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Purpose. )is study aimed to investigate the underlying molecular mechanisms of Parkinson’s disease (PD) by bioinformatics.
Methods. Using the microarray dataset GSE72267 from the Gene Expression Omnibus database, which included 40 blood samples
from PD patients and 19 matched controls, di9erentially expressed genes (DEGs) were identi:ed after data preprocessing,
followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses.
Protein-protein interaction (PPI) network, microRNA- (miRNA-) target regulatory network, and transcription factor- (TF-)
target regulatory networks were constructed. Results. Of 819 DEGs obtained, 359 were upregulated and 460 were downregulated.
Two GO terms, “rRNA processing” and “cytoplasm,” and two KEGG pathways, “metabolic pathways” and “TNF signaling
pathway,” played roles in PD development. Intercellular adhesion molecule 1 (ICAM1) was the hub node in the PPI network; hsa-
miR-7-5p, hsa-miR-433-3p, and hsa-miR-133b participated in PD pathogenesis. Six TFs, including zinc :nger and BTB domain-
containing 7A, ovo-like transcriptional repressor 1, GATA-binding protein 3, transcription factor dp-1, SMAD family member 1,
and quiescin sulfhydryl oxidase 1, were related to PD. Conclusions. “rRNA processing,” “cytoplasm,” “metabolic pathways,” and
“TNF signaling pathway” were key pathways involved in PD. ICAM1, hsa-miR-7-5p, hsa-miR-433-3p, hsa-miR-133b, and the
abovementioned six TFs might play important roles in PD development.

1. Introduction

Parkinson’s disease (PD) is one of the most common age-
related neurodegenerative diseases [1].)e age at PD onset is
approximately 55 years, and the incidence in the population
aged> 65 years is approximately 1% [1–3]. PDmainly occurs
because of the death of dopaminergic neurons in the sub-
stantia nigra [4]. Patients with PD present with symptoms
such as bradykinesia, resting tremor, rigidity, and postural
instability [5]. )e current therapy for PD is targeted at its
symptoms rather than at dopaminergic neuron degeneration
[1]. )e diagnosis of PD at the early stage is challenging, and
successfully managing PD is diKcult at its later stages [4]. To
date, the cause of PD remains unknown; however, it appears
to involve the intricate interplay of environmental and
genetic factors [1, 4].

Much e9ort has been spent in investigating PD patho-
genesis, and the misfolding, aggregation, and aberrance of
proteins are considered to be some of the main causes

[1, 4, 5]. Some key genes such as hydrogen sul:de, chro-
mobox 5 (CBX5), and transcription factor 3 (TCF3) are
related to PD [6, 7]. Several pathways have also been
identi:ed to be related to PD. Activation of the protein
kinase B (Akt)/glycogen synthase kinase 3 beta/(GSK3β)
pathway by urate reportedly protects dopaminergic neurons
in a rat model of PD [8]. In addition, the E2-related factor 2
(Nrf2)/antioxidant response element pathway reportedly
counteracts mitochondrial dysfunction, which is a prom-
inent PD feature [9]. )e ubiquitin, lipid, nigrostriatal,
autophagy-lysosome, and endosomal pathways are also
involved in PD [10–15]. Furthermore, a recent study revealed
several microRNAs (miRNAs) associated with PD; miR-205
suppresses LRRK2 expression andmiR-205 expression levels
in the brains of patients with PD decreases [16]. Further-
more, miR-34b and miR-34c are downregulated in the
brains of patients with PD, which is related to the reduction
in the expression ofDJ-1 and PARKIN [17], andmiR-133 and
miR-7 are also associated with PD [18–20]. Numerous
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reports that have described the roles of transcription factors
(TFs) in PD have also been published. )e TF paired-like
homeodomain 3 has roles in developing and maintaining
dopaminergic neurons [21, 22], and engrailed l, which is
downregulated in the rat models, plays a role in the apo-
ptosis of dopaminergic neurons and the symptoms of PD
[23]. Moreover, Nrf2, nuclear factor kappa B (NF-κB),
GATA2, and PHD :nger protein 10 are TFs involved in PD
[24–27]. However, understanding the key mechanisms
underlying the development of PD remains unclear.

