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Abstract: The grasscutter (also known as the greater cane rat; Thryonomys swinderianus) is a large rodent
native to West Africa that is currently under domestication process for meat production. However, little
is known about the physiology of this species. In the present study, aiming to provide information
about gut microbiota of the grasscutter and better understand its physiology, we investigated the
intestinal microbiota of grasscutters and compared it with that of other livestock (cattle, goat, rabbit,
and sheep) using 16S rRNA metagenomics analysis. Similar to the other herbivorous animals, bacteria
classified as Bacteroidales, Clostridiales, Ruminococcaceae, and Lachnospiraceae were abundant
in the microbiome of grasscutters. However, Prevotella and Treponema bacteria, which have fiber
fermentation ability, were especially abundant in grasscutters, where the relative abundance of
these genera was higher than that in the other animals. The presence of these genera might confer
grasscutters the ability to easily breakdown dietary fibers. Diets for grasscutters should be made
from ingredients not consumed by humans to avoid competition for resources and the ability to
digest fibers may allow the use of fiber-rich feed materials not used by humans. Our findings
serve as reference and support future studies on changes in the gut microbiota of the grasscutter as
domestication progresses in order to establish appropriate feeding methods and captivity conditions.
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1. Introduction

The human population has grown by 30% in recent decades in Ghana [1], where food supply balance
has been unstable, particularly in the northern area, causing severe malnutrition [2]. In order to solve
food problems, it is essential to secure not only grain but also animal protein sources [2]. In the northern
area of Ghana, the hunting of wild animals is the main source of protein [3], which has a serious impact
on ecosystems and raises concern about the risk of zoonotic infections. Therefore, it is urgent to secure
a sustainable protein source to replace wild animals [4], but it is difficult to breed large livestock (e.g.,
bovine or swine) or fish in the northern area, where climatic conditions are harsh. Moreover, conventional
livestock (e.g., cattle, pig, and chicken) consumes large amounts of grains and, thus, compete with humans
for grain crops [5]. The domestication of animals that can be raised on feed that are not consumed by
humans stands as an attractive alternative. Currently, there is an on-going project in northwestern Ghana
aiming to enhance the domestication of a large rodent native to West Africa called grasscutter (Thryonomys
swinderianus, also known as the greater cane rat), whose meat is a delicacy for people in West Africa [6].
As part of this project, we developed DNA markers to support the genetic management of the grasscutter
in Ghana [7]. Still, there is limited information on grasscutter physiology.

Growing evidence indicates a close relationship between nutrient utilization and gut microbiome
communities in various animals [8–11]. For example, herbivorous small hindgut fermenters get
short-chain fatty acids from the bacterial fermentation of fiber carbohydrates in the cecum and essential
amino acids from microbial proteins through cecotrophy [12–15]. Since the grasscutter is a herbivorous
small hindgut fermenter, microorganisms living in its cecum are expected to play an important role
in its digestive physiology. Moreover, the carbohydrate fermentation ability of microbiota in captive
animals with unnatural feeding habits is inferior to that of wild animals [9]. Therefore, assessing the
microbiota of grasscutters may help to determine the appropriate feed materials and composition for
promoting domestication of grasscutters. Moreover, gut microbiota of livestock is being profiled all
over the world, and the interplay between health condition or growth performance of livestock and
their gut microbiota is gradually becoming clearer. However, grasscutters are still in the process of
being domesticated, and there is no data on their gut microbiota.

Thus, in the present study, to form a better view of the grasscutter gut microbiome, we investigated
the microbiota of grasscutters using 16S rRNA metagenomics analysis and compared it to that of
conventional livestock animals.

