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ARTICLE INFO ABSTRACT

Keywords: Purpose: To determine the long-term visual outcomes of six eyes of 3 patients up to 13 years following the Laser
Presbyopia Anterior Ciliary Excision (LaserACE) procedure.
Accommodation

Methods: Three male patients of ages 59, 59, and 60 presented for evaluation at Storm Eye Institute, Medical
University of South Carolina at 8, 10, and 13 years after the LaserACE procedure for presbyopia, respectively. All
3 patients had a history of laser vision correction (LVC) prior to LaserACE treatment. Visual performance was
evaluated using ray-tracing aberrometry, specifically higher-order aberrations, visual Strehl of the optical
transfer function (VSOTF), depth of focus (DoF), and effective range of focus (EROF). VSOTF was computed as a
function of defocus using a through-focus curve. Subjective DoF was overlaid on the VSOTF through-focus curve
to establish the best image quality metric threshold value for correlation between subjective and objective DoF.
EROF was determined by measuring the difference in diopters between the near and distance DoF curves, at 50%
of VSOTF.

Results: Distance-corrected visual acuity, distance-corrected intermediate visual acuity, and distance-corrected
near visual acuity for all patients remained at 20/20 or better up to 13 years postoperatively. EROF averaged
1.56 + 0.36 (D) for all eyes.

Conclusions and Importance: LaserACE provided improvement in near vision functionality in these LVC patients
with long-term stability. The LaserACE procedure is not on the visual axis, therefore these patients could still

Visual acuity
Laser anterior ciliary excision

receive correction to their hyperopic regression.

1. Introduction

Presbyopia is an age-related loss in accommodative ability, affecting
an estimated half a billion people worldwide." It has been traditionally
described following Helmholtz’ theory of accommodation, wherein the
loss of elasticity of the lens substance causes a reduction in accom-
modation, resulting in presbyopia.” This cannot be the sole explanation
as recent studies have demonstrated the influence that ocular rigidity,
the vitreous membrane, peripheral choroid, zonules, and ciliary mus-
cles have on the loss of accommodation.®”

In the particular case of ocular rigidity, the human sclera has been
shown to lose virtually all its elasticity after 70 years.® This increased
ocular rigidity with age has been correlated with a clinically significant
loss of accommodation.” Laser Anterior Ciliary Excision (LaserACE) is
designed to alter the biomechanical properties of the rigid sclera. La-
serACE utilizes an excimer laser to create a matrix array of micro-ex-
cisions (micropores) in the sclera.” Within the matrix, there are areas of
both positive stiffness (remaining interstitial tissue) and negative
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stiffness (removed tissue or micropores), which increase the plasticity
and compliance of the scleral tissue during contraction of the ciliary
muscles, and improve the efficiency of the accommodation apparatus.’

To treat presbyopia, spectacles and contact lenses are the prevailing
treatments, however they do not attempt to restore accommodation to
the presbyopic eye. Many current presbyopia treatments that do at-
tempt to restore accommodation, only aim to increase the depth of
focus (DoF) for patients. This can be done by the use of corneal re-
fractive surgeries or intraocular lens replacement.'® These treatment
options may enhance the ‘pseudoaccommodation’ of presbyopic pa-
tients, but not their true accommodation. True accommodation is the
ability of the eye to modify its focal length to see objects clearly when
changing focus from distance to near. LaserACE is one of the only
treatment options for presbyopia that aims to restore both true ac-
commodation and pseudoaccommodation.

