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Abstract

Countermeasures against Zika virus (ZIKV), including vaccines, are frequently tested in

nonhuman primates (NHP). Macaque models are important for understanding how ZIKV

infections impact human pregnancy due to similarities in placental development. The lack of

consistent adverse pregnancy outcomes in ZIKV-affected pregnancies poses a challenge in

macaque studies where group sizes are often small (4–8 animals). Studies in small animal

models suggest that African-lineage Zika viruses can cause more frequent and severe fetal

outcomes. No adverse outcomes were observed in macaques exposed to 1x104 PFU (low

dose) of African-lineage ZIKV at gestational day (GD) 45. Here, we exposed eight pregnant

rhesus macaques to 1x108 PFU (high dose) of African-lineage ZIKV at GD 45 to test the

hypothesis that adverse pregnancy outcomes are dose-dependent. Three of eight pregnan-

cies ended prematurely with fetal death. ZIKV was detected in both fetal and placental
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tissues from all cases of early fetal loss. Further refinements of this exposure system (e.g.,

varying the dose and timing of infection) could lead to an even more consistent, unambigu-

ous fetal loss phenotype for assessing ZIKV countermeasures in pregnancy. These data

demonstrate that high-dose exposure to African-lineage ZIKV causes pregnancy loss in

macaques and also suggest that ZIKV-induced first trimester pregnancy loss could be

strain-specific.

Author summary

Although pregnant rhesus macaques are susceptible to infection with Zika virus (ZIKV),

fetal phenotypes can be subtle and variable. Most macaque studies of ZIKV have involved

infection with Asian-lineage viruses because these viruses caused Western Hemisphere

outbreaks beginning in 2015. African-lineage ZIKV yields more severe adverse fetal out-

comes in small animal models. Here, we provide evidence that pregnant macaques

infected late in the first trimester using a high dose of African-lineage ZIKV have frequent

ZIKV-associated pregnancy loss. This severe phenotype establishes a new model for evalu-

ating countermeasures and reinforces the idea that African-lineage ZIKV infection may

be a cause of pregnancy loss in areas where it is endemic depending on the amount of

transmitted virus during infection.

Introduction

Zika virus (ZIKV) was first isolated in 1947 from the Zika forest in Uganda and was sporadi-

cally detected in Africa and Asia exclusively until the outbreaks in Micronesia (2007) and

French Polynesia (2013) [1–3]. Eventually, ZIKV spread to the Americas, where a dramatic

increase in cases of microcephaly (fetal head size smaller than two standard deviations below

average) coincided with a ZIKV outbreak in Brazil in 2015 [4–8]. ZIKV gained global attention

when scientists found many developmental abnormalities and neuropathological impacts

causally associated with ZIKV infection in utero. Collectively, these are referred to as ‘congeni-

tal Zika syndrome’ (CZS).

There are two genetic lineages of ZIKV, Asian and African, that differ by approximately

12% at the nucleotide level and 3% at the amino acid level [9]. Because ZIKV was neglected

prior to the 2015 outbreak, most research has utilized Asian-lineage viruses that are represen-

tative of the outbreak in the Americas [2,10–12]. The use of multiple doses, strains, and expo-

sure routes used to infect macaques at different stages of pregnancy makes it difficult to

compare studies directly. Nonetheless, Asian-lineage viruses from Puerto Rico (ZIKV-PR),

Brazil (ZIKV-BR), and French Polynesia (ZIKV-FP) can all cause adverse fetal outcomes,

ranging from subtle to severe, with spontaneous fetal death occurring sporadically. In a meta-

analysis combining data from several studies in different research centers, 28.6% of macaques

infected with ZIKV-PR experienced pregnancy loss [13].

While this heterogeneity of outcomes is useful in dissecting the mechanisms of CZS, it is

problematic for evaluating medical countermeasures such as vaccines and antivirals. Unrea-

sonably large numbers of animals are needed to power experiments in which prevention of

fetal loss is a primary outcome. The supply of macaques for research is limited, and this is

especially acute for Indian-origin rhesus macaques which are the most widely captive-bred

macaques in the United States. Several factors that restrict the use of pregnant Indian-origin
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rhesus macaques in research include export restrictions, low fecundity, and a small fertility

window of four to five months per year [14]. Furthermore, macaques used for ZIKV studies

must be naive for other arthropod-borne flaviviruses and facilities often have limited infectious

disease housing, a requirement for ZIKV-infected macaques.

Consequently, a pregnant macaque model where ZIKV causes consistent and severe

adverse fetal outcomes to test therapeutics or prophylaxis would be desirable, enabling appro-

priately powered experiments with smaller group sizes. Mice infected with African-lineage

ZIKV have increased fetotoxicity compared to mice infected with the Asian-lineage strains.

For example, Ifnar1-/- C57BL/6 mice infected with low-passage (five passages) African-lineage

ZIKV strain ZIKV/Aedes africanus/SEN/DAK-AR 41524/1984 (ZIKV-DAK) had more fre-

quent fetal loss (100% vs. 53.2%) than mice infected with ZIKV-PR [15]. Additionally, Afri-

can-lineage strains of ZIKV showed an increase in peak viremia in both plasma and the brain

that correlated with a decline in survival rates in adult immunocompromised mice [16,17].

This increased pathogenicity has been recapitulated in studies that used a low-passage, Afri-

can-lineage strain of ZIKV (ZIKV-DAK) and includes placental tissue damage in vitro [18]

and more virus present in fetal organs in a porcine model [19]. This also raises the worrisome

possibility that if these results extend to primates, gestational African-lineage ZIKV could be

an unrecognized cause of pregnancy loss.

To determine if the high rate of early fetal loss associated with ZIKV-DAK in mice trans-

lates to primates, Crooks et al. exposed four animals subcutaneously (SQ) to a low dose (1x104

PFU) of ZIKV-DAK during the first trimester (gestational day 45). Given that first trimester

ZIKV infections are more frequently associated with adverse fetal outcomes and ZIKV was

detected in the maternal-fetal interface of the four low-dose ZIKV-DAK animals, it is surpris-

ing that all four animals had pregnancies proceed normally to study endpoint [20]. Two other

n = 1 studies using Asian-lineage ZIKV (ZIKV-PR, ZIKV-CAM) have reported more frequent

adverse pregnancy outcomes when macaques are subcutaneously exposed to 10,000 times

more virus than typically transmitted by mosquito bite [21–23]. This provides some evidence

that risk of fetal injury may be proportional to the amount of virus the dam is exposed to.

While a dose that reflects infection by mosquito bite (1x104-1x106 PFU) is important to study

natural pathophysiology of ZIKV infection, it is important to establish a model with higher

reproducibility of significant adverse fetal outcomes to study countermeasures against the

virus. Previous studies have established that exposure to African-lineage ZIKV protects against

exposure to Asian-lineage ZIKV [24]. This suggests that countermeasures developed for a

model using African-lineage ZIKV could extend to models of Asian-lineage ZIKV exposure.

Therefore, to further test the hypothesis that a high-dose of virus would increase fetal loss rate,

we subcutaneously exposed eight pregnant rhesus macaques to a dose of 1x108 PFU ZIKV--

DAK. Here we observed pregnancy loss in three of eight pregnancies, establishing a macaque

model for severe fetal outcomes following high-dose exposure to African-lineage ZIKV.