2. Materials and Methods

2.1. Animals and Sample Collection

This research was conducted with the approval of the Gifu University animal experiment committee
(Approval number: 17070; approval date: 2017.7.3) and the College of Basic and Applied Sciences
Directorate (approval number was not assigned). We collected feces from 5 grasscutters and 16 livestock
animals (cattle, Bos indicus: Sanga; goat, Capra hircus: the West-African Dwarf; rabbit, Oryctolagus cuniculus:
the New Zealand white × California White; and sheep, Ovis aries: the Nungua Black Head; n = 4 for
each species) in September 2016, 2017, and 2018 in Ghana (Figure 1). Grasscutters were purchased at the
Kantamanto bushmeat market in the city of Accra, Ghana. Animals traded at the bushmeat market are
hunted and brought from a wide geographical area in the coastal zone of Ghana, so their exact location is
unknown. The other samples were obtained from livestock reared at the Livestock and Poultry Research
Centre, University of Ghana (5◦40′28” N, 0◦6′5” W; Greater Accra; 15 km north of Accra). Feces were
stored on ice, and fecal DNA extraction was conducted within 1 h after sampling.
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Figure 1. Livestock animals examined in this study: grasscutter (Thryonomys swinderianus; (A), the West
African Shorthorn cattle (Bos primigenius; (B), the West African Dwarf goat (Capra hircus; (C), the New
Zealand White × California White cross bred rabbit (Oryctolagus cuniculus; (D), and the Nungua Black
Head sheep (Ovis aries; (E).

2.2. Analysis of Fecal Microbiota by 16S rRNA Metagenomics Sequencing

DNA was extracted from feces using ISOFECAL for beads beating (Nippon Gene, Tokyo, Japan)
according to the manufacturer’s instructions. The V3-V4 hypervariable region of bacterial 16S rRNA
genes was amplified using the universal primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R
(5′-GACTACHVGGGTATCTAATCC-3′) [16]. The PCR reaction mixture was composed of 10 µM
forward primer, 10 µM reverse primer, 2× premix Ex Taq HS (Takara Bio, Shiga, Japan), and the
extracted fecal DNA template. The first PCR conditions were: initial denaturation at 94 ◦C for 3 min,
followed by 25 cycles of 94 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 30 s, and a final extension step at 72 ◦C
for 10 min. The second PCR conditions for index attachment were: initial denaturation at 98 ◦C for
30 s, followed by 8 cycles of 98 ◦C for 30 s, 60 ◦C for 30 s, 72 ◦C for 30 s, and a final extension step
at 72 ◦C for 5 min. The amplicons were purified using AMPure XP beads (Beckman Coulter, Brea,
CA, USA). Paired-end sequencing of all libraries was performed on an Illumina MiSeq sequencer
(Illumina, San Diego, CA, USA) using a MiSeq Reagent kit v3 (600 cycles; Illumina) according to
the manufacturer’s instructions. Operational taxonomic unit (OTU) identification and phylogenetic
classification were performed using QIIME v2.0 [17]. The database for taxonomic assignment (identity
99%) was Greengenes (13_8 release) attached to pipeline QIIME for microbiome analysis, and all
sequences not judged as chimera were extracted and used for subsequent analysis. Nucleotide sequence
data reported are available in the DDBJ databases under the accession number DRA009468.

2.3. Statistical Analysis

Alpha diversity (Chao1 and Shannon indices) of fecal microbiota was calculated using QIIME
v2.0 [17] and statistically analyzed using one-way analysis of variance (ANOVA). For β-diversity,
unweighted and weighted UniFrac distances between samples were calculated using QIIME v2.0 [17],
visualized by principal coordinate analysis (PCoA), and statistically analyzed using permutational
multivariate analysis of variance (PERMANOVA). Figures of α and β diversity were generated using
phyloseq [18]. The abundance of each bacterial genus in fecal microbiota was statistically analyzed
using Welch’s t-test in the statistical analysis of metagenomic profiles (STAMP) software [19].
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3. Results

3.1. Relative Abundance of Fecal Microbiota

Sequencing resulted in the identification of 37,420 OTUs among 11,741,207 (lowest 296,955;
highest 1,676,171) high quality sequences. This generated a list of the ten most abundant bacterial
groups (classified at the lowest possible taxonomic level) in fecal samples from grasscutter and
conventional livestock animals (Table 1). Although their relative abundance differed between samples,
the major microbiota groups identified in fecal samples of the animals were Bacteroidales, Clostridiales,
Lachnospiraceae, and Ruminococcaceae (Table 1).

At the genus level, the mean proportion of 22, 16, 24, and 19 genera were significantly different
between grasscutter and cattle, goats, sheep, and rabbits, respectively. In particular, the abundance of
Prevotella was significantly higher in grasscutters than in the other animals (P < 0.05, Figure 2).
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Figure 2. Comparative analyses of the taxonomic composition of the microbial communities at the genus
level in fecal samples from grasscutter and conventional livestock. The mean proportion of representative
genera that differed significantly between groups are shown as bars on the left. The differences in mean
proportion of each genus, the 95% confidence intervals, and corrected P values, as calculated by statistical
analysis of metagenomic profiles (STAMP) software, are shown on the right. (A) Grasscutter (Thryonomys
swinderianus) versus cattle (Bos primigenius). (B) Grasscutter versus goat (Capra hircus). (C) Grasscutter
versus sheep (Ovis aries). (D) Grasscutter versus rabbit (Oryctolagus cuniculus).
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Table 1. The ten most abundant microbial taxonomic groups (relative abundance, %) in fecal samples from ruminant and non-ruminant herbivorous livestock in Ghana.