In a previous study, the microarray dataset GSE72267
generated by Calligaris et al. [7] was used to identify key
di9erentially expressed genes (DEGs) such as CBX5, TCF3,

dedicator of cytokinesis 10, and mannosidase alpha class 1C
in the blood of patients with PD compared with those of
healthy controls. Moreover, crucial pathways related to
chromatin remodeling and methylation were revealed. In
the current study, we downloaded this microarray dataset to
comprehensively analyze DEGs in patients with PD com-
pared with those in matched controls by bioinformatics
approaches and to describe their functional annotations.
Compared with the previous analysis conducted by Calli-
garis et al. [7], we performed additional analyses, including
those for the protein-protein interaction (PPI), miRNA-
target regulatory, and TF-target regulatory networks, to
further elucidate the key mechanisms underlying PD. Our
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Figure 1: Boxplots for normalized gene expression data. Red represents the blood samples of patients with Parkinson’s disease, and white
represents the healthy matched control samples.
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Figure 2: Functional enrichment analyses of di9erentially expressed genes (DEGs). (a) Gene Ontology (GO) terms and the Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathways of upregulated DEGs and (b) GO terms and KEGG pathways of downregulated DEGs.
)e numbers on the x-axis were the ID of pathways or GO terms. )e numbers on the y-axis were gene counts.

2 Parkinson’s Disease



results may provide useful data for diagnosing and
treating PD.

2. Materials and Methods

2.1. A/ymetrix Microarray Data. Gene expression pro:le
data GSE72267 was extracted from the Gene Expression
Omnibus database (https://www.ncbi.nlm.nih.gov/geo/) [28].
)e GSE72267 dataset was deposited by Calligaris et al. [7],

including blood samples from 40 PD patients and 19 healthy
matched controls andwas based on the platform of the GPL571
(HG-U133A-2) A9ymetrix Human Genome U133A 2.0 Array
(A9ymetrix Inc., Santa Clara, California, USA). )is dataset
was downloaded and analyzed on October 2016.

2.2.DataPreprocessing andDEGScreening. )e downloaded
data in CEL :les were preprocessed using the A9y package
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Figure 3: )e protein-protein interaction (PPI) network of di9erentially expressed genes (DEGs). Red circles represent upregulated DEGs,
and green diamonds represent downregulated DEGs.
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(version 1.50.0) [29] in R language, including background
correction, normalization, and expression calculation. An-
notations to the probes were performed, and probes that
were not matched to the gene symbol were excluded. )e
average expression values were taken if di9erent probes
mapped to the same gene. DEGs in patients with PD
compared with those in healthy matched controls were
analyzed using the limma package (version 3.10.3) [30] in R
language. )e cuto9 threshold was set to a p value of <0.05.

2.3. Pathway Enrichment Analysis. Gene ontology (GO)
(http://www.geneontology.org/) analysis is commonly used
for functional studies of large-scale genomic or tran-
scriptomic data and classi:es functions with respect to three
aspects: molecular function (MF), cellular component (CC),
and biological process (BP) [31, 32].)e Kyoto Encyclopedia
of Genes and Genomes (KEGG; http://www.kegg.jp/)
pathway database [33] is widely used for systematic analysis
of gene functions, linking genomic data with higher order
functional data. )e database for annotation, visualization,
and integrated discovery (DAVID) is an integrated bi-
ological knowledgebase with analytical tools used for sys-
tematic and integrative analysis of large gene lists [34]. In
this study, GO terms and KEGG pathway enrichment an-
alyses for up- and downregulated DEGs were performed
using DAVID (version 6.8). )e cuto9 thresholds were as
follows: an enrichment gene number count of ≥2 and a super
geometry inspection signi:cance threshold p value of <0.05.

2.4. PPI Network Analysis. Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING; http://www.string-db.
org/) [35] is an online database that assesses and integrates
PPIs. In this study, DEGs were mapped into the STRING
database for PPI analysis, with a PPI score of 0.4 as the
parameter setting.)e PPI network established by DEGs was
constructed using the Cytoscape software (version 3.2.0)
[36], and the topology scores of the nodes, including node
degree in the PPI network, were analyzed using the
CytoNCA plugin (version 2.1.6; http://apps.cytoscape.
org/apps/cytonca) [37] (parameter setting: without
weight). Degree was used for describing importance of

protein nodes in network. )e higher the degree was, the
more important the nodes were in network. In addition,
subnetworks were identi:ed using the MCODE plugin [38]
in the Cytoscape software, and subnetworks with a score of
>5 were identi:ed as key subnetworks. Finally, KEGG
pathway enrichment analyses for the genes in the key
subnetworks were performed.