Results

Pregnancy outcomes and maternal ZIKV infections

Eight ZIKV-naive rhesus macaque dams (046–101, 046–102, 046–103, 046–104, 046–105,

046–106, 046–107, 046–108) were subcutaneously exposed to a high dose, 1x108 PFU/ml, of

Zika virus/A.africanus-tc/Senegal/1984/DAKAR 41524 (ZIKV-DAK; GenBank: KX601166) at

approximately GD 45 (range = GD 41–48) (Fig 1A and S1 Table). Data from these animals

were compared to historical data collected from four dams exposed to a low dose (1x104 PFU/

ml) of ZIKV-DAK and five control dams exposed to sterile phosphate-buffered saline (PBS)

[25]. Physical exams of infected dams showed no ZIKV infection-associated symptoms such as
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Fig 1. Experimental timeline and pregnancy outcomes. (A) Study timeline showing timing of infection and sampling. Samples were collected at each

time point shown on the line. (B) Color representation and pregnancy outcomes of female rhesus macaques that were subcutaneously exposed to either

1x108 PFU ZIKV-DAK, 1x104 PFU ZIKV-DAK, or PBS between GD 41 and GD 50. Mock animals were not assigned individual colors. Colors are used

throughout the manuscript when describing the results from these animals and cohorts. Note that fetuses or infants will be color-matched to the

appropriate dams. Macaque silhouettes were prepared by L. Raasch and are not restricted by copyright.

https://doi.org/10.1371/journal.pntd.0010623.g001
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rash or fever (S1A Fig). All animals had steadily increasing weights throughout pregnancy

with the exception of 046–107 who lost 10.6% of her body weight between 0 and 10 DPI (S1B

Fig).

ZIKV vRNA was detected in the plasma of all ZIKV-exposed dams regardless of exposure

dose (Figs 2 and S2). Peak plasma vRNA loads ranged from 9x102-7x105 copies/ml and were

detected for all high dose dams between one and two DPI (Figs 2A, 2C, 2E and S2A). Inter-

estingly, two high dose dams (046–102 and 046–105) displayed lower peak vRNA loads

(approximately 1x103 copies/ml) relative to the other dams that received a higher exposure

dose, although this difference was not significant (S2A Fig). Viral RNA was also detected in

the urine of two dams (046–101 and 046–104) and in the saliva of three dams (046–101,

046–107, and 046–108) during acute infection (S3 Fig). Dams exposed to 1x104 PFU had

Fig 2. Replication kinetics of ZIKV-DAK in dams receiving a high dose (1x108 PFU) or a low dose (1x104 PFU) of ZIKV. (A) Mean viral loads

through 40 DPI measured in plasma samples by ZIKV-specific RT-qPCR. Error bars represent the standard error of the mean (+/-SEM). (B)

Comparison of plasma vRNA load area under the curve (AUC) for high-dose and low-dose exposure groups. (C) Comparison of peak plasma vRNA

load in copies/ml plasma. (D) Comparison of days post-infection (DPI) of the last positive plasma vRNA load. (E) Comparison of day post-infection

(DPI) peak plasma vRNA load occurred. For all graphs in parts B-E, the mean value is represented by the wider black bar with error bars representing

standard deviation (+/- SD). ��� Represents a p-value of<0.001, while no asterisks represent no statistical difference at the 5% level.

https://doi.org/10.1371/journal.pntd.0010623.g002
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peak plasma vRNA loads that occurred later (between four and five DPI) and ranged from

1.33x105-1.24x106 copies/ml (Figs 2A, 2C, 2E and S2B). Comparison of total plasma virus

replication between high-dose and low-dose dams by t-test on the area under the curve

(AUC) showed no significant difference between groups (t = -1.16; df = 3.11; p = 0.33) (Fig

2B). Similarly, comparison of peak plasma vRNA loads by t-test (t = 0.99; df = 3.91; p = 0.38)

and plasma viral load duration by Wilcoxon rank-sum tests with continuity correction

(W = 6; p = 0.10) also showed no significant differences between high-dose and low-dose

dams (Fig 2C and 2D). A linear mixed effects model used to examine the time to peak

plasma vRNA by group showed that dams that received a low dose of ZIKV-DAK had

plasma vRNA loads that peaked significantly later than dams that received a high dose of the

same virus (estimate = 2.50; std.error = 0.29; df = 10; t = 8.61; p < 2.0x10-16) (Fig 2E).

Three of the eight high-dose dams had early fetal loss identified by ultrasound between GD

59 and 64 (Fig 1). One of the five dams (046–108) that carried to near full-term lost her infant

(046–508) five days after Cesarean section due to postnatal complications not directly associ-

ated with ZIKV infection (failure to thrive) (S8 Table). Because fetal demise occurred in three

of eight high-dose pregnancies, we also explored whether maternal vRNA kinetics impacted

pregnancy outcome by comparing overall maternal plasma vRNA load using AUC, peak

plasma vRNA load, and duration between high-dose dams with early fetal loss and high-dose

dams with fetuses that survived. We observed no significant differences between maternal

plasma vRNA kinetics for any of these measures when high-dose animals were grouped by

pregnancy outcomes (demise vs. survival) (S4 Fig).

Maternal antibody response

Serum samples collected from all ZIKV-infected dams at 0, 21, and 28 DPI were assessed for

neutralization capacity by 90% plaque reduction neutralization tests (PRNT90) on Vero cells.

Results indicate that all eight high-dose animals and all four low-dose animals developed

robust neutralizing antibody (nAb) responses following ZIKV-DAK infection (S5 Fig). Over-

all, PRNT90 titers at 21 or 28 DPI in dams with identified pregnancy loss and dams with viable

pregnancies were not significantly different. ZIKV-specific IgM levels were measured in

maternal serum samples in the high-dose ZIKV-DAK cohort by ELISA at 0, 7, 14, 17, and 21

or 24 DPI (S6 Fig). IgM levels peaked on days 14 or 17 post-infection for all eight dams. After

17 DPI, IgM levels began to decrease for all dams except 046–106.

In-utero and at-birth measurements and observations

In-utero. Comprehensive ultrasounds were performed weekly to monitor growth, fetal

heart rate, and observe changes in the fetus and placenta throughout pregnancy. As noted

above, fetal death was determined in three of eight pregnancies by absent fetal heartbeat between

59 and 64 GD (046–503, 046–504, and 046–507) (S7 Fig). These three fetuses were found by

ultrasound to have thick edematous skin which was attributed to fetal death in utero and subse-

quent autolysis (S2 Table). Other than possible early hydrops in one of the three fetuses, there

were no abnormalities noted by ultrasound in the fetuses preceding demise. Fetal growth mea-

surements of head circumference (HC), biparietal diameter (BPD), abdominal circumference,

HC-femur length ratios, and BPD-femur length ratios, were also taken weekly or biweekly dur-

ing routine ultrasounds. Neither ZIKV-DAK experimental group showed significant differences

when compared to fetal measurements from mock fetuses (S8 Fig, S3 and S4 Tables).