Wavefront analysis is a widely used method to assess the visual
system,'" and is typically used to measure higher-order aberrations (HOA),
visual Strehl ratio, and DoF.'? DoF is the variation in defocus that can be
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tolerated by the eye without a noticeable change in image sharpness.'® Ray-
tracing aberrometry can objectively determine DoF by computing near and
distance through-focus curves.'® The visual Strehl of the optical transfer
function (VSOTF) is a precise method to measure the objective visual per-
formance of patients."*'® It is an optical wavefront error-derived metric that
predicts patient visual acuity,'® and is defined as:'®

the area under the contrast sensitivity—weighted optical transfer function
the area under the contrast sensitivity—weighted optical transfer function
for a diffraction—limited eye

VSOTF =

We have previously reported the improvements in uncorrected near
visual acuity (UNVA) and distance-corrected near visual acuity
(DCNVA) immediately after the LaserACE procedure and up to 24
months postoperatively.'” In this brief report, we describe the visual
outcomes of three patients who were recently examined at 8, 10, and 13
years postoperatively, respectively. We present the long-term visual
outcomes for three patients, following LaserACE, including the visual
acuities at near and distance, HOA, effective range of focus, and VSOTF.

2. Materials and methods

Three male patients of ages 59, 59, and 60 presented for evaluation
at Storm Eye Institute, Medical University of South Carolina at 8, 10,
and 13 years after LaserACE procedure for presbyopia, respectively. All
3 patients had a history of laser vision correction (LVC) prior to
LaserACE treatment.

An outline of the LaserACE procedure is shown in Fig. 1. In brief, an
erbium-doped yttrium aluminum garnet (Er:YAG) laser is utilized to
create 9 micropores in the sclera of the eye. Excisions were placed in a
matrix pattern from 0.5 mm up to 6.0 mm from the anatomical limbus
(AL) over the 3 critical anatomical and physiological zones of sig-
nificance: 1) the scleral spur at the origin of the ciliary muscle
(0.5-1.1 mm from AL); 2) the mid ciliary muscle body (1.1-4.9 mm
from AL); and 3) insertion of the longitudinal muscle fibers of the
ciliary, just anterior to the ora serrata at the insertion of the posterior
vitreous zonules (4.9-5.5mm from AL).”'®'® Excision depth was
85-90% the depth of the sclera, to the point that the blue hue of the
choroid just became visible. An opaque corneal shield was placed on
the cornea, and remained in place until the completion of the proce-
dure. A representative postoperative slit lamp image is shown in Fig. 2.

Uncorrected and distance corrected visual acuities were measured
using standard Early Treatment Diabetic Retinopathy Study (ETDRS)
charts. Measurement of HOAs, VSOTF, DoF, and effective range of focus
(EROF) were performed using ray-tracing aberrometry (iTrace, Tracey
Technologies, Houston, TX, USA). The iTrace aberrometer is capable of
creating corneal and lenticular maps as well as a difference map which
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can demonstrate independent image quality metrics (IQM) for the lens
(Fig. 3). VSOTF was computed as a function of defocus using a through-
focus curve, as described previously.'? Subjective DoF was overlaid on
the VSOTF through-focus curve to establish the best IQM threshold
value for correlation between subjective and objective DoF. The EROF
was determined by measuring the difference in diopters between the
near and distance through-focus curves, at 50% of VSOTF. The EROF is
the range of focus with acceptable blur, and will be a combination of
both the true accommodation and the pseudoaccommodation.

The true accommodative ability of patient eyes was determined by
first measuring the difference in distance and near refraction, shown in
Fig. 4. The spherical equivalent of the refraction difference will be the
true accommodation. For a young eye (Fig. 4A) this was ~2.65 D in
true accommodation, while for a presbyope (Fig. 4B) there was little to
no true accommodation.

This was an IRB monitored and registered international clinical pilot
study, which followed the tenets of the Declaration of Helsinki. Patients
provided written consent for imaging and publication of personal
identifying information including medical record details.

3. Results

Summaries of each patient's visual outcomes prior to the LaserACE
procedure are shown in Table 1. Summaries of each patient's visual
outcomes after LaserACE are shown in Table 2. Despite the hyperopic
regression observed in all eyes, the distance-corrected near visual
acuity of the patients were stable following the LaserACE procedure and
preserved for 8, 10, and 13 years postoperatively. Corrected distance
visual acuity (CDVA), distance-corrected intermediate visual acuity
(DCIVA), and DCNVA for all patients remained at 20/20 or better fol-
lowing the LaserACE procedure. These are large improvements com-
pared to preoperative DCIVA and DCNVA, which ranged from 20/40 to
20/60 (OD) and 20/40 to 20/400 (OS), respectively. Additionally, both
DCIVA and DCNVA maintained these improvements of 1-15 lines and
2-15 lines, respectively, up to 13 years postoperatively.

