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Objective: The Bayesian first-order antedependence models, which specified single nucleo
tide polymorphisms (SNP) effects as being spatially correlated in the conventional BayesA/B, 
had more accurate genomic prediction than their corresponding classical counterparts. Given 
advantages of BayesCπ over BayesA/B, we have developed hyper-BayesCπ, ante-BayesCπ, 
and ante-hyper-BayesCπ to evaluate influences of the antedependence model and hyper
parameters for vg and 
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Methods: Three public data (two simulated data and one mouse data) were used to validate 
our proposed methods. Genomic prediction performance of proposed methods was com
pared to traditional BayesCπ, ante-BayesA and ante-BayesB.
Results: Through both simulation and real data analyses, we found that hyper-BayesCπ, 
ante-BayesCπ and ante-hyper-BayesCπ were comparable with BayesCπ, ante-BayesB, and 
ante-BayesA regarding the prediction accuracy and bias, except the situation in which ante-
BayesB performed significantly worse when using a few SNPs and π = 0.95. 
Conclusion: Hyper-BayesCπ is recommended because it avoids pre-estimated total genetic 
variance of a trait compared with BayesCπ and shortens computing time compared with 
ante-BayesB. Although the antedependence model in BayesCπ did not show the advantages 
in our study, larger real data with high density chip may be used to validate it again in the 
future.

Keywords: BayesCπ; Antedependence Model; Hyperparameter

INTRODUCTION 

Methods for genomic prediction have been developed widely since Meuwissen et al [1] firstly 
proposed genomic selection methods. To date, there are mainly two classical types of methods 
applied to genomic prediction in livestock breeding. The first one is BLUP methods such 
as GBLUP [2], which assume that single nucleotide polymorphisms (SNP) effects indepen-
dently and identically follow a normal distribution with an equal variance. The second one 
is Bayesian hierarchical models with different prior distributions on the variances of SNP 
effects. For example, BayesA assumes a scaled-inverted chi square distribution on SNP-
specific variances [1]. 
  Habier et al [3] firstly developed BayesCπ for genomic prediction to address the draw-
backs of BayesA and BayesB with respect to influences of prior hyperparameters and the 
prior probability π that a SNP has zero effect. BayesCπ assumes that all SNPs have a common 
effect variance instead of locus-specific variances in BayesA or BayesB so that the influence 
of 
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 becomes smaller. π = 0.95 or 0.99 in BayesB is generally arbitrarily defined. It is im-
proved in BayesCπ where π is treated as an unknown being inferred from the data. Although 
the statistical drawbacks of BayesA and BayesB did not impair the prediction accuracy mainly 
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due to linkage disequilibrium (LD) information, accounting 
for reducing computing time and better fitting the genetic 
architecture of a trait, BayesCπ can be deemed to have better 
merit for routine application compared with BayesA/B.
  So far, most of Bayesian methods, such as BayesA, BayesB, 
and BayesCπ, have a common feature that SNP effects are 
assumed to be independent. However, the existence of LD 
between SNPs makes the above assumption improper, and a 
close relationship should exist between SNPs. To account for 
LD between SNPs, Yang and Tempelman [4] brought first-
order antedependence models which model SNP effects as 
correlated into the conventional BayesA and BayesB, and de-
veloped ante-BayesA and ante-BayesB. It is reported in their 
paper that the antedependence methods had significantly 
higher accuracies than the corresponding classical counter-
parts at higher LD levels (r2>0.24) in the simulation study, and 
they were also more accurate in mice data and other bench-
mark data sets.
  However, although there are advantages of BayesCπ over 
BayesA and BayesB aforementioned, first-order antedepen-
dence models are still not brought to BayesCπ. Thus, we will 
develop ante-BayesCπ, and then investigate whether ante-
BayesCπ can improve the prediction accuracy and bias 
compared to BayesCπ. Besides, it has not been widely appre-
ciated that vg and 
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 also can be estimated from the data [5]. 
This recognition is important as both hyperparameters can 
help define the genetic architecture of a trait of interest. The 
impact of adding hyperparameters to BayesCπ for genomic 
prediction is little reported and is also an interesting topic for 
investigation. 
  Therefore, the objective of this study was to investigate the 
impact of adding a first-order antedependence model and 
hyperparameters into BayesCπ for genomic prediction re-
garding the prediction accuracy and bias. We have demonstrated 
the predictive ability of BayesCπ with first-order antedepen-
dence models and hyperparameters in simulation data from 
the study of Jiang et al [6], the 15th quantitative trait loci-
marker assisted selection (QTL-MAS) workshop data set 
and the heterogeneous stock mice, compared to the classical 
BayesCπ, ante-BayesA, and ante-BayesB. 