At-birth. Measurements were taken at the time of birth for each infant. HC (p = 0.5437),

BPD (p = 0.2506), and body weight (p = 0.0849) of live born infants from high-dose dams

were not significantly different when compared to infants from mock dams (S5 Table).
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APGAR scores taken at one, five, and 10 minutes after birth were also not significantly differ-

ent between infants from high-dose dams and mock dams (S6 Table). Demographic character-

istics at the time of birth such as gestational age, dam weight, dam age, and gender were

compared between groups, and there were no significant differences (S7 Table).

Maternal-fetal interface tissue and maternal tissue vRNA loads

ZIKV RNA was detected by RT-qPCR in maternal-fetal interface tissues from five of eight dams

that received a high-dose infection with ZIKV-DAK and in all four dams receiving low-dose

ZIKV-DAK (Fig 3). Two of the three dams with undetectable virus in the maternal-fetal interface

(046–102, 046–105) also had reduced plasma viremia (Figs 3 and S2A). All three dams with early

fetal loss, plus two others, had ZIKV RNA in the maternal-fetal interface. Viral RNA was found

in all three layers of the placenta (decidua, chorionic villi, chorionic plate). Placentas from dams

with early fetal loss had consistently higher viral loads than placentas from dams with viable

pregnancies, and viral burden was similar across all three layers (Fig 3). Although ZIKV RNA

was broadly detected in all three layers of the placenta, it was not uniformly detected throughout

each cotyledon. Other maternal-fetal interface tissues analyzed by RT-qPCR included fetal mem-

branes and interplacental collateral vessels. Although fetal membranes were positive for dams

with and without fetal losses, more virus was detected in cases of fetal loss (Fig 3).

Maternal tissues tested by RT-qPCR included mesenteric lymph node (LN), spleen, liver,

and uterus at the placental bed (Fig 3). Mesenteric LN, maternal spleen, and the uterus/placen-

tal bed were all positive for ZIKV RNA in two of three dams with early fetal loss (046–103,

046–104). The only maternal tissues collected to test positive (100−103 copies/mg tissue) from

dams with viable pregnancies were the uterus/placental bed (046–108), the mesenteric lymph

node (030–101), and the spleen (030–102 and 030–104).

Fetal viral loads

Viral RNA was detected by RT-qPCR in the fluids and/or tissues of all three fetuses following

in utero death (Fig 4). Due to the early gestational time frame and small fetal size when demise

occurred, organ and tissue samples were limited. Brain and eye from fetus 046–503 had the

highest tissue vRNA burden observed. However, the highest overall vRNA loads were observed

for the amniotic fluid and cerebrospinal fluid of fetus 046–507 (>1.00x107 copies/mL) (Fig 4).

Together, these results strongly suggest that vertical transmission occurred in all three

instances of early fetal loss.

Fetal and placental pathology

For each of the three fetuses that died prior to planned c-section, significant tissue autolysis

was identified which indicated that fetal death occurred at some point within the prior week.

Unfortunately, fetal tissue autolysis made it difficult to determine whether pathological

changes were specifically related to ZIKV infection.

Cross-sections through the center of all 12 placentas and cross-sections of individual cotyle-

dons recovered from ZIKV-DAK exposed dams (both high- and low-dose) showed increased

evidence of pathology when compared to the four placentas recovered from uninfected dams,

such as: chronic plasmacytic deciduitis, transmural placental infarction, and chronic histio-

cytic intervillositis (CHIV) (S9 Fig and Tables 1 and S8). Overall, dams that received a high-

dose infection with ZIKV-DAK had more pathological changes within the placenta than dams

that received a low-dose infection with ZIKV-DAK, but comparisons to the low-dose animals

were limited due to the smaller group size. Although both ZIKV-infected groups had more

pathological changes identified in maternal-fetal interface tissues compared to mock dams, the
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only finding unique to high-dose infection was CHIV identified in a case of fetal demise (046–

107)(Table 1).

Fetal and placental in situ hybridization (ISH)

To determine ZIKV RNA distribution in fetal and placental tissues from dams with early fetal

loss (046–103, 046–104, 046–107), cross-sections from each placental cotyledon and multiple

Fig 3. ZIKV RNA levels in maternal-fetal interface tissues from high-dose and low-dose dams. Viral RNA was detected by ZIKV-specific RT-qPCR.

Only animals with detectable virus in at least one tissue are shown on the plot. Dams with early fetal loss are marked with an asterisk.

https://doi.org/10.1371/journal.pntd.0010623.g003
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cross-sections from each fetus were analyzed by ZIKV RNA in situ hybridization (ISH). ISH

revealed focal ZIKV infection in the placentas and fetuses in all three cases (Table 2 and Figs

5–7). Overall ZIKV detection was multifocal ZIKV RNA was detected throughout placental

chorionic villi but restricted to the villous mesenchyme and absent from the syncytiotropho-

blasts or basal plate (Fig 5). Multiple tissues of each fetus from fetal demise cases had vRNA

detectable throughout the body. Tissues in all three fetuses with detectable vRNA included spi-

nal cord and cerebral neuropil (Table 2 and Figs 6 and 7 and S10A–S10C and S10D–S10F).

Viral RNA was also detected in the muscle, connective tissues, and periosteum (Table 2 and

Figs 6B, 6C, S10J and S10K), muscle and mucosa of the intestines (Figs 6C, S10G and S10I),

and the brainstem (Fig 7).

Neonatal neurodevelopmental assessments and locomotion in the first

month of life

Infants were monitored weekly during the first month of life using the Schneider Neonatal

Assessment for Primates (SNAP) and Nodulus CatWalk. The four liveborn infants in the high-

dose ZIKV-DAK group and the four infants in the control group scored similarly in the

Fig 4. ZIKV RNA in fetal tissues and fluids detected by RT-qPCR from early fetal demise cases. Tissue samples were not available from 046–507.

Fluid samples are distinguished from tissue samples with a superscript F and are measured in vRNA copies/ml.

https://doi.org/10.1371/journal.pntd.0010623.g004

Table 1. Histopathological analysis of maternal-fetal interface tissues. Animals are grouped in columns based on exposure and/or pregnancy outcome.

Finding High dose %

(n)

High dose—fetal

loss % (n)

High dose—infant

survival % (n)

Low dose—infant

survival % (n)

ZIKV-DAK all %

(n)

Control—infant survival

—% (n)

Funisitis 25 (2) 66.7 (2) 0 25 (1) 25 (3) 0

Plasmacytic infiltration 50 (4) 0 80 (4) 25 (1) 41.7 (5) 0

Transmural infarction 75 (6) 66.7 (2) 80 (4) 100 (4) 83.3 (10) 50 (2)

Vasculopathy 25 (2) 33.3 (1) 20 (1) 50 (2) 33.3 (4) 25 (1)

Villous stromal

calcifications

37.5 (3) 0 60 (3) 25 (1) 33.3 (4) 100 (4)

CHIV 12.5 (1) 33.3 (1) 0 0 8.3 (1) 0

SCT knots 37.5 (3) 0 60 (3) 50 (2) 41.7 (5) 0

https://doi.org/10.1371/journal.pntd.0010623.t001
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orientation construct at seven, 17, and 21 days of life (DOL), but at 28 DOL infants in the

ZIKV-DAK group began to score lower (S11A Fig). The rate of motor development was also

found to be slower for infants in the ZIKV-DAK group as compared to controls (S11B Fig).

