should be taken
into account by physicians who also need to monitor pharmacotherapy. For example,
newer antidepressants and second-generation antipsychotic drugs are often used by clini-
cians, which may lead to pharmacokinetic and pharmacodynamic interactions [50]. On
the other hand, stimulation of the CYP2E1-mediated metabolism of drugs, alcohol, and
procarcinogens by iloperidone should also be considered and further investigated.
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4. Materials and Methods
4.1. Chemicals and Reagents

Iloperidone was obtained from TargetMol (Boston, MA, USA). Steraloids (New-
port, KY, USA) provided testosterone and its metabolites. Caffeine and its metabolites,
chlorzoxazone and its metabolite 6-hydroxychlorzoxazone, bufuralol and its metabolite
1′-hydroxybufuralol, glucose-6-phosphate-dehydrogenase, glucose-6-phosphate, NADP,
NADPH, RNA-free water, and Tween 80 were purchased from Sigma (St. Louis, MO,
USA). Warfarin was donated by Merck (Darmstadt, Germany). 7-Hydroxywarfarin was
synthesized at the Maj Institute of Pharmacology, Kraków, Poland (Daniel et al. 2006). For
RNA isolation, a Total RNA Mini kit purchased from A&A Biotechnology (Gdynia, Poland)
was used. A High-Capacity cDNA Reverse Transcription Kit, TaqMan assays, and the
TaqMan Gene Expression Master Mix were supplied by Life Technologies (Carlsbad, CA,
USA). The primary rabbit polyclonal anti-rat CYP1A1/2, CYP3A1, and CYP3A2 antibodies
(Millipore, Temecula, USA); anti-rat CYP2C11 and CYP2E1 antibodies (Thermo Fisher
Scientific, Walthman, MA, USA); monoclonal mouse anti-rat CYP2B1/2B2 (Santa Cruz
Biotechnology, Dallas, TX, USA); and polyclonal anti-rat β-actin antibody (Sigma, St. Louis,
MO, USA) were used. Horseradish peroxidase-labeled secondary antibodies, goat anti-
mouse antibodies (Jackson ImmunoResearch, West Grove, PA, USA), and goat anti-rabbit
antibodies (Vector Laboratories, Burlingame, CA, USA) were used. Rat cDNA-expressed
CYP1A2, CYP2B1, CYP2C11, CYP2E1, CYP3A1, and CYP3A2 (Supersomes) were from
Gentest Corp. (Woburn, MA, USA). The chemiluminescence reagents SuperSignal West
Pico PLUS Chemiluminescent Substrate kit came from Thermo Fisher Scientific (Walth-
man, MA, USA). The ELISA kits for growth hormone, corticosterone, T3, T4, Il-2, and Il-6
were obtained from Bioassay Technology Laboratory (Bioassay Technology Laboratory,
Shanghai, China). The kit for growth hormone-releasing hormone (GHRH) came from
MyBiosource (San Diego, CA, USA). All necessary chemicals of the highest purity used
for analysis by high-performance liquid chromatography (HPLC) were donated by Merck
(Darmstadt, Germany).

4.2. Animals

Male Wistar Han rats (Charles River Laboratories, Sulzfeld, Germany), three months
old and weighing 280–300 g, were initially acclimatized and housed (6 per cage) in envi-
ronmentally controlled rooms (ambient temperature 22 ± 2 ◦C, humidity 50 ± 5%, and
12:12 light:dark cycle). The animals had free access to tap water and typical laboratory food.
All animal procedures were conducted in strict accordance with the European regulations
for animal experimentation on the Protection of Animals Used for Scientific Purposes (EU
Directive 2010/63/EU). The experimental protocols were approved by the Local Ethics
Commission for Experimentation on Animals at the Maj Institute of Pharmacology, Polish
Academy of Sciences, Kraków.

4.3. Drug Treatment and Liver Sample Preparation

The rats (n = 12 for each treatment group) received intraperitoneal injections of
iloperidone (1 mg/kg) or vehicle control (1% Tween 80 in sterile water) once daily for a
period of two weeks. The iloperidone solution for injection was prepared daily. The selected
dose of iloperidone was active in pharmacological and behavioral paradigms [51–53]. The
rats were decapitated 24 h after the last dose. The livers were quickly removed, frozen in
dry ice, and stored at −80 ◦C. The blood was collected, and the serum was separated by
centrifugation and stored at −80 ◦C. Liver microsomes were prepared from individual rats
by differential centrifugation in 20 mM Tris/KCL buffer (pH 7.4), including washing with
0.15 mM KCL to remove the drug administered in vivo, according to the previously used
method [54].



Int. J. Mol. Sci. 2021, 22, 8447 9 of 12

4.4. CYP Enzyme Activities in the Liver

The metabolism of caffeine, warfarin, chlorzoxazone, and testosterone was inves-
tigated in vitro using liver microsomes at a linear dependence of product formation on
time, protein, and substrate concentration. The activity of CYP1A was determined by
measuring the rate of caffeine metabolism (C-8-hydroxylation and 3-N-demethylation)
at a substrate concentration of 100 µM and incubation time of 50 min. Caffeine and its
metabolites were analyzed by HPLC with UV detection [55]. The activity of CYP2C6 was
studied by measuring the rate of warfarin 7-hydroxylation at a substrate concentration of
60 µM and incubation time of 15 min. Warfarin and its metabolite were analyzed by HPLC
with fluorescence detection [56]. The activity of CYP2E1 was estimated by measuring
the rate of 6-hydroxylation of chlorzoxazone at a substance concentration of 200 µM and
incubation time of 20 min. Chlorzoxazone and its metabolites were analyzed by HPLC
with UV detection [17]. The activities of CYP2A, CYP2B, CYP2C11, and CYP3A were
studied by measuring the rates of cytochrome P450 enzyme-specific reactions: 7α-, 16β-,
2α-, 16α-, 2β-, and 6β-hydroxylation of testosterone at a substrate concentration of 100 µM
and incubation time of 15 min. Testosterone and its metabolites were analyzed by HPLC
with UV detection [57,58].

