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Some variations of human genome [for example, single nucleotide polymorphisms (SNPs)] 
are markers of hereditary diseases and drug responses. Analysis of them can help to 
improve treatment. Computer-based analysis of millions of SNPs in the 1000 Genomes 
project makes a search for SNP markers more targeted. Here, we combined two comput-
er-based approaches: DNA sequence analysis and keyword search in databases. In the 
binding sites for TATA-binding protein (TBP) in human gene promoters, we found candidate 
SNP markers of gender-biased autoimmune diseases, including rs1143627 [cachexia 
in rheumatoid arthritis (double prevalence among women)]; rs11557611 [demyelinating 
diseases (thrice more prevalent among young white women than among non-white 
individuals)]; rs17231520 and rs569033466 [both: atherosclerosis comorbid with related 
diseases (double prevalence among women)]; rs563763767 [Hughes syndrome-related 
thrombosis (lethal during pregnancy)]; rs2814778 [autoimmune diseases (excluding mul-
tiple sclerosis and rheumatoid arthritis) underlying hypergammaglobulinemia in women]; 
rs72661131 and rs562962093 (both: preterm delivery in pregnant diabetic women); 
and rs35518301, rs34166473, rs34500389, rs33981098, rs33980857, rs397509430, 
rs34598529, rs33931746, rs281864525, and rs63750953 (all: autoimmune diseases 
underlying hypergammaglobulinemia in women). Validation of these predicted candidate 
SNP markers using the clinical standards may advance personalized medicine.

Keywords: gene, promoter, TaTa-binding protein, TBP-binding site, single nucleotide polymorphism, expression 
change, gender-biased autoimmune disease, snP marker

inTrODUcTiOn

Recent studies (1) showed that the imbalance between effectors and regulators of immune responses 
causes autoimmune diseases. Self-antigen tolerance characterizes a healthy immune system, whereas 
impairment of this tolerance leads to autoimmune diseases. Changes in the expression of self-antigens 
in response to inflammation, tissue lesions, viruses, free radicals, radiation, and pharmaceuticals may 
trigger autoimmune pathogenesis (2, 3). According to the concept of molecular mimicry, antibodies 
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induced by an infection attack self-antigens that are similar to 
the pathogen’s epitopes. This concept is a common explanation 
for the development of autoimmune diseases, i.e., destruction of 
host tissues by the host immune system (4, 5). More than 100 
autoimmune diseases are already known, among them, the 8 
most prevalent disorders are psoriasis, rheumatoid arthritis, type 
I diabetes mellitus, multiple sclerosis, systemic lupus erythemato-
sus, Crohn’s disease, ulcerative colitis, and systemic scleroderma 
(6). Genotyping of geographic subpopulations (7, 8) revealed 
genetic diversity of immune responses and the single nucleo-
tide polymorphisms (SNPs) involved (9). Women have greater 
immune responsiveness than men do, and it manifests itself in 
the fourfold prevalence of autoimmune diseases among women 
(10). Sex hormones amplify this hyperimmune response as do 
adolescence, pregnancy, and menopause stress-related hormonal 
status of women (11–14).

Overall, sex differences in immune capabilities and autoim-
mune diseases are an established fact, and precise clinical obser-
vations in patients and experiments on animal models underlie 
the mainstream scientific research aimed at elucidating these 
phenomena in clinical practice. The gender-biased interactions 
between microorganisms and the human host (15, 16); the effects 
of diets (16), sex hormones (17), and the X chromosome inactiva-
tion (18) on the immune response; and activities of regulatory 
genes located on the X chromosome (19) are hot topics in this 
field of research. In addition to this mainstream research into 
gender-biased autoimmune diseases, the nascent postgenomic 
predictive preventive personalized medicine (20) offers hope of 
elucidation of the pathogenesis of such diseases. To this end, it 
would be worthwhile to use SNP markers of autoimmune diseases 
as additional genome-wide informative landmarks. This way, a 
physician may analyze these SNP markers in his/her patients to 
improve treatment; in addition, the patients can modify their life-
style accordingly to reduce the risk of autoimmune complications 
of their illnesses. We conducted the present study in accordance 
with this new auxiliary strategy as an adjunctive treatment for 
prevention of autoimmune complications of monogenic diseases. 
For example, this kind of adjunctive modality improves survival 
in metastatic breast cancer (21).