Although interesting, the differences in the orientation and motor development constructs are

not statistically significant (S9 Table). Assessment of motor coordination, balance, and gait

patterns using the Noldus CatWalk revealed ZIKV-DAK infant walking patterns were more

Table 2. Localization of ZIKV RNA throughout fetal tissues by ISH. Tissues and organs with positive ZIKV RNA

are listed for each section. Tissues listed as ‘NC’ were not collected. Heart, lung, liver, and adrenal glands were either

not collected or negative across all fetuses and are listed in this table.

Tissue 046–503 046–504 046–507

Stomach NC NC Positive

Intestines Positive Negative Positive

Periosteum Positive Positive Negative

Brainstem Negative Positive Positive

Neuropil Positive Positive Positive

Spinal cord Positive Positive Positive

https://doi.org/10.1371/journal.pntd.0010623.t002

Fig 5. Detection of ZIKV RNA by in situ hybridization in maternal-fetal interface tissues of dams with early fetal loss. Representative images of

ZIKV RNA distribution in the maternal-fetal interface tissues from the three cases of early fetal loss. Numerous foci of ZIKV RNA were detected in the

chorionic plate of (A) 046–103 (boxed), (B) 046–104 (arrows), and (C) 046–107 (boxed) as well as the placental parenchyma (villi) of (D) 046–103, (E)

046–104 (arrows), and 046–107 (boxed). ZIKV RNA is shown in red.

https://doi.org/10.1371/journal.pntd.0010623.g005
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heterogeneous than control infants at 14 and 21 DOL (S12C Fig and S10 Table). Specifically,

ZIKV-DAK infants had a transitional gait pattern, or limb dragging (S12C Fig). This transi-

tional, limb-dragging pattern, is distinct from the diagonal walking pattern seen in the Control

group that is standard for developing infant macaques.

Discussion

We found that increasing the dose of ZIKV-DAK increased the adverse fetal outcome rate to

three in eight pregnancies, up from 0 of 4 low-dose infections with ZIKV-DAK and two of 18

low-dose infections with ZIKV-PR. The primary adverse outcome we observed was fetal

demise between 17 and 21 DPI. The consistent timing of fetal demise relative to ZIKV-DAK

infection suggests a common cascade of pathologic events that culminate in fetal death. This

consistent timing has two important implications. First, it creates a tractable system for evalu-

ating therapeutics. Pregnancies that survive beyond this window are likely to survive to full

term, or approximately 165 gestational days. So, less than half of a typical macaque pregnancy

Fig 6. Detection of ZIKV RNA by in situ hybridization in fetal body tissues. Representative images of ZIKV RNA distribution in the maternal-fetal

interface and fetal tissues from the three cases of early fetal loss (excluding the head). Foci of ZIKV RNA were detected in (A) muscle and connective

tissue of lower digits (046–503) and (B) of the intestines (046–507) as well as (C) the spinal cord (046–504). ZIKV RNA is shown in red.

https://doi.org/10.1371/journal.pntd.0010623.g006

Fig 7. Detection of ZIKV RNA in fetal brainstem and head tissues from cases with fetal loss. ZIKV RNA was detected by in situ hybridization and is

shown in red. (A) Foci of ZIKV RNA in the brainstem of fetus 046–504 and (B) foci of ZIKV RNA in the medulla oblongata region of the brainstem

and the meninges (arrows) of fetus 046–507.

https://doi.org/10.1371/journal.pntd.0010623.g007
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(45 GD exposure plus approximately 30 days to assess fetal loss) is necessary to ascertain this

outcome. Second, this rapid pregnancy loss, if extrapolated to humans, would coincide with

miscarriage in late first or early second trimester, a time when many pregnacies are spontane-

ously lost. This could explain why the impact of African-lineage ZIKV on pregnancies was not

identified in the decades since the original discovery of this virus [26]. In addition to posing a

threat to human health, pregnancy loss could be especially consequential to endangered Great

Apes that live in areas where ZIKV is endemic. For example, serologic assays in wild Great

Apes from Africa indicate 13% (5 of 40) of orangutans [27], 22.2% (2 of 9) of chimpanzees

[28], and 2.3% of feral apes [29] had anti-ZIKV antibodies, although the serology data from

these studies is limited by potential cross-reactivity to other flaviviruses.

A key limitation to extrapolating these results to humans and other primates is that the sub-

cutaneous (SQ) exposure dose of 1x108 PFU is higher than typically delivered by an infected

mosquito, which is estimated to be 1x104 to 1x106 PFU [22,23,30]. The unusually short time

to peak viremia (approximately 2 days) observed following subcutaneous high-dose exposures

artificially shortens the potential therapeutic window, which is typically 5 days for mosquito

to macaque ZIKV transmission [30]. However, use of therapeutics after 30 days can improve

infection outcomes in unique cases of prolonged viremia [31]. It should be noted that even if

this model is not ideal for testing post-exposure therapeutics, it may still be valuable for

unpacking mechanisms of fetal demise and understanding the neurologic impact of ZIKV--

DAK on surviving infants with in utero exposure. It may also be highly valuable for testing

prophylaxis options.

The detailed examination of the three fetal losses could provide early clues to the mecha-

nism(s) of fetal death. Detection of relatively high vRNA loads by RT-qPCR in fetal neural tis-

sue and widespread presence of ZIKV RNA throughout the neural parenchyma (neuropil) by

ISH in all three cases of early fetal loss suggest neurotropism for ZIKV-DAK (Figs 4–7 and

S10A–S10C and Table 2). Additionally, the presence of ZIKV RNA in the brainstem and spinal

cord is consistent with human case studies that have identified spinal cord damage in cases of

CZS with and without fetal loss, as well as brainstem hypoplasia (Figs 6D, 7 and S10D–S10F

and Table 2) [32–34]. Given the evidence that ZIKV infiltrated the fetal CNS in all cases of

early fetal loss, we anticipated that surviving ZIKV-DAK exposed macaque infants (046–501,

046–502, 046–505, 046–506) would display early neurodevelopmental deficits consistent with

CZS. However, data collected from weekly neurodevelopmental assessments of surviving

infants during the first month of life suggested no significant differences between groups (S11

and S12 Figs, S9 and S10 Tables). Future studies will need to explore emerging developmental

trends beyond the first month of life to determine long-term impacts in infants prenatally

exposed to ZIKV-DAK.

Collectively, these results suggest that infection with low-passage African-lineage ZIKV late

in the first trimester is associated with fetal demise, but only when a higher dose of virus is

administered. This particular model is useful for asking questions about the overall pathogene-

sis of infection and mechanisms of demise, as it yielded two different pregnancy outcomes

across animals that received the same high-dose exposure. Furthermore, because fetal loss

does not occur in all cases using this model, we are able to begin to study the developmental

impact of in-utero ZIKV-DAK exposure. Although an increased rate of adverse fetal outcome

is useful for future intervention studies where cohort sizes are limited by constraints on preg-

nant rhesus macaques, a frequency of 37.5% may still not be sufficient to power studies of

countermeasures adequately. Future intervention models must therefore build off of this

model to further increase rates of adverse fetal outcomes, perhaps by infecting earlier in the

first trimester when the fetus could be more vulnerable to viral infection.
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Materials and methods

Ethics statement

The University of Wisconsin—Madison, College of Letters and Science and Vice Chancellor

for Research and Graduate Education Centers Institutional Animal Care and Use Committee

approved the nonhuman primate research covered under protocol number G006139. The

University of Wisconsin—Madison Institutional Biosafety Committee approved this work

under protocol number B00000117.