MATERIALS AND METHODS 

Statistical model
The general linear mixed model used for genomic prediction 
could be written as 

  y = Xβ+Zg+e 					     (1)

  Here, y was a vector of phenotypes, β was a vector of fixed 
effects, g was a vector of random SNP effects, and e was a re-
sidual vector. X was a known incidence matrix linking β to y. 

Z was a known matrix linking g to y in which SNP genotypes 
were coded as 0, 1, or 2 copies of one allele for each SNP (col-
umn) and animal (row). Furthermore, we specified g ~N (0,G), 
where 
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mendations for variance components by Gelman [9]. The full 
conditional densities of all unknown parameters and any neces-
sary MH steps using Markov chain Monte Carlo are further 
provided in studies of Habier et al [3] and Yang and Tempel-
man [4].
  We used Fortran 90 to compile BayesCπ, extent forms of 
BayesCπ, ante-BayesA and ante-BayesB, and program codes 
can be seen in Supplementary Material (See e-version for 
Supplement). It should be pointed out that ante-BayesB with 
a pre-defined π in our paper was extended from BayesB of 
Meuwissen et al [1], while π was inferred from the data in 
ante-BayesB of Yang and Tempelman [4]. 
  In order to evaluate the performance of our proposed me
thods, we used data sets from other reported studies, i.e., 
simulation data from the study of Jiang et al [6], the 15th QTL-
MAS workshop data set and real data on the heterogeneous 
stock mice from studies of Yang and Tempelman [4] and Gao 
et al [10], to compare them with ante-BayesA and ante-BayesB 
with respect to the accuracy and bias of genomic prediction.

Simulation data 

We downloaded simulation data from the study of Jiang et al 
[6], and the detailed simulation process could be seen in their 
study. Briefly, the default scenario was as follows: a total of 
30 QTLs with a minor allele frequency >0.05 was random-
ly selected, and their effects on two traits were drawn from 
a standard bivariate normal distribution with correlation 0.5. 
Normal error deviates were added to achieve heritablities of 
0.5 for trait 1 and 0.1 for trait 2. The error covariance between 
two traits was set to 0. 
  Sampling every 10th and 25th SNPs from the full set of 
SNPs respectively was conducted to form two subsets of SNPs. 
Averaged over 30 replicates, the average number of SNPs were 
4,119, 411, and 164 for the full set and two subsets, which re-
sulted in three average LD levels (r2 = 0.33, 0.22, and 0.14) of 
adjacent SNPs corresponding to the full set of SNPs and other 
two subsets with SNP intervals of 10 and 25, respectively. In 
our study, we selected trait 1 with both phenotype and geno-
type for first 20 of 30 replicates with the full dataset and other 
two subsets of SNPs as test data to investigate the influence of 
LD between adjacent SNPs on the prediction accuracy and 
bias. Generation 5001 was considered as the reference popu-
lation, and generation 5002 as the candidate population. 

Analysis of the 15th QTL-MAS workshop data set 
A base population was a collection of 20 sires and 200 dams. 
Each sire was mated to 10 dams, and each dam was mated to 
only one sire. Within each family, one dam gave birth to 15 
offspring. The 10 progenies were randomly assigned to the 
reference population with trait phenotypes and marker geno-
types information, and other 5 belonged to the candidate 
population, only recorded for genotype marker information. 
Thus, 2000 individuals formed the reference population, and 
the candidate population included 1,000 individuals. A genome 
consisting of 9,990 SNPs on five chromosomes with 1 Morgan 
each were simulated without any missing data and genotyping 
error. Eight QTLs (1 quadri-allelic, 2 linked in phase, 2 linked 
in repulsion, 1 imprinted and 2 epistatic) were simulated. Ran-
dom error was added to create an heritability of 0.30 for the 
trait analyzed [11]. In the following analyses, we removed all 
SNPs with minor allele frequency = 0, leaving 7,121 SNPs on 
five chromosomes for comparing performances of different 
Bayesian methods aforementioned. These SNPs had been 
sorted by the physical position. 