Non-ruminant Ruminant

Grasscutter Rabbit Cattle Goat Sheep

No. Taxonomy 1 (%) Taxonomy (%) Taxonomy (%) Taxonomy (%) Taxonomy (%)

1 Bacteroidales 11.59 Bacteroides 20.89 Ruminococcaceae 28.27 Ruminococcaceae 31.29 Ruminococcaceae 25.14
2 Ruminococcaceae 10.44 Clostridiales 16.62 Clostridiales 9.79 Clostridiales 11.12 Clostridiales 9.85
3 Clostridiales 9.79 Lachnospiraceae 10.41 Bacteroidales 7.64 Bacteroidales 7.75 Lysinibacillus 8.74
4 Ruminococcus 9.15 Ruminococcus 7.71 Oscillospira 4.69 Lachnospiraceae 4.97 Bacteroidales 7.21
5 Lachnospiraceae 6.71 Anaeroplasma 6.29 Lachnospiraceae 4.10 Bacillales 4.16 Lachnospiraceae 4.19
6 Prevotella 6.66 Akkermansia 5.32 5-7N15 3.17 Christensenellaceae 3.64 Rikenellaceae 3.41
7 Fibrobacter 3.56 Oscillospira 4.73 Clostridium 2.73 Lysinibacillus 3.50 Bacillales 3.20
8 RF16 3.24 Rikenellaceae 3.84 [Clostridium] 2.55 5-7N15 3.50 Ruminococcus 3.07
9 Treponema 2.35 Bacillus 3.00 Rikenellaceae 2.43 Akkermansia 3.01 5-7N15 2.75

10 S24-7 1.99 Ruminococcaceae 2.99 [Mogibacteriaceae] 2.40 Oscillospira 2.92 Christensenellaceae 2.49
Total 65.48 81.80 67.77 75.87 70.03
1 Microbial classification at the lowest possible taxonomic level and their relative abundance in the fecal microbiota of grasscutters (n = 5) and other livestock (n = 4).
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3.2. Analysis of Microbial Diversity for between Animals

When α-diversity (Chao 1 index: richness, Shannon index: evenness) was compared among the
animals, both indices were significantly lower in rabbits than those in the other animals (P < 0.05);
however, no difference between grasscutters and ruminant livestock was observed for any α-diversity
index (Figure 3).
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Figure 3. Alpha diversity indices (Chao1 and Shannon) of microbial communities in fecal samples from
grasscutters (n = 5) and other livestock (n = 4).

Regarding β-diversity based on unweighted and weighted UniFrac distance, ruminants were
closely clustered in the PCoA plots of the first two axes (axes 1 and 2; Figure 4). Grasscutters data
were located away from those of rabbits, which are also small hindgut fermenters. In unweighted
UniFrac distance, grasscutters and rabbits were clustered within the same range in the first axis
(axis 1) of the PCoA plot (Figure 4A). Contrastingly, in weighted UniFrac distance, rabbits and
ruminants (not grasscutters) were closely clustered in the first axis (axis 1) of the PCoA plot (Figure 4B).
Permutational multivariate analysis of variance indicated that the β-diversity of fecal microbiota in
grasscutters was significantly different from that in other animals (PERMANOVA P < 0.05; Figure 4).
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4. Discussion