Study design

Eight rhesus macaques (Macaca mulatta) were identified, confirmed pregnant by ultrasound,

and exposed during the first trimester at approximately GD 45 (term 165 ± 10 days) with

1x108 PFU of an African-lineage ZIKV (ZIKV-DAK) administered subcutaneously (SQ).

Macaque dams utilized in the study were free of Macacine herpesvirus 1, Simian Retrovirus

Type D (SRV), Simian T-lymphotropic virus Type 1 (STLV), and Simian Immunodeficiency

Virus as part of the Specific Pathogen Free (SPF) colony at WNPRC. Maternal health and

pregnancies were monitored throughout the course of the study. Blood samples were collected

for isolation of plasma and peripheral blood mononuclear cells (PBMC) from all dams prior to

ZIKV exposure on days -4 and 0, daily post-exposure from days one to seven, then twice

weekly until resolution of maternal plasma vRNA load, and once weekly until study comple-

tion (Fig 1A). Serum was collected on days -4 and 0 pre-exposure, then on days two, four,

seven, 10, 14, 24, 28, and 30 post-exposure, and then weekly thereafter. Urine was passively

collected from the removable cage bottom pans below the animals’ cages at available time

points. Saliva swabs were collected from dams on days 0 to 4 and 7 to 10 post-exposure, and

then at all blood collection time points thereafter. Data collected from these eight dams were

compared to data from dams previously infected with a low dose (1x104 PFU) of ZIKV-DAK,

as well as mock dams comparably sampled as controls [25].

Care and use of macaques

The macaques used in this study were cared for by the staff at the Wisconsin National Primate

Research Center (WNPRC) in accordance with recommendations of the Weatherall report

and the principles described in the National Research Council’s Guide for the Care and Use of

Laboratory Animals [35]. All animals were housed in enclosures with required floor space and

fed using a nutritional plan based on recommendations published by the National Research

Council. Animals were fed a fixed formula, extruded dry diet with adequate carbohydrate,

energy, fat, fiber, mineral, protein, and vitamin content. Macaque dry diets were supplemented

with fruits, vegetables, and other edible objects (e.g., nuts, cereals, seed mixtures, yogurt, pea-

nut butter, popcorn, marshmallows, etc.) to provide variety to the diet and to inspire species-

specific behaviors such as foraging. To further promote psychological well-being, animals

were provided with food enrichment, structural enrichment, and/or manipulanda. Environ-

mental enrichment objects were selected to minimize chances of pathogen transmission from

one animal to another and from animals to care staff. While on study, all animals were evalu-

ated by trained animal care staff at least twice each day for signs of pain, distress, and illness by

observing appetite, stool quality, activity level, and physical condition. Animals exhibiting

abnormal presentation for any of these clinical parameters were provided appropriate care by

attending veterinarians. Prior to initial viral infection and comprehensive ultrasounds,

macaques were sedated using ketamine anesthesia and monitored regularly until fully recov-

ered from anesthesia. Animals were not sedated for regular blood draws and fetal heart rate
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checks. When not sedated, animals were placed in a table-top restraint device to allow for sam-

ple collection.

Viral infection

Zika virus strain Zika virus/A.africanus-tc/Senegal/1984/DAKAR 41524 (ZIKV-DAK; Gen-

Bank: KX601166) was originally isolated from Aedes africanus mosquitoes in Senegal in 1984.

One round of amplification on Aedes pseudocutellaris cells, followed by amplification on C6/

36 cells, followed by two rounds of amplification on Vero cells, was performed by BEI

Resources (Manassas, VA) to create the stock (five total passages) [15]. Raw FASTQ reads

(BioProject: PRJNA673500) and a FASTA consensus sequence (BioProject: PRJNA476611) of

the stock of ZIKV/Aedes africanus/SEN/DAK-AR-41524/1984 are available at the Sequence

Read Archive. For virus exposures, ZIKV-DAK stock was diluted to 1x108 PFU in 1ml of 1X

phosphate buffered saline (PBS) and delivered to each dam subcutaneously (SQ) over the cra-

nial dorsum via a 1ml luer lock syringe.

Ultrasonography and fetal monitoring

Fetal growth and viability were monitored every seven to ten days by ultrasound and doppler.

Measurements such as heart rate (HR), biparietal diameter (BPD), head circumference (HC),

femur length, and abdominal circumference (AC) were obtained. Fetal heart rates were moni-

tored twice weekly throughout gestation to confirm viability. Mean growth measurements

were plotted against mean growth measurements and standard deviations from rhesus

macaques at specific gestational ages, collected by Tarantal et al. [36]. To contextualize mea-

surements collected before GD 50, the standard growth curve was extrapolated. Ultrasound

interpretations were provided by a maternal-fetal medicine specialist.

Temperature and body weight measurement

Rectal temperatures and body weights of the dams were collected throughout the study.

WNPRC veterinary staff were consulted in determining whether elevation of an individual

animal’s body temperature beyond reference ranges was clinically significant.

ZIKV RNA isolation from plasma, urine, and saliva

Plasma and PBMCs were isolated from EDTA-treated whole blood by layering blood on top of

ficoll in a 1:1 ratio and performing centrifugation at 1860 x rcf for 30 minutes with brake set at

one. Plasma and PBMCs were extracted and transferred into separate sterile tubes. R10

medium was added to PBMCs before a second centrifugation of both tubes at 670 x rcf for

eight minutes. Media was removed from PBMCs before treatment with 1X Ammonium-Chlo-

ride-Potassium (ACK) lysing buffer for five minutes to remove red blood cells. An equal

amount of R10 medium was added to quench the reaction before another centrifugation at

670 x rcf for eight minutes. Supernatant was removed before freezing down of cells in CryoStor

CS5 medium (BioLife Solutions) for long term storage in liquid nitrogen freezers. Serum was

obtained from clot activator tubes by centrifugation at 670 x rcf for eight minutes or from

serum separation tubes (SST) at 1400 x rcf for 15 minutes. Urine was passively collected from

the bottom of animals’ housing, centrifuged for five minutes at 500 x rcf to pellet debris, and

270 ul was added into 30 ul DMSO followed by slow freezing. Saliva swabs were obtained and

put into 500 ul viral transport media (VTM) consisting of tissue culture medium 199 supple-

mented with 0.5% FBS and 1% antibiotic/antimycotic. Tubes with swabs were vortexed and

centrifuged at 500 x rcf for five minutes. Viral RNA (vRNA) was extracted from 300 uL plasma,
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300 uL saliva+VTM, or 300 uL urine+DMSO using the Maxwell RSC Viral Total Nucleic Acid

Purification Kit on the Maxwell 48 RSC instrument (Promega, Madison, WI).