2.5. miRNA-Target Regulatory Network Analysis. )e
miR2disease (http://www.mir2disease.org/) database
[39] is a manually curated database that provides
a comprehensive resource of miRNA deregulation in
various human diseases. miRWalk2.0 (http://zmf.umm.
uni-heidelberg.de/apps/zmf/mirwalk2/) [40] is a com-
prehensive database that presents predicted and validated
data, regarding miRNA targets in human, mouse, and
rats. In this study, miRNAs related to PD were extracted
from the miR2disease database, and experimentally
veri:ed miRNA-gene regulatory pairs were obtained by
searching miRWalk2.0. Finally, a miRNA-target regula-
tory network was constructed by comparing DEGs with
obtained miRNA-gene regulatory pairs using the Cyto-
scape software.

2.6. TF-Target Regulatory Network Analysis. )e genes in the
PPI network described above were further analyzed to identify
TF-target interaction pairs that were then used to construct
a TF-target regulatory network. )e iRegulon plugin (version
1.3; http://apps.cytoscape.org/apps/iRegulon) [41] in the
Cytoscape software collects multiple human TF-target in-
teraction databases such as Transfac, Jaspar, and Encode using
two computational methods: Motif and Track. In this study, we
analyzed the TF-target pairs using the iRegulon plugin and
compared them with TFs with DEGs in the PPI network,
followed by a TF-target regulatory network construction. )e
parameter settings were as follows: minimum identity between
orthologous genes, 0.05 and maximum false discovery rate on
motif similarity, 0.001.)e normalized enrichment score (NES)
indicates the reliability of the results, and the cuto9 threshold
was NES of >3.

Table 1: List of top 10 di9erentially expressed genes with higher degrees in protein-protein interaction network.

Gene Full name Description Degree
MAPK14 Mitogen-activated protein kinase 14 Down 68
ESR1 Estrogen receptor 1 Up 54
PTEN Phosphatase and tensin homolog Down 52
MTOR Mechanistic target of rapamycin Up 40
ATM ATM serine/threonine kinase Up 35
ICAM1 Intercellular adhesion molecule 1 Down 33
CD40 CD40 molecule Up 32
AURKA Aurora kinase A Down 31
PRKDC Protein kinase, DNA-activated, catalytic polypeptide Down 29
TK2 )ymidine kinase 2, mitochondrial Up 29
Degree was used for describing the importance of protein nodes in network. )e higher the degree was, the more important the nodes were in network.
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3. Results

3.1.Analysis ofDEGs. )e boxplot of the preprocessed data
indicated good normalization (Figure 1). In total, 22,277
probes were obtained, among which 971 probes were
di9erentially expressed. After annotation, 819 DEGs in
patients with PD compared with those in healthy matched
controls were identi:ed (Supplementary Table 1), in-
cluding 359 upregulated DEGs and 460 downregulated
DEGs.

3.2. Pathway Enrichment Analysis. GO and KEGG pathway
enrichment analyses for the up- and downregulated DEGs
were performed (Supplementary Table 2). )e signi:cant
GO terms and KEGG pathways are shown in Figure 2. )e
upregulated DEGs were signi:cantly enriched in four KEGG
pathways, namely, metabolic pathways, inositol phosphate
metabolism, mRNA surveillance pathway, and RNA deg-
radation, and GO terms such as transcription, DNA-
template processing, and rRNA processing (Figure 2(a)).
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Figure 4: Subnetworks of di9erentially expressed genes (DEGs). (a) Subnetwork a; (b) subnetwork b; (c) subnetwork c. Red circles represent
upregulated DEGs, and green diamonds represent downregulated DEGs.
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)e downregulated DEGs were enriched in pathways such as
those of inPuenza A, viral myocarditis, and TNF signaling
and GO terms such as cytoplasm, cell surface, and interferon
gamma-mediated signaling pathway (Figure 2(b)).