Application to heterogeneous stock mice data set 
A population of heterogeneous stock mice was generated by 
the Wellcome Trust Centre for Human Genetics (WTCHG) 
(http://gscan.well.ox.ac.uk/). This population was formed by 
a crossing of eight inbred strains, followed by 50 generations 
of pseudorandom mating [12]. The extent of LD in this pop-
ulation is small, and average r2 among adjacent SNPs is 0.62 
[13]. It is well known for the family structure and history of 
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this population, and thus interpretation of results will be easy.
  In order to compare performances of genomic prediction 
using different Bayesian methods, we selected four traits: body 
weight at 6 weeks (W6W), growth slope between 6 and 10 
weeks of age (GSL), body mass index (BMI), and body length 
(BL) similar to the study of Legarra et al [13]. For computa-
tional simplicity, the pre-corrected phenotypes of these traits 
provided by Valdar et al [14] were used as pseudo phenotypes 
for the following analysis. Two sets of genotype information 
were used, which were directly from studies of Yang and Tem-
pelman [4] and Gao et al [10]. Genotypic data processing of 
Yang and Tempelman [4] resulted in the data set involving 
records on 1,917 animals with 950 SNPs on the 19 chromo-
somes, and the average LD of r2 was 0.35 between adjacent 
markers. In the study of Gao et al [10], there were 1,940 animals 
and 9,266 SNPs on the 19 chromosomes after their quality con-
trol steps, which resulted in the average LD of r2 about 0.60.
  Numbers of animals having both phenotypes and two sets 
of genotypes were 1,917, 1,901, 1,814, and 1,821 for W6W, 
GSL, BMI, and BL respectively. All animals for each trait were 
randomly divided into two nearly equal-sized partitions of 
reference and candidate data sets. This was replicated 20 times 
for comparison of genomic prediction among different Baye
sian methods. SNPs were sorted based on their physical 
positions along the chromosome. 
  For each of the six Bayesian methods, ante-BayesA, ante-
BayesB, BayesCπ, hyper-BayesCπ, ante-BayesCπ, and ante-
hyper-BayesCπ, in both simulation data and real data on the 
heterogeneous stock mice, the Markov chains were run for 
350,000 cycles of Gibbs sampling (for ant-BayesB, 100 addi-
tional cycles of MH sampling cycle), and the first 50,000 cycles 
were discarded as the burning period. After the burning pe-
riod, every 10th cycles were subsequently saved for obtaining 
estimates of SNP effects. In ante-BayesB, we set π = 0.95 in 
both the simulation data of Jiang et al [10] and the heteroge-
neous stock mice application, and 0.99 in the 15th QTL-MAS 
workshop data set. 
  Direct genomic values (DGVs) for individuals with geno-
types, but no phenotypes, were calculated as the sum of all 
SNP effects according to their SNP genotypes. The predic-

tion accuracy was calculated as Pearson’s correlation between 
DGVs and true breeding values (TBVs) in simulation data 
(or pre-corrected phenotypes in mice data) for the candidate 
population, and the prediction bias was evaluated by the re-
gression coefficient of DGVs on TBVs in simulation data 
(or pre-corrected phenotypes in mice data). For the simula-
tion data of Jiang et al [10] and the heterogeneous stock mice, 
one-way analysis of variance was performed to determine the 
statistical significance of differences in the accuracy of genomic 
prediction among above six methods and in estimates of π 
among BayesCπ, hyper-BayesCπ, ante-BayesCπ and ante-hyper-
BayesCπ. The stringent Bonferroni multiple test corrections 
were used.

RESULTS 

Results from the simulations
The prediction accuracies and unbias under three different LD 
levels can be seen in Table 1. For the prediction accuracy, there 
are not the statistical significance of differences in the accuracy 
of genomic prediction among six methods for all scenarios 
(p>0.05). Hyper-BayesCπ performed a little better or similar 
among all six methods in three scenarios of different LD levels. 
In the scenario of using all SNPs, ante-hyper-BayesCπ per-
formed as well as hyper-BayesCπ, which was 0.6% higher 
than BayesCπ and ante-BayesCπ, 0.5% for ante-BayesB, and 
0.8% for ante-BayesA, respectively. In other two scenarios, 
ante-hyper-BayesCπ and ante-BayesCπ performed a little 
worse than the counterparts. The prediction accuracy for 
ante-BayesB was much lower than other methods when using 
the SNP data set with the interval of 25 SNPs which was close 
to the level of significant difference (p = 0.07).
  Regarding the prediction bias, the regression coefficients 
for all methods were close to 1.0, which indicated good un-
biased prediction. Additionally, although there were similar 
prediction accuracies among BayesCπ and extensions of 
BayesCπ, the estimated π value from BayesCπ were signifi-
cantly lower than those from extensions of BayesCπ in the 
scenario of using all SNPs, ante-(hyper-) BayesCπ had sig-
nificantly lower π value than (hyper-) BayesCπ in the scenario 