Maternal-fetal interface collection and dissection from near full-term

pregnancies

Cesarean sections were performed to deliver full term infants. The placenta and associated

membranes were harvested and immediately placed in sterile petri-dishes. Each placental disc

was weighed and measured and then maintained on wet ice prior to same-day dissection. A

full-thickness center-cut was collected from each placental disc and fixed with 4% PFA in solu-

tion for histologic evaluation. The remainder of each placental disc was washed with 1X PBS

and separated into cotyledons. A center-cut was taken from each cotyledon and placed into a

biopsy cassette. Biopsy cassettes were fixed with 4% PFA for future analysis. Each cotyledon

was divided into three layers: decidua, parenchyma, and chorionic plate. Two samples from

each layer were collected and stored in either 750ul VTM or 1mL RNAlater. Tissues in VTM

were frozen immediately after collection and stored at -80˚C. Tissues in RNA later were left to

sit in solution for 24 hours at 4˚C, after which RNAlater was aspirated off and the tissues were

stored at -80˚C prior to vRNA isolation.

Maternal-fetal interface collection and dissection from first trimester fetal

loss

Following early fetal demise a cesarean section was performed and the conceptus was immedi-

ately placed in a sterile petri dish. Fetal and maternal-fetal interface tissues were evaluated by

WNPRC veterinary pathologists and the tissues collected included full thickness center sec-

tions from each placental disc, three sections of amniotic/chorionic membrane from each pla-

cental disc, three sections of decidua from each placental disc, and one section of each of the

following: fetal membranes, umbilical cord, maternal liver, maternal spleen, mesenteric lymph

node (LN), uterus/placental bed, fetal liver, fetal lung, fetal kidney, fetal brain, fetal skin/muscle

from thigh, fetal eye, fetal spleen, fetal upper limb, fetal chest, and fetal skull with brain. Two

samples from each tissue section were also collected and stored in either 750ul VTM or 1mL

RNAlater for vRNA assessment and future analysis. Tissues in VTM and RNAlater were stored

respectively as described above.

ZIKV RNA isolation from tissue samples

RNA was recovered from RNAlater-treated tissue samples using a modification of the method

described by Hansen et al. [37]. Briefly, up to 200 mg of tissue was disrupted in TRIzol Reagent

(Thermo Fisher Scientific, Waltham, MA) with stainless steel beads (2x5 mm) using a Tissue-

Lyser (Qiagen, Germantown, MD) for three minutes at 25 r/s twice. Following homogeniza-

tion, samples in TRIzol were separated using bromo-chloro-propane (Sigma, St. Louis, MO).

The aqueous phase was collected into a new tube and glycogen was added as a carrier. The

samples were washed in isopropanol and ethanol-precipitated overnight at -20˚C. RNA was

then fully re-suspended in 5 mM Tris pH 8.0.

Viral RNA quantification by RT-qPCR

Viral RNA was quantified using a highly sensitive RT-qPCR assay based on the one developed

by Lanciotti et al. (2008) [38], though the primers were modified to accommodate both Asian

and African-lineage ZIKV. RNA was reverse transcribed and amplified using the TaqMan Fast

Virus 1-Step Master Mix RT-qPCR kit (Invitrogen) on the LightCycler 480 or LC96
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instrument (Roche, Indianapolis, IN) and quantified by interpolation onto a standard curve

made up of serial tenfold dilutions of in vitro transcribed RNA. RNA for this standard curve

was transcribed from a plasmid containing an 800 bp region of the ZIKV genome that is tar-

geted by the RT-qPCR assay. The final reaction mixtures contained 150 ng random primers

(Promega, Madison, WI), 600 nM each primer and 100 nM probe. Primer and probe

sequences are as follows: forward primer: 5’- CGYTGCCCAACACAAGG-3’, reverse primer:

50-CCACYAAYGTTCTTTTGCABACAT-30 and probe: 50-6-carboxyfluorescein-AGCC-

TACCTTGAYAAGCARTCAGACACYCAA-BHQ1-3’. The reactions cycled with the follow-

ing conditions: 50˚C for five minutes, 95˚C for 20 seconds followed by 50 cycles of 95˚C for 15

seconds and 60˚C for one minute. The limit of quantification of this assay is 100 copies/ml.

Histology

Tissues collected for histology were fixed in 4% paraformaldehyde for one to four days

depending on size and degree of autolysis prior to sectioning, processing, and embedding in

paraffin. Paraffin sections were stained with hematoxylin and eosin (HE). Photomicrographs

were taken using Olympus BX46 Bright field microscope (Olympus Inc, Center Valley, PA)

with an attached Spot flex 15.2 64Mp camera (Spot Imaging) and were captured using Spot

Advance 5.6.3 software.

IgM ELISA

Serum samples from 0, 7, 14, and 21 DPI were thawed at room temperature and added to an

IgM fc-capture antibody conjugated plate (AbCam ab213327). HRP-conjugated ZIKV antigen

(NS1) was added after the addition of serum, followed by addition of TMB and stop solution.

The plate absorbance was read at dual wavelengths of 450nm and 600nm, IgM concentration

is measured in AbCam units relative to the kit cut-off control (sample absorbance multiplied

by 10, then divided by the absorbance of the cut-off control to yield AbCam Units).

PRNT

Titers of ZIKV neutralizing antibodies (nAb) were determined for days 0, 21, and 28 post-

infection using plaque reduction neutralization tests (PRNT) on Vero cells (ATCC #CCL-81)

with a cutoff value of 90% (PRNT90) [39]. Briefly, ZIKV-DAK was mixed with serial two-fold

dilutions of serum for one hour at 37˚C prior to being added to Vero cells. Neutralization

curves were generated in GraphPad Prism (San Diego, CA) and the resulting data were ana-

lyzed by nonlinear regression to estimate the dilution of serum required to inhibit 90% Vero

cell culture infection [39,40].

In situ hybridization (ISH)

ISH probes against the ZIKV genome were commercially purchased (cat# 468361, Advanced

Cell Diagnostics, Newark, CA). ISH was performed using the RNAscope1 Red 2.5 kit (cat#

322350, Advanced Cell Diagnostics, Newark, CA) according to the manufacturer’s protocol.

After deparaffinization with xylene, a series of ethanol washes, and peroxidase blocking, sec-

tions were heated with the antigen retrieval buffer and then digested by proteinase. Sections

were then exposed to the ISH target probe and incubated at 40˚C in a hybridization oven for

two-hours. After rinsing, ISH signal was amplified using the provided pre-amplifier followed

by the amplifier conjugated to alkaline phosphatase l, and developed with a Fast Red chromo-

genic substrate for 10 minutes at room temperature. Sections were then stained with hematox-

ylin, air-dried, and mounted prior to imaging using a Leica DM 4000B microscope equipped
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with a Leica DFC310FC camera and Surveyor software (Version 9.0.2.5, Objective Imaging,

Kansasville, WI).

Neurodevelopmental assessments

The neurodevelopmental assessments were administered between approximately 1300 and

1500 hours at seven, 14, 21, 28 (+/- 2) DOL, with the day of birth considered DOL one. Testing

occurred in rooms with decreased sensory stimuli to support infant regulation. Throughout

the assessment and analysis, the testers were blinded to the infant’s exposure to prevent any

bias during collection and analysis.