3.3. PPI Network Analysis. )e PPI network, including 605
nodes and 1937 PPI pairs, is shown in Figure 3. )e top 10
DEGs with the highest degree included :ve upregulated
DEGs such as estrogen receptor 1 (ESR1), mechanistic target
of rapamycin (MTOR), ATM serine/threonine kinase
(ATM), CD40 molecule (CD40) and thymidine kinase 2,
mitochondrial (TK2), and :ve downregulated DEGs such as
mitogen-activated protein kinase 14 (MAPK14), phosphatase

and tensin homolog (PTEN), intercellular adhesion molecule
1 (ICAM1), aurora kinase A (AURKA), and protein kinase,
DNA-activated, catalytic polypeptide (PRKDC) (Table 1).
)ree subnetworks were identi:ed (subnetworks a–c). Sub-
network a (Figure 4(a)) included nine nodes and 36 PPI pairs,
and these genes were signi:cantly enriched in three KEGG
pathways (Table 2), including neuroactive ligand-receptor
interaction, chemokine signaling pathway, and cytokine-
cytokine receptor interaction. Subnetwork b (Figure 4(b))
included seven nodes and 21 PPI pairs, and these genes
were not enriched in any KEGG pathway. Subnetwork c
(Figure 4(c)) included 27 nodes and 81PPI pairs, and these genes
were enriched in 12 KEGG pathways (Table 2), such as cell
cycle, herpes simplex infection, and NF-κB signaling pathways.

Table 2: List of KEGG pathways of subnetworks.

Subnetwork Pathway
ID Pathway name Count p value Genes

Subnetwork
a

hsa04080 Neuroactive ligand-receptor interaction 5 1.40E−04 MCHR1, PTGER3, S1PR5, FPR3, NPY1R
hsa04062 Chemokine signaling pathway 3 1.80E−02 CCR9, CCR6, CCR4
hsa04060 Cytokine-cytokine receptor interaction 3 2.74E−02 CCR9, CCR6, CCR4

Subnetwork
c

hsa04110 Cell cycle 6 1.31E−04 CCNB1, CDC14A, PRKDC, CCNA2, MCM4,
TFDP1

hsa05416 Viral myocarditis 4 1.62E−03 ICAM1, CASP8, HLA-C, CD40
hsa05168 Herpes simplex infection 5 6.03E−03 SP100, CASP8, OAS3, PML, HLA-C
hsa04514 Cell adhesion molecules 4 1.70E−02 VCAM1, ICAM1, HLA-C, CD40
hsa05144 Malaria 3 1.78E−02 VCAM1, ICAM1, CD40
hsa04621 NOD-like receptor signaling pathway 3 2.00E−02 CASP8, RIPK2, CASP1
hsa04115 p53 signaling pathway 3 2.93E−02 CCNB1, RRM2, CASP8
hsa05164 InPuenza A 4 3.32E−02 ICAM1, OAS3, PML, CASP1

hsa04914 Progesterone-mediated oocyte
maturation 3 4.30E−02 CCNB1, GNAI2, CCNA2

hsa05169 Epstein–Barr virus infection 4 4.42E−02 ICAM1, HLA-C, CD40, CCNA2
hsa05203 Viral carcinogenesis 4 4.60E−02 SP100, CASP8, HLA-C, CCNA2
hsa04064 NF-kappa B signaling pathway 3 4.84E−02 VCAM1, ICAM1, CD40

KEGG, Kyoto Encyclopedia of Genes and Genomes.
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In addition, ICAM1 was involved in six KEGG pathways
of subnetwork c, such as viral myocarditis, cell adhesion
molecules (CAMs), and NF-κB signaling pathways (Table 2).
)e detailed information existed in PPI network, and three
subnetworks are shown in Supplementary Table 3.

3.4. miRNA-Target Regulatory Network Analysis. According
to the data from the miR2disease database, six miRNAs were
identi:ed to be associated with PD and 698 miRNA-gene
pairs were obtained by searching miRWalk2.0. A total of
40 miRNA-target interaction pairs were obtained by com-
paring miRNA-gene pairs with DEGs, and subsequently, the

miRNA-target regulatory network was constructed. )e
network (Figure 5) contained 40 miRNA-target interaction
pairs and 43 nodes (Supplementary Table 4), among which
three miRNAs (hsa-miR-7-5p, hsa-miR-433-3p, and hsa-
miR-133b) were included.