Table 1. Accuracies (mean±SE) and biases (mean±SE) of DGVs in the validation population of simulated data sets under different LD levels of adjacent markers over 20 
replications

Method
All Every 10th Every 25th

Corr Reg Corr Reg Corr Reg

Ante-BayesA 0.873 ± 0.008 1.034 ± 0.024 0.829 ± 0.009 1.028 ± 0.029 0.760 ± 0.010 1.010 ± 0.025
Ante-BayesB 0.876 ± 0.008 1.037 ± 0.025 0.824 ± 0.010 1.065 ± 0.036 0.719 ± 0.014 1.069 ± 0.039
BayesCπ 0.875 ± 0.008 1.044 ± 0.025 0.832 ± 0.008 1.056 ± 0.031 0.760 ± 0.010 1.023 ± 0.025
Hyper-BayesCπ 0.881 ± 0.008 1.025 ± 0.025 0.833 ± 0.008 1.041 ± 0.031 0.760 ± 0.011 1.007 ± 0.024
Ante-BayesCπ 0.875 ± 0.008 1.051 ± 0.026 0.824 ± 0.008 1.110 ± 0.032 0.754 ± 0.011 1.141 ± 0.032
Ante-hyper-BayesCπ 0.881 ± 0.008 1.042 ± 0.025 0.826 ± 0.008 1.103 ± 0.031 0.754 ± 0.011 1.133 ± 0.032

SE, standard error; DGVs, direct genomic values; LD, linkage disequilibrium; Corr, Pearson’s correlation; Reg, regression coefficient.
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of the interval of 10 SNPs, and the estimates of π were com-
parable in the scenario of the interval of 25 SNPs. We found 
that the π value became smaller as the density of SNPs de-
creased (Table 2). 

Common data set of the 15th QTL-MAS workshop
Using the above six methods, we also analyzed the 15th QTL-
MAS workshop data set. As shown in Table 3, ante-hyper-
BayesCπ and ante-BayesCπ had the same prediction accuracy 
(0.942), and they were 0.1%, 0.3%, 0.6%, and 1.2% higher than 
hyper-BayesCπ, BayesCπ, ante-BayesB, and ante-BayesA, res
pectively. The regression coefficients ranged from 1.044 to 
1.068 indicating the unbiased genomic prediction for all me
thods. The π values estimated from BayesCπ, hyper-BayesCπ, 
ante-BayesCπ, and ante-hyper-BayesCπ were very similar 
which were 0.996, 0.997, 0.996, and 0.997, respectively.

Real heterogeneous stock mice data set
As shown in Table 4, the genomic prediction for all six methods 

was comparable for all traits except for W6W in the scenario 
of low density SNP data set. The ante-BayesB using low den-
sity SNP data performed worse than other methods for all 
traits (statistical significance for W6W). The hyper-BayesCπ 
and ante-hyper-BayesCπ sometimes performed a little better 
than BayesCπ and ante-BayesCπ, such as for body weight trait. 
Using SNP data set from low density to high density did not 
reflect the advantage of ante-hyper-BayesCπ (ante-BayesCπ) 
over hyper-BayesCπ (BayesCπ) on the prediction accuracy for 
these four trait analyzed in mice data. Additionally, all the me
thods gave unbiased genomic prediction for each trait, which 
can be seen in Table 5. 
  As shown in Table 6, the estimated π were very different for 
different traits due to different genetic architectures of differ-
ent traits. The estimated π values ranged from 0.327±0.010 to 
0.949±0.009. The estimated π for W6W were higher than 
other three traits. The estimates of π from BayesCπ, hyper-
BayesCπ, ante-BayesCπ, and ante-hyper-BayesCπ were 
significantly different (p<0.05) for all scenarios except for 
BMI with high density SNP data. 