We evaluated neonatal macaque neurobehavior with a well-validated assessment developed

for infant rhesus macaques, termed the Schneider Neonatal Assessment for Primates (SNAP)

[41–45], which we have previously used to define neonatal development in prenatally ZIKV-

exposed infants [46]. The SNAP comprises 29 test items in the neurodevelopmental areas of

interest and is made up of the Orientation, Motor maturity and activity, Sensory responsive-

ness, and State control developmental constructs. Two trained examiners were present for all

neurobehavioral testing and scoring to ensure test administration reliability (>95% agreement

between examiners). Items were administered in a consistent sequence across all animals to

optimize performance and decrease handling time. Assessments were hand-scored during

administration and forms were transferred to electronic versions by Qualtrics Survey Software

(Qualtrics, Provo, UT). The ratings were based on a five-point Likert scale ranging from 0 to 2.

Higher scores reflect optimal scores; variables in which higher numbers do not reflect optimal

scores were reverse coded. Test items which represent repetitions of the same skill, such as

right, left, up, and down orientation, were averaged together before calculating the average of

all the test items within a construct, as described previously [46].

Locomotion assessments

Immediately following the SNAP assessment, the infant was transported to a new testing room

for a quantitative measurement of the animals locomotion using the CatWalk XT version 10.6

(Noldus Information Technology, Wageningen, The Netherlands). Human testers placed the

infant into the opening of the CatWalk to walk through a 130 cm long walkway. As the animal

walked across and applied pressure on the walkway the green LEDs were refracted on the red

background to capture steps. A high-speed digital camera recorded the infant as they moved

across the walkway into a nesting box or was picked up by a human tester. The human tester

placed the infant back into the opening of the CatWalk until at least three usable runs were col-

lected or the infant was determined to be unable to complete or refused the task. A usable run

was defined as having at least two consecutive footfalls per limb on the walkway without stop-

ping. If the infant was unable to walk through, the tester attempted to train the infant by put-

ting them partially through the CatWalk system or placing their blanket in the system as a

reinforcer. Data was saved to a USB drive and then immediately transferred to a secure shared

research folder.

A group mean and standard deviation for the three runs for each locomotion parameter

with Noldus software (Noldus Information Technology, Wageningen, The Netherlands). We

evaluated the animals for interlimb coordination and for temporal gait parameters using duty

cycle, balance using base of support, and gait maturity categorizing by a diagonal walking pat-

tern. Duty cycle (stand/stand+swing) is the percentage of time the infant had their limb on the

walkway (stand) during a step cycle. Base of support includes both the distance between front

right and left limb placements and the distance between left and right hind limb placement.

The diagonal walking pattern is defined by when a hindlimb paw touches the ground and is
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closely followed by or occurs simultaneously with the contralateral limb paw [47,48]. The

speed (distance/time) in which the infant traversed the CatWalk was also measured. All tem-

poral gait parameters were reported as percentages of the step cycle to control for variance in

animal velocity, limb length, and body weight.

Statistical analyses

Overall plasma vRNA loads were calculated for dams receiving a high dose of ZIKV-DAK

(1x108 PFU/ml) and historical controls that received a lower dose (1x104 PFU/ml) [25] using

the trapezoidal method to calculate the area under the curve (AUC) in R Studio v. 1.4.1717.

AUC values were then compared between groups (high-dose versus low-dose) using a t-test.

Peak plasma vRNA loads, as well as the duration of positive vRNA detection as defined previ-

ously, were also compared between dams receiving either a high or low exposure dose using

Wilcoxon rank sum tests with continuity correction using R Studio v. 1.4.1717. The time to

peak plasma vRNA load was also compared between dams. Time to peak was analyzed using a

linear mixed effects model with the day of peak plasma vRNA load and group (high-dose or

low-dose) as the fixed effects and animal ID as the random effect to account for variability by

individual within each group using the nlme package in R Studio v. 1.4.1717. The distribution

of model residuals was approximately normal. For all analyses of plasma vRNA loads, reported

p-values are two-sided and P<0.05 was used to define statistical significance.

In-utero growth data were analyzed by calculating Z-scores which were derived from fitting

a spline regression for each outcome (HC, BPD, femur length, abdominal circumference)

using the normative reference data described by Tarantal et al. [36]. The first available mea-

surement for each outcome was taken as baseline and changes in Z-scores from baseline were

calculated for each fetus and analyzed using a linear mixed effects model with animal-specific

random effects and an autoregressive correlation structure of order one. Slope parameters for

changes in Z-score were calculated for each group (high-dose, low-dose, and mock) and

reported with corresponding two-sided 95% confidence intervals (CI) (S8 Fig and S3 and S4

Tables). Z-scores were not constructed for ratio outcomes (HC-femur length ratio, BPD-

femur length ratio) instead, the raw values were log-transformed and analyzed directly.

Quantitative infant variables measured at birth were summarized as means and standard

deviations and compared between experimental groups (high dose, low dose, and mock) using

one-way analysis of variance (ANOVA) with post-hoc pairwise comparisons. Infant gender

distribution was compared between experimental groups using Fisher’s exact test. Birth mea-

surements were compared between experimental conditions using analysis of covariance

(ANCOVA) with gestational day, dam age, and weight as covariates. Residual and normal

probability plots were examined to verify the model assumptions. The results were reported in

terms of model-adjusted means along with the corresponding 95% confidence intervals (95%

CI) (S5–S7 Tables).

Longitudinal changes in infant SNAP parameters were analyzed using a linear mixed effects

model with animal specific random effects and an autoregressive correlation structure was

used to compare subscale scores between groups each week. Group, week and the interaction

effect between group and week were included as factors in the linear mixed effects model. Days

before placement with a female and birth weight were included as covariates. Residual plots

and histograms were examined to verify the distribution assumptions. All reported P-values

are two-sided and P<0.05 was used to define statistical significance. Statistical analyses were

conducted using SAS software (SAS Institute, Cary NC), version 9.4 (S11 Fig and S9 Table).

Longitudinal changes in infant gait parameters were analyzed using a linear mixed-effects

model with animal-specific random effects and an autoregressive correlation structure of
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order one to account for the repeated measures from week two to week four. Group, week and

the two-way interaction effect between group and week were included as the factors. Number

of days before placement with a female, gestational age, and birth weight and speed were

included as covariates (speed was excluded when comparing speed between groups). Sex was

not included as a covariate because the control group was all female and it was not possible to

compare groups with this coviarate. Model assumptions were validated by examining residual

plots. The results are reported in terms of adjusted means and the corresponding 95% confi-

dence intervals. Success rates were compared each week between groups using Fisher’s exact

test. Diagonal walking pattern comparisons were adjusted by the number of days before place-

ment with a female using an exact, simulation based, logistic regression approach with bino-

mial outcomes (it was not computationally possible to adjust the analysis by birth weight or

gestational age). The Wilson score method was used to construct 95% confidence intervals for

the success rates (S12 Fig and S10 Table).

Supporting information

S1 Fig. Maternal temperature and weight of dams receiving high-dose (1x108 PFU) ZIKV--

DAK. (A) Maternal temperatures over time. (B) Maternal weights over time. Dams with early

fetal loss are marked with an asterisk and were not monitored after cesarean section.