Postgenomic SNP identification is a part of the 1000 Genomes 
project (22), whose results are available in the dbSNP database 
(23). The UCSC Genome Browser (24) visualizes the human 
reference genome (25, 26) as the ancestral variant for all SNPs. It 
allows clinical researchers to choose an appropriate set of SNPs 
for genotyping of patients in comparison with healthy volunteers 
in order to identify/validate disease-related SNP markers (27). 
Furthermore, these researchers can estimate the population 
frequencies (28), genetic drifts (29), expressivity, and penetrance 
(30) of these markers. The data from these clinical studies are 
available in many databases (31–34) designed for postgenomic 
predictive preventive personalized medicine (20).

Computer-based analysis of hundreds of millions of unanno-
tated SNPs can make the search for SNP markers more targeted 
and less expensive (35). To this end, bioinformatics researchers 
(36–52) rate SNPs using genome-wide maps of genes, functional 
sites, nucleosomes, interchromosomal contacts, chromatin 
immunoprecipitation (ChIP) data, and transcriptomes in health 

(53), in disease (54), and after treatment (55). The Central Limit 
Theorem ensures an increase in the accuracy of these estimates 
with the increasing number, diversity, representativeness, and 
completeness of genome-wide maps (56). Due to this approach, 
thousands of SNP markers have been found within protein-
coding regions of genes (32) [where SNPs alter gene products 
(57)] but only a few SNP markers among millions of SNPs in 
regulatory regions of genes (23, 25). The majority of the regula-
tory SNP markers are located in the [−70; −20] region relative 
to the transcription start site (58), where TATA-binding protein 
(TBP) binds to DNA (59). Among ~2600 human DNA-binding 
proteins (60), TBP is among the most important ones: a knock-
out (61) or knockdown (62) of the TBP gene is lethal because 
RNA polymerase II binds to the TBP–DNA complex to induce 
formation of the transcription preinitiation complex (58). Many 
experiments have shown that an increase in TBP’s affinity for the 
promoter of a gene manifests itself in overexpression of this gene 
and vice versa (63–65). Finally, data on high-throughput sequenc-
ing of immunoprecipitated chromatin (ChIP-Seq) validated the 
TBP-binding sites in most genes in yeast (66) and in mice (67). 
Similarly, in silico estimates that were verified by in vivo biolumi-
nescence validated TBP-binding sites in humans (68).

Earlier, we developed a computer-based statistical estimate 
of SNP-caused alteration of TBP’s binding affinity for promoters 
(69); this estimate can predict a change in expression of the human 
genes associated with monogenic diseases (70). Then, we empiri-
cally verified such predictions using an electrophoretic mobility 
shift assay (EMSA) under equilibrium (71) and non-equilibrium 
(72) conditions in vitro as well as in real-time mode (73). Next, we 
conducted a comparison of these predictions with independent 
experimental data published by various authors (74–77). Finally, 
we developed the Web service SNP_TATA_Comparator1 (78) and 
showed how to use it in practice (79).

Recently, we expanded the applicability of our Web service 
(79) from the known SNP markers of monogenic diseases to 
candidate SNP markers of obesity-related complications of 
monogenic diseases (80). Here, we continued this extension in 
relation to autoimmune complications of monogenic diseases, 
and this work is expected to advance postgenomic predictive 
preventive personalized medicine (20).

MaTerials anD MeThODs

Dna sequences
We analyzed 90-bp DNA sequences {s−90 … s−1} of the proximal 
regions of core promoters in ancestral and minor variants (here-
inafter: wt and mut variants, respectively) of the human genes 
from the default version of the reference human genome (where s0 
is the transcription start site; si ∈ {a, c, g, t}); here, we used the cur-
rent major assembly release GRCh38(NCBI)/hg38(UCSC) [in the 
terms used by the UCSC Genome Browser (24)]. Figure 1 shows 
examples of the ancestral (text box “Base sequence”) and minor 
variants (text box “Editable sequence”) of several biomedical and 