In this study, aiming to establish an appropriate feeding method for domestication of the grasscutter,
we investigated its fecal microbiota and compared it with those from other herbivorous livestock in Ghana.
Similar to the other animals, the relative abundance of Bacteroidales, Clostridiales, Ruminococcaceae,
and Lachnospiraceae—which are the major bacteria groups in herbivores [20–23]—was high in the fecal
microbiota of grasscutters. Moreover, two bacteria genera were especially abundant in the fecal
microbiome of grasscutters, Prevotella and Treponema, whose levels were higher in grasscutters than
those in any other animal. Some species of Prevotella and Treponema have fiber fermentation ability;
Prevotella species make acetic acid from lignocellulose [24], and Treponema species are found in the
intestine of termites, where they play an important role in cellulose fermentation [11,25]. The presence
of such a distinctive microbiome in grasscutters, including bacteria that can breakdown dietary fibers,
may confer grasscutters higher fiber digestibility than that of other herbivores. From the viewpoint of
domestication, an optimal diet for grasscutters should be based on resources that are not consumed
by humans, so that there is no competition. If the expected high ability to digest fiber is confirmed,
grasscutters could be fed a fiber-rich diet and, thus, not compete with humans.

Comparing theα-diversity of fecal microbiota among the animals, only that of rabbits showed a low
value. In rabbits, the number of OTUs in gut microbiota varies greatly [22,26–28]. Accordingly, in the
present study, more OTUs were observed in the gut microbiome of other livestock than in that of
the rabbits. Rabbits have the wash-back type of colonic separation mechanism (CSM), which is a
special gastrointestinal mechanism that allows small food particles to flow into the cecum [12,13,29,30].
Since the grasscutter is also a hindgut fermenter, one may speculate that they may also have a CSM.
However, unlike rabbits, grasscutters may have another kind of CSM present in rodents, the mucus-trap
type of CSM. The mucus-trap mechanism allows the flow of food particles that are larger than those
transported by the wash-back type into the cecum [30]. It is suggested that the wash-back CSM seals the
rabbit’s cecum for microbiota fermentation [30–32]. In other words, rabbits might be able to selectively
store microbiota, whereas other animals do not have such ability. This might lead to an increase in the
abundance of dominant species in the cecal microbiome of rabbits, which may be the reason why the
evenness of microbiota in rabbits was low when comparing its α-diversity with that of other animals.

In the case of the fecal microbiota β-diversity, grasscutters and rabbits were clearly separated from
ruminants in the PCoA plot. Domesticated rabbits have no Treponema in their gut, unlike hares (Lepus
spp.) [22,33,34]. Grasscutters and rabbits are both small hindgut fermenters, but they were plotted
separately from each other in the PCoA analysis. Natural rabbit diets are composed of forbs, whereas
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grasscutters prefer the stem portions of grasses and other plants, which could explain the diversity
difference between these species. The evident separation of grasscutters from the conventional livestock
animals at both UniFrac analyses may be caused by differences in feeding habits and environment.
This is supported by the observation that livestock fed with the same feed under the same husbandry
conditions are plotted closely to each other. For example, ruminants and hindgut fermenters are plotted
away from each other in microbiota β-diversity analyses, and ruminant living in the same environment
are clustered together [35]. Therefore, the grasscutters used in this study were likely obtained from
the same region. Besides, it is expected that the grasscutters microbial community structure changes,
which affects how it relates to that in other livestock [20], as the domestication progresses.

In captivity, the grasscutter has been fed mainly with elephant grass (Pennisetum purpureum) or
cassava (Manihot esculenta) [36,37]. In addition, farmers in the northern area of Ghana are currently
feeding grasscutters elephant grass, guinea grass (Megathyrsus maximus), or agricultural residues of
maize from the surrounding area. In African countries, wild grasscutters cause damage to corn, wheat,
and grass crops [38,39]. In other words, the feed currently given by farmers is be close to what wild
individuals would eat. However, considering that weight gain is one of the most important parameters
in meat production, the development of feed formulations (e.g., with low fiber content) for weight gain
is expected. Such an artificial diet may affect the gut microbiota of the grasscutter. Indeed, in other
animals, the fecal microbiota of wild and domesticated individuals within the same species are different,
and their fecal microbiota is affected by feed differences [20]. Moreover, low-fiber diets or high-protein
diets can alter the diversity of gut microbiota and may cause adverse effects, such as diarrhea and
reduced fertility due to obesity [40,41]. Thus, in future studies, it is crucial to assess how much feed
characteristics affect the gut microbiota of domesticated grasscutters. Grasscutters are in the process of
domestication, and gut microbiota of non-wild grasscutters should be analyze in the future.

The data from this study will be useful for future domestication of grasscutters, especially in
terms of the relationship between feed and gut microbiota. The eventual changes in the gut microbiota
of the grasscutter as domestication progresses warrant further research to support the establishment of
appropriate feeding methods.
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