Table 2. π values (mean±standard error) estimated from BayesCπ and 
extentions of BayesCπ using the reference population of simulated data sets 
under different LD levels of adjacent SNPs over 20 replications  

Method ALL Every 10th Every 25th

BayesCπ1) 0.854 ± 0.046a 0.656 ± 0.038a 0.471 ± 0.042
Hyper-BayesCπ1) 0.969 ± 0.022b 0.767 ± 0.028b 0.542 ± 0.041
Ante-BayesCπ2) 0.934 ± 0.017ab 0.551 ± 0.028a 0.425 ± 0.022
Ante-hyper-BayesCπ2) 0.977 ± 0.008b 0.589 ± 0.028a 0.447 ± 0.021

LD, linkage disequilibrium; SNPs, single nucleotide polymorphisms.
1) π represented the proportion of SNPs having no genetics effects on the trait.
2) π represented the proportion of SNPs having no residual genetics effects.
a–b The estimated π values within a column with no common superscript differ 
significantly (p < 0.05); no superscript within a column meant non-significant 
difference (p > 0.05).

Table 4. Prediction accuracies (mean±standard error) of DGVs in the validation population of mice data over 20 replications 

Different SNPs1) Method W6W GSL BMI BL

High density Ante-BayesA 0.455 ± 0.004 0.352 ± 0.005 0.192 ± 0.004 0.234 ± 0.005
Ante-BayesB 0.453 ± 0.004 0.354 ± 0.005 0.195 ± 0.004 0.238 ± 0.005
BayesCπ 0.449 ± 0.004 0.352 ± 0.005 0.193 ± 0.004 0.236 ± 0.005
Hyper-BayesCπ 0.453 ± 0.004 0.353 ± 0.005 0.192 ± 0.004 0.237 ± 0.005
Ante-BayesCπ 0.448 ± 0.004 0.352 ± 0.005 0.194 ± 0.004 0.236 ± 0.005
Ante-hyper-BayesCπ 0.452 ± 0.004 0.353 ± 0.005 0.193 ± 0.004 0.237 ± 0.005

Low density Ante-BayesA 0.416 ± 0.004a 0.334 ± 0.005 0.152 ± 0.004 0.199 ± 0.005
Ante-BayesB 0.363 ± 0.005b 0.322 ± 0.006 0.138 ± 0.005 0.188 ± 0.006
BayesCπ 0.408 ± 0.004a 0.334 ± 0.005 0.151 ± 0.004 0.203 ± 0.004
Hyper-BayesCπ 0.416 ± 0.004a 0.334 ± 0.005 0.153 ± 0.004 0.203 ± 0.005
Ante-BayesCπ 0.411 ± 0.004a 0.335 ± 0.005 0.149 ± 0.004 0.203 ± 0.005
Ante-hyper-BayesCπ 0.415 ± 0.004a 0.335 ± 0.005 0.153 ± 0.004 0.203 ± 0.005

DGVs, direct genomic values; SNPs, single nucleotide polymorphisms; W6W, body weight at 6 weeks; GSL, growth slop between 6 and 10 weeks of age; BMI, body mass 
index; BL, body length.
1) High density, 9266 SNPs; low density, 950 SNPs.
a–b The prediction accuracies within each combination of traits and types of SNPs with no common superscript differ significantly (p < 0.05) among six methods; No superscript 
within each combination of traits and types of SNPs meant non-significant difference (p > 0.05).

Table 3. Accuracies and biases of DGVs in the validation population of the 
common data set from the fifteenth QTL-MAS workshop 

Method Pearson’s  
correlation

Regression 
coefficient

Ante-BayesA 0.930 1.044
Ante-BayesB 0.936 1.056
BayesCπ 0.939 1.062
Hyper-BayesCπ 0.941 1.062
Ante-BayesCπ 0.942 1.068
Ante-hyper-BayesCπ 0.942 1.066

DGVs, direct genomic values; QTL-MAS, quantitative trait loci-marker assisted 
selection.
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DISCUSSION 