Figs. 5 and 6 show the DoF for near (red) and distance (green) and the
effective range of focus (EROF) measurements for each patient eye. Patient
DoF increased by 0.84 = 0.74 D on average compared to preoperative
DoF. The largest EROF for a single patient eye was 2.16 D (Fig. 5A). Patient
EROF averaged 1.56 * 0.36 D for all patient eyes (n = 6). This was higher
than preoperative clinical accommodation, which averaged 0.92 = 0.61 D.
True accommodation and pseudoaccommodation averaged 0.23 = 0.24 D
and 1.33 = 0.38 D respectively.

Ray-tracing aberrometry results for each patient eye are shown in
Figs. 7 and 8. Averages of DoF, EROF, VSOTF, and HOA for OD, OS, and
OU are summarized in Fig. 9.

Fig. 1. Laser Anterior Ciliary Excision (LaserACE)
surgical technique. Photo A. Quadrant marker; B.
Matrix marker; C. Corneal Shield; D. LaserACE
micropore ablation; E. Subconjunctival Collagen
F. Completed 4 quadrants. Reprinted with per-
mission from Hipsley et al.'”
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Fig. 2. Representative photo of a postoperative Laser
Anterior Ciliary Excision patient eye under a slit lamp.
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Fig. 3. Representative example of image quality metrics at near, distance, and the difference.
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Fig. 4. Determining objective accommodation using iTrace aberrometry. Objective accommodation (OA) is measured by determining the spherical equivalent of the difference between
distance and near refraction. Examples shown for A. non-presbyopic eye (OA = 2.63 D); B. presbyopic eye (OA = 0.32 D).

4. Discussion vitreous membrane, peripheral choroid, zonules, and ciliary muscles.””
Age-related ocular rigidity can cause ocular biomechanical dysfunction

Presbyopia is the most common refractive error, but remains not of the accommodation apparatus.”?%?!
entirely understood. Several factors have been shown to influence the LaserACE aims to reverse this dysfunction by targeting the sclera
loss of accommodation including lens inelasticity, ocular rigidity, the overlying the ciliary body in three critical zones of anatomical and
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Table 1

Patient visual outcomes prior to LaserACE procedure.

CDVA DCIVA DCNVA DoF (D) Clinical Accommodation

UNVA

Sphere Cylinder Axis UDVA UIVA

MRSE Eye

Age LVC Age LaserACE Age Long-Term

Prior LVC Type

Patient

D)

Exam

0.5

0.5

20/40
20/40

20/20 20/40
20/100 20/100 20/15 20/100 20/60

20/20 20/30

20/40
20/60

20/30
20/30

-0.25 20  20/20
-0.25
-0.50
-0.75

-0.75
-0.25

20/20 OD PL

59

49

49

PresbyLasik OU

101

0.5

0.5

175 20/20
155 20/15

47

PL

oS

20/20 OD PL

1.7
1.7

0.5

1.07

20/20 + 2 20/400 20/400 20/20 20/400 20/400 0.75

59

48

46

Hyperopic Lasik OU hyperopic

regression of RK

102

-0.25

0os
20/20 OD +0.50

0.5

20/20
20/20

156 20/20
176  20/20

60

52

50

Hyperopic/Astigmatism LASIK OU

103

0.6

0.6

+0.25

oS

Abbreviations: LVC, laser vision correction; LaserACE, laser anterior ciliary excision; MRSE, manifest refraction spherical equivalent; UDVA, uncorrected distance visual acuity; UIVA, uncorrected intermediate visual acuity; UNVA, uncorrected near

visual acuity; CDVA, corrected distance visual acuity; DCIVA, distance corrected intermediate visual acuity; DCNVA, distance corrected near visual acuity; DoF, depth of focus.
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physiological significance.”'® This may impact the age-related bio-
mechanical and neuromuscular changes of the eye to reverse the loss of
accommodation in presbyopes.®” In this brief report, the DCNVA for all
patients remained at 20/20 or better up to 13 years postoperatively.
This suggests that LaserACE can enhance the accommodative ability of
presbyopes.