(TIF)

S2 Fig. Viral loads in plasma samples detected by ZIKV-specific RT-qPCR. (A) Viral loads

through 60 DPI in high-dose dams. Dams with early fetal loss are marked with a single asterisk.

(B) Viral loads through 60 DPI in low-dose dams.

(TIF)

S3 Fig. Replication of ZIKV-DAK in (A) urine and (B) saliva of dams receiving 1x108 PFU

ZIKV-DAK. Viral loads were measured by ZIKV-specific RT-qPCR.

(TIF)

S4 Fig. Replication kinetics of ZIKV-DAK in high-dose dams, grouped by birth outcome.

Viral loads were measured in plasma samples by ZIKV-specific qRT-PCR. (A) Comparison of

area under the curve (AUC). For all graphs in parts B-E, the mean value is shown with error

bars representing standard deviation. (B) Days post-infection of the last positive plasma vRNA

load. (C) Peak plasma viral load in copies/ml plasma. (D) Day post-infection of peak plasma

viral load. ��� Represents a p-value of<0.001, while no asterisk represents no statistical differ-

ence.

(TIF)

S5 Fig. All animals developed robust neutralizing antibody titers after exposure. Plaque

reduction neutralization tests were performed on serum samples collected 0 days post infec-

tion (DPI) and between 21 and 28 DPI from animals infected with high-dose (1x108 PFU) or a

low dose (104 PFU) of ZIKV-DAK. Dams with early fetal loss are marked with an asterisk.

(TIF)

S6 Fig. Maternal serum IgM titers. Levels of IgM antibodies were measured in maternal

serum samples at 0, 7, 14, 17 and 21 or 24 DPI. Values are normalized to AbCam units for

comparison based on the manufacturer’s recommendation (see materials and methods).

(TIF)

S7 Fig. Fetal heart rate throughout gestation. Fetal heart rate was monitored biweekly by

ultrasound on high-dose (1x108 PFU ZIKV-DAK) dams to confirm fetal viability. The
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horizontal, dotted lines on the graph represent the range of normal heart rates for fetuses at

WNPRC. Cases of early fetal loss are marked with an asterisk.

(TIF)

S8 Fig. In-utero fetal growth from weekly sonographic imaging. Normative data generated

by Tarantal at CNPRC were used to calculate Z-scores for each animal. Open circles represent

the change in Z-score from baseline for each animal. Solid lines show the growth trajectories

for each group and were quantified by calculating regression slope parameters from baseline

using a linear mixed-effects model with animal-specific random effects and an autoregressive

correlation structure.

(TIF)

S9 Fig. Transmural infarcts in the placentas of dams with early fetal loss. (A) Placental

infarction in 046–103 and (B) 046–107. Placental tissues were stained with H&E and are

imaged at 4X magnification. Black boxes denote areas of infarct.

(TIF)

S10 Fig. Detection of ZIKV RNA by in situ hybridization in fetal body tissues. Representa-

tive images of ZIKV RNA distribution in fetal tissues from the three cases of early fetal loss

(excluding the head). Foci of ZIKV RNA were detected in the neuropil of (A) 046–503

(boxed), (B) 046–504 (arrows), and (C) 046–507; the spinal cord of (D) 046–503 (arrows), (E)

046–504 (boxed), and (F) 046–507 (arrows); the intestines of (G) 046–503 (boxed, arrows) and

(I) 046–507 (boxed, arrows); and the periosteum of (J) 046–503 (boxed, arrows) and (K) 046–

507 (arrows). ZIKV RNA is shown in red.

(TIF)

S11 Fig. Neonatal neurodevelopment measured by SNAP in the first month of life. Neuro-

development was measured by SNAP at seven, 14, 21, and 28 days of life for high-dose ZIKV--

DAK exposed (ZIKV-HD) and control infants. Scores in the (A) Orientation, (B) Motor

Maturity and Activity, (C) Sensory Responsiveness, and (D) State control constructs are illus-

trated while controlling for birth weight and days reared in nursery conditions. Animals were

rated on a five point Likert scale ranging from 0 to 2 with higher scores reflecting optimal

scores. For all graphs shown the results are reported in terms of model-adjusted means along

with the corresponding 95% confidence intervals (95% CI).

(TIF)

S12 Fig. Locomotion in the first month of life measured by the CatWalk. (A) Screenshot of

the infant completing a run in the CatWalk Noldus XT measuring footfalls on a pressure plate

that are labeled showing bilateral front (RF, LF) and hind (RH, LH) limbs. For all graphs

shown in C-F, the results are reported in terms of model-adjusted means along with the corre-

sponding 95% confidence intervals (95% CI). (B) Visual representation of gait variables

including duty cycle (stand/stand + swing), base of support, and speed (cm/s), (C) % of runs in

mature locomotion pattern, (D) Average speed across runs, (E) Base of support defined

between the left and right foot/hand prints, and F) Duty cycle defined as the % time spent on

each limb.

(TIF)

S1 Table. Demographic characteristics of the 17 pregnant rhesus macaques in this study.

Animals were subcutaneously (SQ) exposed to either 1x108 PFU ZIKV-DAK, 1x104 PFU

ZIKV-DAK, or PBS (mock) between GD 41 and GD 50.

(DOCX)
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S2 Table. In utero imaging observations and interpretations from dams that received

high-dose ZIKV-DAK.

(DOCX)

S3 Table. Slope parameters for changes in z-scores for in-utero measurements across gesta-

tion, stratified by group. Z-scores are log-transformed ratios. Animals in high-dose ZIKV--

DAK, low-dose ZIKV-DAK, and mock groups were compared.

(DOCX)

S4 Table. Pairwise comparisons between groups of slopes for z-scores of in-utero measure-

ments. Animals in high-dose ZIKV-DAK, low-dose ZIKV-DAK, and mock groups were com-

pared.

(DOCX)

S5 Table. Statistical analyses comparing weights, head circumference (HC), biparietal

diameter (BPD) and weight. Analysis was performed between infants in high-dose ZIKV--

DAK and mock groups. Because gender was confounded with group it was not included as a

covariate in this analysis.

(DOCX)

S6 Table. Statistical analyses comparing APGAR scores at one, five, and 10 minutes of life.

Comparisons of APGAR scores were made between infants in high-dose, low-dose, and mock

groups. Because gender was confounded with group it was not included as a covariate in this

analysis.

(DOCX)

S7 Table. Statistical analysis comparing at-birth demographic characteristics. Characteris-

tics of gestational day (GD), dam weight, dam age, and fetal gender were compared between

mock (n = 4), high-dose (n = 5), and low-dose (n = 4) groups.

(DOCX)

S8 Table. Morphological diagnosis of maternal-fetal interface tissue and fetal tissue from

animals in high-dose, low-dose, and control groups.

(DOCX)

S9 Table. Comparison of neonatal development with the Schneider Neonatal Assessment

Protocol (SNAP). High-dose ZIKV-DAK infants are compared to control infants.

(DOCX)

S10 Table. Comparison of gait development with the Nodulus CatWalk. High-dose ZIKV--

DAK infants are compared to control infants.

(DOCX)
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