Our study is the first one to comprehensively investigate the 
influence of a first-order ante-dependence model and key 
hyperparameters on BayesCπ using simulation data sets and 
real mice data set. According to our results, the prediction ac-
curacies for hyper-BayesCπ, ante-BayesCπ, and ante-hyper-
BayesCπ were comparable with BayesCπ, ante-BayesB and 
ante-BayesA except the situation where ante-BayesB performed 
worse when using a few SNPs and π = 0.95. BayesCπ with an 
antedependence model and hyperparameters did not work 
better than BayesCπ regarding the prediction accuracy and 
bias. Meanwhile, ante-(hyper-) BayesCπ had a longer com-
puting time than BayesCπ and hyper-BayesCπ, and there were 
similar computing times between BayesCπ and hyper-BayesCπ. 
When SNP density increased, computing time for ante-(hyper-) 
BayesCπ increased faster than (hyper-) BayesCπ.
  BayesA, BayesB, BayesCπ and their extended forms assume 

that the prior distribution of variances of SNP non-zero ef-
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A being a large number in the extent of BayesA. Yang and 
Tempelman [4] used a Gamma (0.1, 0.1) prior distribution 

Table 5. Prediction biases (mean±standard error) of DGVs in the validation population of mice data over 20 replications 

Different SNPs1) Method W6W GSL BMI BL

High density Ante-BayesA 0.991 ± 0.021 0.982 ± 0.029 0.947 ± 0.039 0.919 ± 0.059
Ante-BayesB 0.986 ± 0.021 0.998 ± 0.031 0.946 ± 0.044 0.927 ± 0.060
BayesCπ 0.970 ± 0.018 1.018 ± 0.031 0.975 ± 0.041 0.998 ± 0.064
Hyper-BayesCπ 1.000 ± 0.022 1.010 ± 0.031 0.992 ± 0.053 0.952 ± 0.061
Ante-BayesCπ 0.970 ± 0.019 1.016 ± 0.031 0.974 ± 0.044 0.994 ± 0.062
Ante-hyper-BayesCπ 1.000 ± 0.022 1.010 ± 0.031 0.992 ± 0.052 0.953 ± 0.061

Low density Ante-BayesA 1.006 ± 0.025 1.009 ± 0.035 0.866 ± 0.044 0.923 ± 0.060
Ante-BayesB 0.989 ± 0.026 1.046 ± 0.046 0.871 ± 0.061 1.032 ± 0.080
BayesCπ 0.975 ± 0.024 1.024 ± 0.038 0.899 ± 0.057 1.014 ± 0.065
Hyper-BayesCπ 1.015 ± 0.027 1.017 ± 0.039 0.924 ± 0.055 0.968 ± 0.070
Ante-BayesCπ 1.022 ± 0.023 1.032 ± 0.038 0.912 ± 0.071 0.996 ± 0.065
Ante-hyper-BayesCπ 1.055 ± 0.025 1.028 ± 0.038 0.912 ± 0.055 0.964 ± 0.066

DGVs, direct genomic values; SNPs, single nucleotide polymorphisms; W6W, body weight at 6 weeks; GSL, growth slop between 6 and 10 weeks of age; BMI, body mass 
index; BL, body length.
1) High density, 9266 SNPs; low density, 950 SNPs.

Table 6. π values (mean±standard error) estimated from BayesCπ and extensions of BayesCπ using the reference population of mice data over 20 replications 

Different SNPs1) Method W6W GSL BMI BL

High density BayesCπ2) 0.941 ± 0.010a 0.415 ± 0.014a 0.606 ± 0.033 0.327 ± 0.010a

Hyper-BayesCπ2) 0.661 ± 0.027b 0.603 ± 0.020b 0.589 ± 0.023 0.595 ± 0.021b

Ante-BayesCπ3) 0.949 ± 0.009a 0.485 ± 0.015c 0.643 ± 0.030 0.333 ± 0.011a

Ante-hyper-BayesCπ3) 0.694 ± 0.025b 0.621 ± 0.016b 0.613 ± 0.020 0.591 ± 0.024a

Low density BayesCπ2) 0.626 ± 0.033a 0.441 ± 0.020a 0.641 ± 0.032a 0.334 ± 0.012a

Hyper-BayesCπ2) 0.345 ± 0.019b 0.492 ± 0.024a 0.524 ± 0.015b 0.467 ± 0.014b

Ante-BayesCπ3) 0.673 ± 0.017a 0.589 ± 0.013b 0.731 ± 0.027c 0.427 ± 0.012b

Ante-hyper-BayesCπ3) 0.525 ± 0.009c 0.613 ± 0.014b 0.590 ± 0.015ab 0.572 ± 0.011c