1 http://beehive.bionet.nsc.ru/cgi-bin/mgs/tatascan/start.pl
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FigUre 1 | examples of the predictions by snP_TaTa_comparator (79) for statistically significant alterations in the expression of human genes. 
(a,c–e) Known biomedical SNP markers of autoimmune diseases; (B) the candidate SNP marker near the known SNP marker rs1143627 [see (a)].
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nearby candidate SNP markers in the promoters of some human 
genes. Arrows illustrate the process of retrieval of the ancestral 
DNA from Ensembl (25) on the basis of the list of transcripts 

for the reference human genome in GENCODE (26). The minor 
variants were compiled manually by introducing substitutions, 
deletions, and/or insertions into the ancestral variant.
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One can find a brief description of our computer-based 
method for DNA sequence analysis (81–91) in Supplementary 
Material and a detailed description in our recent article (79).

Keyword search
Here, we are expanding the range of applicability of our freely 
available Web-service (79) from monogenic diseases only to their 
autoimmune complications. For this purpose, we try to emulate 
the successful real-life expansion of diagnostic capabilities of  
the well-known SNP marker rs1143627 (Table 1: the first row). 

One can see that this marker of Graves’ disease (92, 93) was dis-
covered in association with gastric cancer (94); after that, it was 
implicated in hepatocellular carcinoma (95), next in excess adi-
posity in older men (96), and then in non-small cell lung cancer 
(97), major recurrent depression (98), gastric ulcer, and chronic 
gastritis (99). Accordingly, we combined sequence analysis and 
keyword searches.

Figure 2 depicts a flow chart of our extension of the diagnostic 
potential of 68 known and candidate SNP markers (79) from 
monogenic diseases to gender-biased autoimmune diseases. 
To this end, for each SNP marker causing either significant 

TaBle 1 | Known and nearby candidate snP markers (of autoimmune diseases) that can change affinity of TBP for a human gene promoter.

gene  
(OMiM iD)

dbsnP (12)  
rel. 142 or  
see (ref)

5′ flank wt
mut

 3′ flank KD, nM Known diseases and observations in 
the case of known snP markers (ref) 
or hypothetical ones in the case of the 
candidate SNP markers predicted by us in 
this work; see Figure 2

(ref) or  
(this work)

wt
mut

Δ Z α

IL1B (147720) rs1143627 ttttgaaagc c
t

 ataaaaacag 5
2

↑ 15 10−6 Graves’ disease whose risk is higher in 
females with skewed X chromosome 
inactivation

(92, 93, 94–100) 
(this work) 
(101–105)

Recurrent major depression; chronic gastritis; 
gastric ulcer; gastric, liver, and non–small cell 
lung cancers; greater body fat;
Hypothetically, cachexia in rheumatoid arthritis 
(double prevalence among women)

rs549858786 tgaaagccat a
t
 aaaacagcga 5

7
↓ 8 10−6 Hypothetically, rheumatoid arthritis (double 

prevalence among women)
(this work) 
(101–105)

INS (176730) rs5505 agatcactgt 
c
t
 cttctgccat

53
44

↑ 4 10−3 Type 1 diabetes after neonatal diabetes 
mellitus (women who had 6q24-transient 
neonatal diabetes mellitus are at risk of a 
relapse)

(31, 106–108)

rs563207167 tcagccctgc 
c
t
 tgtctcccag

53
44

↑ 4 10−3 Hypothetically, type 1 diabetes after neonatal 
diabetes mellitus (women who had 6q24-
transient neonatal diabetes mellitus are at risk 
of a relapse)

(this work)

rs11557611 gatcactgtc 
c
t
 ttctgccatg

53
60

↓ 2 0.05 Hypothetically, demyelinating diseases (thrice 
more prevalent among young white women 
than among non-white individuals)

(this work) (11, 
109, 110)

CETP (118470) See Ref. (111) cgtgggggct 18 bp
−  

gggctccagg 4
7

↓ 7 10−6 Hyperalphalipoproteinemia that reduces 
atherosclerosis risk and corresponds to 
coronary artery disease risk that is twice lower 
in women than in men