LaserACE limits treatment to the sclera, leaving the visual axis un-
touched. This permits the eyes in this study to receive further correction
of their hyperopic regression, allowing them to utilize their residual
accommodative ability. LaserACE also does not preclude these or other
patients from future corneal or cataract procedures, such as receiving
enhancements to their LVC or accommodative intraocular lenses (IOLs).

LaserACE patient CDVA, DCIVA, and DCNVA were 20/20 or better
in each eye, up to 13 years postoperatively. These retained improve-
ments in both DCIVA and DCNVA are encouraging compared to other
treatments such as scleral bands, scleral implants, or accommodating
IOLs. Scleral expansion bands can produce inconsistent and un-
predictable results.*® A recent study found that 93% of eyes with scleral
implants had DCNVA of 20/40 or better at 2 years postoperatively
(Soloway B and Schanzlin DJ; ASCRS 2014 E-Abstract). Accom-
modating IOLs aim to change the IOL position to facilitate near focus,
however to date results have been moderate (Ang RE; ASCRS 2014 E-
Abstract). A recent study found that the mean DCNVA of patient eyes
with the Crystalens accommodating IOL was 20/32 at 1 year post-
operatively.**

Although each patient in this study had prior refractive surgical
procedures prior to receiving the LaserACE procedure, they all met the
preoperative inclusion criteria of being LVC corrected to within the
parameter of = 0.5 D of emmetropia. This allows for the procedural
results to have the biggest effect on restoring near and intermediate
visual acuity and depth of focus while keeping the distance visual
acuity stable. The LaserACE procedure primarily affects lenticular
aberrations, therefore to isolate the effects from the lens it is necessary
to subtract the lenticular aberrations from the corneal aberrations. For
this reason, the iTrace Aberrometer is the preferred diagnostic eva-
luation for the objective measurement of true physiological accom-
modation and pseudoaccommodation from the lens aberrations solely.
Our results demonstrate that the response from the crystalline lens to
the LaserACE procedure is both an increase in true accommodative
power with spherical changes in the lens as well as changes in HOA,
corresponding to improvements in DoF and quality of vision.

Ray-tracing identifies the precise IQM to compute the mechanisms
contributing to the improved EROF of the patients before and after the
LaserACE procedure, as shown in Fig. 3. This allows for an under-
standing of how changes in lenticular aberrations contribute to the
improved visual acuities for both intermediate and near without con-
sideration of the pre-existing corneal aberrations, which remain un-
changed after the LaserACE procedure. Comparing the distance cor-
rected visual acuities to the uncorrected visual acuities reveal any
influences from corneal treatments past or present.

Another study has shown that LaserACE alone can significantly
improve the visual outcomes in presbyopes.’” However, it may also be
the case that the accommodative improvements after LaserACE allow
these patients to better utilize their previous LVC. In either case, the use
of LaserACE improved the visual outcomes in these patients.

In conclusion, LaserACE provided improvement in near vision
functionality for these LVC patients with long-term stability of up to 13
years without significant change to manifest refraction. The LaserACE
procedure is not on the visual axis, therefore these patients could still
receive correction to their hyperopic regression, which would allow
them to utilize their restored accommodative ability.

Patient consent

Data were obtained from an IRB monitored and registered inter-
national clinical pilot study, which followed the tenets of the
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102, C. 103.
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Fig. 7. Refractive and wavefront difference maps at distance and near using ray-tracing. Maps show accommodation and pseudoaccommodation components. Patient eye (OD): 1 A. 101,

B. 102, C. 103.
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