SNPs, single nucleotide polymorphisms; W6W, body weight at 6 weeks; GSL, growth slop between 6 and 10 weeks of age; BMI, body mass index; BL, body length.
1) High density, 9,266 SNPs; Low density, 950 SNPs.
2) π represented the proportion of SNPs having no genetics effects on the trait.
3) π represented the proportion of SNPs having no residual genetics effects. 
a–c The estimated π values within each combination of traits and types of SNPs with no common superscript differ significantly (p < 0.05) among six methods; No superscript 
within each combination of traits and types of SNPs meant non-significant difference (p > 0.05). 
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  Compared with hyper-BayesCπ (BayesCπ), ante-hyper-
BayesCπ (ante-BayesCπ) did not show advantages in improving 
the prediction accuracy and bias for simulation data with LD 
levels r2 ranging from 0.136 to 0.333 and mice data with two 
different LD levels. This phenomenon is very different from 
the performance of ante-BayesA (ante-BayesB) over BayesA 
(BayesB) in the study of Yang and Tempelman [4]. They re-
ported that ante-BayesA and ante-BayeB had significantly 
higher accuracies than their corresponding classical coun-
terparts at higher LD levels in simulation data and real small 
data. However, subsequent studies did not show that the an-
tedependence model performed significantly better. Wang et 
al [16] evaluated the antedependence model performance in 
Danish pigs and found that ante-BayesA showed lower accu-
racy compared to other models. Jiang et al [6] also introduced 
the first-order antedependence model to multi-trait BayesA, 
and the analysis from simulation and mice data showed that 
multi-trait ante-BayesA had less than 1% higher accuracies 
than multi-trait BayesA. The results from these studies were 
similar to the performance of ante-hyper-BayesCπ (ante-
BayesCπ) over hyper-BayesCπ (BayesCπ) from our study.
  When using genotype data from low density to high den-
sity in mice data, the antedependence model was not more 
advantageous over the corresponding method for four traits 
with different heritabilities. This surprising phenomenon may 
result from the following reasons. On one hand, the antede-
pendence model had higher number of effective parameters, 
which suggested that the accuracy estimating SNP effects may 
be poor in current data set (less than 1,000 individuals in refer-
ence population) due to model complexity [16]; On the other 
hand, the relationship for adjacent SNPs is more closed with 
increasing SNP density. The linear relationship may not be 
good to explain the relationship for adjacent SNPs, and non-
linear relationship may be better. In the future, with sequence 
data widely being used, the performance of the antedependence 
model can be validated again in livestock with sequence data.
  Habier et al [3] reported that estimates of π from BayesCπ 
were sensitive to training data size and SNP density. From our 
results, estimates of π not only were sensitive to SNP density 
but also were sensitive to the genetic architecture of a quan-
titative trait. Compared with ante-BayesA and ante- BayesB, 
BayesCπ and its extensions could provided more information 
about the genetic architecture of a trait of interest. Although 

different estimates of π from BayesCπ and its extensions led 
to little differences on the prediction accuracy, they may have 
different power for QTL mapping which is interesting to be 
further studied. Additionally, it should be noted that ante-
BayesB in this study was extended from the classical BayesB 
proposed by Meuwissen et al [1]. Ante-BayesB performed sig-
nificantly worse than other methods when using a few SNPs, 
which suggests that treating π as known with a high value may 
be a poor choice in some cases. This agrees with Daetwyler 
et al [17] who reported that GBLUP outperformed BayesC 
with a fixed π when the number of simulated QTL was large, 
which is also validated by Habier et al [3]. This may be the rea-
son why the extent of classical BayesB in which π is estimated 
by using a prior distribution and data information was pro-
posed, such as ante-BayesB developed by Yang and Tempelman 
[4]. 
  Ante-BayesA, ante-BayesB, and ante-(hyper-)BayesCπ had 
a similar genomic prediction accuracy, and no one outper-
formed the other methods across all traits, which is consistent 
with the study of Habier et al [3] who reported the similar 
prediction accuracy between BayesA, BayesB, and BayesCπ. 
However, computing time is very different among these three 
ante-Bayesian methods. From our study, ante-BayesA is the 
fastest, ante-(hyper-) BayesCπ is next, and ante-BayesB is the 
slowest. Ante-BayesB had the longest computing time because 
the 100 cycles of MH step for sampling the locus-specific vari-
ances in the implementation of ante-BayesB is repeated in each 
iteration. Ante-BayesA and ante-(hyper-) BayesCπ had the 
advantage on computing time, which becomes more and more 
important as SNP density increases. Compared with ante-
BayesA, ante-(hyper-) BayesCπ can shrink SNP effects and is 
more sensitive to the genetic architecture of a trait of interest, 
which results in gaining higher accuracies for traits with some 
large QTL effects, such as fat yield in Holstein populations 
[18,19]. 