(111–113)

rs17231520 ggggctgggc 
g
a

 gacatacata
4
2

↑ 10 10−6 Hypothetically, hypoalphalipoproteinemia that 
causes atherosclerosis, atherosclerosis-related 
autoimmune and coronary artery diseases 
(double prevalence among women)

(this work) 
(111–115)

rs569033466 atacatatac 
g
a 

ggctccaggc
4
3

↑ 4 10−3

MMP12 
(601046)

rs2276109 gatatcaact 
a
g

 tgagtcactc
11
14

↓ 3 10−2 Low risk of asthma and systemic sclerosis 
exacerbated by menopause in women

(116–118) 
(this work) (12, 
119–121)Hypothetically, low risk of psoriasis that 

is associated with increased risk of 
cardiovascular diseases with age in women

rs572527200 gatgatatca 
a
g

 ctatgagtca
11
14

↓ 3 10−2 Hypothetically, low risk of systemic sclerosis 
exacerbated by menopause in women; 
psoriasis associated with increased risk of 
cardiovascular diseases with age in women; 
asthma

(this work)

wt, ancestral allele; mut, minor allele; KD, an estimate (79) of the dissociation constant KD of the TBP-promoter complex corresponding to the conditions in vitro (71); Δ, a change: 
overexpression (↑), deficiency (↓), norm (=); Z, Z-score; α = 1 − p, significance [where p is the probability rate (79) shown in Figure 1]; TF, transcription factor; EMSA, electrophoretic 
mobility shift assay.
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FigUre 2 | a flow chart showing extension of the diagnostic potential of 68 known and candidate snP markers (79) from monogenic diseases to 
gender-biased autoimmune diseases.
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overexpression or underexpression of the human gene contain-
ing this SNP, we manually performed a keyword search using 
proper combinations of the terms “overexpression,” “deficiency,” 
“knockout,” “women,” and many terms corresponding to various 
autoimmune diseases in public databases, as described in detail 
elsewhere (100). If we successfully found the autoimmune dis-
eases whose biochemical marker corresponds to the expression 
change of the gene containing the SNP marker in question, then 
we did one more keyword search for co-occurrences of the found 
autoimmune diseases and the monogenic diseases whose SNP 
marker was being analyzed. This additional keyword search can 
serve as cross-validation of sorts at the level of a rough qualitative 
estimate without strict statistical criteria.

Our heuristic interpretation of our predicted cases of significant 
overexpression or underexpression of the human genes is shown 
in italics in the second rightmost column of Tables 1–3, with the 
word “hypothetically” in front of these interpretations. These are 
clinical data found during our manual keyword search, with the 
corresponding references in the rightmost column of these tables 
[also shown in italics and marked with the phrase “(this work)”].

resUlTs anD DiscUssiOn

The results on the Known snP Markers  
of gender-Biased autoimmune Diseases
Table 1 shows the applicability of our Web service (79) to analysis 
of gender-biased autoimmune diseases. Let us consider only one 

example from these results in detail in order to briefly describe all 
the other results from Tables 1–3 in a similar way.

The Human IL1B Gene
The human IL1B gene (interleukin 1β) in its promoter contains 
a known SNP marker of intractable Graves’ disease (rs1143627) 
(92). This pathology has the highest prevalence among females 
with skewed X chromosome inactivation (93). This SNP is 
a substitution of a minor T for an ancestral C at position −31 
(hereafter denoted as −31C → T) in the promoter of this gene. 
It converts a non-canonical variant of the TBP-binding site in 
DNA, C−31ATAAAA, to the canonical TATA box: T−31ATAAAA. 
In case of the minor allele −31T, the estimate of TBP’s affinity for 
the IL1B promoter (see “Materials and Methods”: Supplementary 
Material, Eqs. 1–4), equaling 20.15 ± 0.10 ln-units (2 nM, accord-
ing to Table  1), is significantly stronger (Z  =  14.56, α  <  10−6) 
than the affinity corresponding to the ancestral allele (−31C, 
19.21 ± 0.09 ln-units; 5 nM). This significant increase in affinity 
of TBP for the minor variant of the IL1B promoter corresponds 
(63–65) to overexpression of this gene (designated as “↑” in 
Table 1). This prediction is consistent with clinical studies show-
ing overexpression of IL1B in patients with Graves’ disease (92).