4.5. Determination of CYP Proteins in Liver Microsomes

The protein levels of the examined CYP enzymes (CYP1A, CYP2B1, CYP2B2, CYP2C11,
CYP2E1, CYP3A1, and CYP3A2) in the liver microsomes of control (n = 12) and iloperidone
treated rats (n = 12) were estimated using Western immunoblot analyses. In brief, microso-
mal proteins (10 µg) were separated on 12% sodium dodecyl sulfate-polyacrylamide gels in
a Laemmli buffer system and transferred onto a nitrocellulose membrane. The blots were
probed with primary antibodies against appropriate CYP enzymes: monoclonal anti-rat
CYP2B and polyclonal anti-rat CYP1A1/2, CYP2C11, CYP2E1, CYP3A1, and CYP3A2.
Then, the blots were incubated with the appropriate (anti-mouse IgG or anti-rabbit IgG)
horseradish peroxidase-conjugated secondary antibodies, and the bands were visualized
by enhanced chemiluminescence. Rats that cDNA-expressed CYP1A2, CYP1B1, CYP2C11
(5 µg), CYP2E1 (2 µg), CYP3A1, CYP3A2 (1 µg) were used as respective standards. The
immunoblots were evaluated using a luminescent image analyzer (LAS-1000, (Fuji Film,
Tokyo, Japan), and the relative levels of immunoreactivity were quantified using the Image
Gauge software (Fuji Film, Tokyo, Japan). The data were normalized to protein based on
the β-actin levels.

4.6. Analysis of mRNA Level in the Liver

The total RNA was isolated from frozen liver tissue using a Total RNA Mini kit
following the manufacturer’s instructions. The RNA was reverse transcribed using a High-
Capacity cDNA Reverse Transcription Kit according to the manufacturer’s instructions. The
expression of the genes encoding the cytochrome P450 enzymes CYP1A1 (Rn01418021_g1),
CYP1A2 (Rn00561082_m1), CYP2B1 (Rn01457880_m1), CYP2B2 (Rn02786833_m1), CYP2C11
(Rn01502203_m1), CYP2E1 (Rn00580624_m1), CYP3A1 (Rn03062228_m1), and CYP3A2
(Rn00756461_m1) and the reference gene encoding beta-actin ACTB (Rn00667869_m1)
were detected by a real-time polymerase chain reaction (PCR) using TaqMan Gene Ex-
pression Master Mix and species-specific TaqMan type probes and primers (TaqMan Gene
Expression Assay, Life Technologies). Amplification was performed under the following
conditions: 50 ◦C for 2 min and 95 ◦C for 10 min followed by 40 cycles at 95 ◦C for 15 s
and 60 ◦C for 1 min. Real-time PCR runs were performed using the Bio-Rad CFX96 PCR
system (Bio-Rad, Hercules, CA, USA). Gene expression was determined by the 2-delta Ct
method using ACTB gene expression as a reference.

4.7. Analysis of Hormones and Cytokines in the Pituitary and Blood Serum

The levels of pituitary GHRH and serum concentrations of hormones (GH, corticos-
terone, T3, and T4) and cytokines (IL-2 and IL-6) of the control (n = 12) and chronically
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iloperidone-treated rats (n = 12) were measured using ELISA kits following the manu-
facturer’s instructions. The pituitaries were homogenized in phosphate-buffered saline
(pH = 7.0; 1:20 v/v). The homogenates were frozen on dry ice three times and then cen-
trifuged for 5 min at 5000× g. Absorbance was measured using a Synergy/HTX multi-mode
reader (BioTek, Winooski, VT, USA).

4.8. Statistical Data Analysis

The statistical significance of changes in enzyme activity, protein level, gene expres-
sion, or hormones/cytokine levels was estimated using Student’s t-test (GraphPad Prism
Software Inc., San Diego, CA, USA). The results were regarded as statically significant
when p < 0.05. The obtained results are presented as the mean ± S.E.M.

5. Conclusions

In summary, chronic treatment with iloperidone produces broad changes in cy-
tochrome P450 metabolizing enzymes and cytochrome P450-regulating hormone levels,
which points to neuroendocrine regulation of the investigated CYP enzymes, resulting from
the central receptor profile of the neuroleptic targeting monoaminergic systems of the brain.
It has been documented that dopaminergic D2 [12], adrenergic α2 [13], and serotonergic
5-HT1A and 5-HT2C [15] receptors of the brain are engaged in the central neuroendocrine
regulation of liver cytochrome P450. The action of iloperidone on dopaminergic, seroton-
ergic, and adrenergic receptors may affect the neuroendocrine system and, in turn, the
regulation of cytochrome P450 in the liver (discussed in [17]). The observed inhibitory
effect of iloperidone on cytochrome P450 enzymes of the CYP1A, CYP2B, CYP2C, and
CYP3A subfamilies may lead to pharmacokinetic (metabolic) interactions with concomi-
tantly administered drugs. Moreover, the stimulation of CYP2E1-mediated metabolism
of drugs, alcohol, and procarcinogens by iloperidone should also be considered and fur-
ther investigated.
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