CONCLUSION

In conclusion, BayesCπ with prior distributions on vg and 
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model and key hyperparameters on BayesCπ using simulation data sets and real mice data set. According 283 

to our results, the prediction accuracies for hyper-BayesCπ, ante-BayesCπ, and ante-hyper-BayesCπ 284 

were comparable with BayesCπ, ante-BayesB and ante-BayesA except the situation where ante-BayesB 285 

performed worse when using a few SNPs and π = 0.95. BayesCπ with an antedependence model and 286 

hyperparameters did not work better than BayesCπ regarding the prediction accuracy and bias. 287 

Meanwhile, ante-(hyper-) BayesCπ had a longer computing time than BayesCπ and hyper-BayesCπ, and 288 

there were similar computing times between BayesCπ and hyper-BayesCπ. When SNP density increased, 289 

computing time for ante-(hyper-) BayesCπ increased faster than (hyper-) BayesCπ. 290 

BayesA, BayesB, BayesCπ and their extended forms assume that the prior distribution of variances 291 

of SNP non-zero effects is a scaled inverse chi-square distribution with degree of freedom vg and a scale 292 

parameter  sg  
2 [15]. Preliminarily, vg and vgsg

2 were fixed to 4.01 and 0.0020 in BayesA, and 4.23 and 293 

0.0429 in BayesB in the first genomic prediction paper of Meuwissen et al [1]. However, it is more 294 

reasonable that these two fixed hyperparameters are assigned as different values in different genetic 295 

architectures of traits of interest. In the study of Habier et al [3],  sg 
2  was calculated using formula (3) 296 

and (4) with different genetic variances for different traits in BayesA, BayesB, and BayesCπ. Many 297 

studies have also proposed some alternative priors to estimate these two hyperparameters. Habier et al 298 

[3] proposed BayesDπ treating  sg 
2  as unknown with Gamma (1, 1). Yi and Xu [8] developed a model to 299 

assign a uniform density on 1/vg for the range (0,1) and a uniform distribution on sg 
2  for the range (0, 300 

A) with A being a large number in the extent of BayesA. Yang and Tempelman [4] used a Gamma (0.1, 301 

0.1) prior distribution on sg 
2  and specified vg~p(vg) ∝ (vg + 1)−2 for both BayesA and BayesB. In 302 

our study, we have applied vg~p(vg) ∝ (vg + 1)−2 for vg and a Gamma (1,1) prior distribution on sg 
2  303 

in BayesCπ, termed as hyper-BayesCπ. The results from our analysis showed that hyper-BayesCπ 304 

performed a little better than BayesCπ regarding prediction accuracy and bias. Given needing a pre-305 

estimated genetic variance to define sg 
2  in BayesCπ, hyper-BayesCπ is more feasible to be applied in 306 

livestock breeding compared with BayesCπ.   307 

Compared with hyper-BayesCπ (BayesCπ), ante-hyper-BayesCπ (ante-BayesCπ) did not show 308 

advantages in improving the prediction accuracy and bias for simulation data with LD levels r2 ranging 309 

from 0.136 to 0.333 and mice data with two different LD levels. This phenomenon is very different from 310 

the performance of ante-BayesA (ante-BayesB) over BayesA (BayesB) in the study of Yang and 311 

Tempelman [4]. They reported that ante-BayesA and ante-BayeB had significantly higher accuracies than 312 

 
(assigned as hyper-BayesCπ) is recommended because it 
has the comparable prediction accuracy and bias and avoids 
pre-estimated total genetic variance of a trait compared with 
BayesCπ. The performance of the first-order antedependence 
model in BayesCπ did not show an advantage in improving 
the prediction accuracy and bias.
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