3.5. TF-Target Regulatory Network Analysis. According the
information of TF-target interaction databases such as
Transfac, Jaspar, and Encode in the Cytoscape software,
a total of 83 TFs were identi:ed from the PPI network,
forming 5371 TF-gene pairs. Among the 83 TFs, six were
di9erentially expressed: three upregulated ones, that is, zinc
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:nger and BTB domain-containing 7A (ZBTB7A), ovo-like
transcriptional repressor 1 (OVOL1), and GATA-binding
protein 3, and three downregulated ones, that is, tran-
scription factor dp-1 (TFDP1), SMAD family member 1
(SMAD1), and quiescin sulfhydryl oxidase 1 (QSOX1). )e
TF-target regulatory network (Figure 6) was constructed and
included 166 nodes and 288 interaction pairs (Supple-
mentary Table 5). )e top 20 nodes with the highest degree
are listed in Table 3, including the six TFs described above
and 14 other DEGs, such as ectodermal-neural cortex 1,
:bronectin type III domain-containing 3A, and midline 1,
which were coregulated by the six TFs.

4. Discussion

PD is the second most common age-related neurodegen-
erative disease. However, the pathogenesis and genes in-
volved in PD are not well known [42]. In this study, we
performed a comprehensive bioinformatics analysis of the
blood gene expression pro:le using the GSE72267 dataset.
)e results suggested that four key pathways (metabolic
pathways, TNF signaling pathway, rRNA processing, and
cytoplasm), the key gene ICAM1, three miRNAs (hsa-miR-
7-5p, hsa-miR-433-3p, and hsa-miR-133b), and six TFs
(ZBTB7A, OVOL1, GATA3, TFDP1, SMAD1, and QSOX)
might play important roles in PD development.

Our results revealed that the upregulated DEGs were
enriched in the KEGG pathway “metabolic pathways” and the

GO term “rRNA processing,” and the downregulated DEGs
were enriched in the KEGG pathway “TNF signaling path-
way” and the GO term “cytoplasm.” A previous study [43]
demonstrated that some metabolic patterns were altered in
patients with advanced PD. Multiple metabolic pathways are
also involved in PD [44], which supports our study results.
Cytoplasmic inclusions are a pathological hallmark of PD
[45]. Lewy body pathology is involved [46, 47], and glial
cytoplasmic inclusions are associated with Lewy bodies [48].
)us, the GO term “cytoplasm” may play a role in PD.
Furthermore, TNF receptor-associated protein is excluded
from the nucleolus and is sequestered to the cytoplasm by
TNF receptor-associated factor 6, thereby altering ribosomal
RNA (rRNA) biogenesis [49]. )e TNF signaling pathway is
also involved in PD [50], and rRNA transcription is repressed
in patients with PD [51]. )erefore, the GO term “rRNA
processing” and the KEGG pathway “TNF signaling pathway”
may play important roles in PD. Altogether, the metabolic
pathways, TNF signaling pathway, rRNA processing, and
cytoplasm are essentially involved in PD pathogenesis.

ICAM1 was among the top 10 DEGs in the PPI network.
Moreover, ICAM1 gene was involved in six KEGG pathways
for subnetwork c. ICAM1 is involved in the adhesion and
transmigration of leukocytes across the endothelium,
promoting brain inPammation and resulting in brain
diseases [52]. T helper 17 cells can exert a neurotoxic e9ect in
the brain parenchyma of patients with PD by interacting with
ICAM1 and leukocyte function-associated antigen 1 [53]. In

Table 3: List of top 20 nodes with higher degree in transcription factor-target regulatory network.

Gene Full name Description Degree
TFDP1∗ Transcription factor Dp-1 Down 62
ZBTB7A∗ Zinc :nger and BTB domain-containing 7A Up 55
OVOL1∗ Ovo-like transcriptional repressor 1 Up 46
SMAD1∗ SMAD family member 1 Down 45
QSOX1∗ Quiescin sulfhydryl oxidase 1 Down 44
GATA3∗ GATA-binding protein 3 Up 38
ENC1 Ectodermal-neural cortex 1 Down 6
FNDC3A Fibronectin type III domain-containing 3A Up 6
MID1 Midline 1 Down 6
PDE4D Phosphodiesterase 4D Down 5
ZNF362 Zinc :nger protein 362 Up 5
CBLB Cbl proto-oncogene B Down 4
LARGE LARGE xylosyl- and glucuronyltransferase Up 4

TRPC4 Transient receptor potential cation channel subfamily
C member 4 Down 4

CTBP2 C-terminal binding protein 2 Up 4
GLI3 GLI family zinc :nger 3 Down 4
SCN3A Sodium voltage-gated channel alpha subunit 3 Up 4

TAL1 TAL BHLH transcription factor 1, erythroid
di9erentiation factor Down 4

LRRN3 Leucine rich repeat neuronal 3 Up 3

MAST4 Microtubule-associated serine/threonine kinase
family member 4 Up 3

∗Transcription factor.
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addition, ICAM1 is involved in persistent inPammation in
PD [54]. Our results from the KEGG pathway analysis for
genes in subnetworks revealed that ICAM1 might play roles
in viral myocarditis and CAMs and thus contributed to PD.

)e miRNA-target regulatory network analysis identi:ed
three miRNAs involved in PD, namely, hsa-miR-7-5p, hsa-
miR-433-3p, and hsa-miR-133b. A study described miR-7-2
dysregulation (the stem loop of hsa-miR-7-5p) in Parkinson’s
patient’s leukocytes [55] and revealed that hsa-miR-7-5p
expression decreased in PD, possibly upregulating α-SYN,
a PD-related gene [56].)e variation of the hsa-miR-433- (the
stem loop of hsa-miR-433-3p-) binding site of :broblast
growth factor 20 can lead to α-SYN overexpression, in-
creasing the risk for PD [57]. hsa-miR-133b expression is
increased in the cerebrospinal Puid of patients with PD
[58]; however, its expression levels in serum is decreased,
which is related to low serum ceruloplasmin levels [59].
hsa-miR-133b is also de:cient in the midbrain tissue of
patients with PD and is associated with the maturation and
function of midbrain dopaminergic neurons [60]. Notably,
reduced circulating levels of miR-433 and miR-133b are
considered as promising biomarkers for PD [61].)erefore,
we speculate that the three miRNAs, including hsa-miR-7-
5p, hsa-miR-433-3p, and hsa-miR-133b may play impor-
tant roles in PD.

TFs are important regulators of target gene expressions
[53, 62]. In this study, we analyzed DEGs in the PPI network
to screen TFs involved in PD. Among the 83 TFs identi:ed
in the PPI network, six were found to be di9erentially
expressed. ZBTB7A, OVOL1, and GATA3 were upregulated
in patients with PD compared with those in healthy matched
controls, whereas TFDP1, SMAD1, and QSOX1 were
downregulated. ZBTB7A is a tumor suppressor, which is
involved in several cancers such as prostate and nonsmall
cell lung cancers [63–65]. OVOL1, encoding a zinc :nger
protein, is expressed in embryonic epidermal progenitor
cells and is an inducer of mesenchymal-to-epithelial tran-
sition in human cancers [66, 67]. GATA3, a member of the
GATA family, is a regulator of T-cell development and plays
roles in endothelial cells [68, 69]. TFDP1 is involved in the
cell cycle and contributes to hepatocellular carcinomas
[70, 71], SMAD1 is involved in multiple pathways [72, 73],
andQSOX1 plays roles in some cancers such as breast cancer
and neuroblastoma [74–76]. However, there are few reports
regarding the involvement of these TFs in PD. Hence,
further studies regarding the associations between the TFs
identi:ed in this study and PD are warranted.

In conclusion, our data demonstrated that the metabolic
pathways, TNF signaling pathway, rRNA processing, and
cytoplasm play important roles in PD pathogenesis; ICAM1
might also play a vital role. Besides six TFs, three miRNAs,
including hsa-miR-7-5p, hsa-miR-433-3p, and hsa-miR-
133b, may be involved in PD. However, because of the
study limitations, further investigation remains to be per-
formed in the future.
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