Because clinical records of the patients with these diseases 
confirmed IL1B overexpression, we performed a primary key-
word search for “IL1B overexpression” as a biochemical marker 
of “gender-biased autoimmune diseases” in various databases 
(hereafter, see Figure 2). The last column of Table 1 shows the 

http://www.frontiersin.org/Immunology/
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TaBle 2 | Known and nearby candidate snP markers (of anemias) that may be candidate snP markers of underlying autoimmune diseases in women 
with hypergammaglobulinemia.

gene (OMiM 
iD)

dbsnP (12)  
rel. 142 or see 
(ref)

5′ flank 
wt

mut  
3′ flank KD, nM Known diseases and 

observations in the case of 
known snP markers (ref) or 
hypothetical ones in the case 
of the candidate SNP markers 
predicted by us in this work; 
see Figure 2

(ref) or (this work)

wt
mut

Δ Z α

HBD (142000) rs35518301 caggaccagc 
a
g 

taaaaggcag
4
8

↓ 11 10−6 Resistance to malaria and Cooley’s 
anemia (δ-thalassemia) that can 
hypothetically increase the risk of 
an autoimmune disease in women 
with hypergammaglobulinemia

(122) (this work)  
(123, 124)

rs34166473 aggaccagca
 

t
c 

aaaaggcagg
4
8

↓ 18 10−6 Hypothetically, Cooley’s 
anemia with high risk of 
autoimmune diseases underlying 
hypergammaglobulinemia in 
female patients

(this work)

HBB (141900) rs34500389 cagggctggg
 

c
a,t,g  

ataaaagtca
5
6

↓ 3 10−2 Malaria resistance, Cooley’s 
anemia (β-thalassemia);

(122) (this work) (123)

rs33981098 agggctgggc
 

a
g,c 

taaaagtcag
5
9

↓ 10 10−6 hypothetically, high risk of 
autoimmune diseases in women 
with hypergammaglobulinemiars33980857 gggctgggca

 

t
a,g,c 

atacaacagt
5
21

↓ 27 10−6

rs397509430 gggctgggca
 

t
−  

atacaacagt 5
29

↓ 34 10−6

rs34598529 ggctgggcat
 

a
g  

aaagtcaggg
5

18
↓ 24 10−6

rs33931746 gctgggcata
 

a
g,c 

aagtcagggc
5

11
↓ 14 10−6

rs281864525 tgggcataaa
 

a
c  

gtcagggcag
5
7

↓ 7 10−6 Hypothetically, malaria resistance, 
Cooley’s anemia with high risk of 
autoimmune diseases in women 
with hypergammaglobulinemia

(this work)

rs63750953 ctgggcataa 
aa
−  gtcagggcag

5
8

↓ 9 10−6

ACKR1 
(613665)

rs2814778 ttggctctta
 

t
c 

cttggaagca
10
12

↓ 4 10−3 Resistance to malaria, low white-
blood-cell count (anemia), asthma, 
high total IgE levels, and reduced 
neutrophil count;

(125–128) (this work) 
(123, 129–131)

Hypothetically, autoimmune 
diseases (excluding multiple 
sclerosis and rheumatoid 
arthritis) underlying 
hypergammaglobulinemia in 
women

wt, ancestral allele; mut, minor allele; KD, an estimate (79) of the dissociation constant KD of the TBP-promoter complex corresponding to the conditions in vitro (71); Δ, a change: 
overexpression (↑), deficiency (↓), norm (=); Z, Z-score; α = 1 − p, significance [where p is the probability rate (79) shown in Figure 1]; TF, transcription factor; EMSA, electrophoretic 
mobility shift assay.
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result obtained. One study (101) showed an association of the 
biochemical marker “IL1B overexpression” with cachexia as a 
complication of rheumatoid arthritis (double prevalence among 
women). Therefore, we propose rs1143627 as a candidate SNP 
marker for this pathology (Table 1).

The 90-bp promoter that we studied here contains the candi-
date SNP marker rs549858786 reported in our recent work (79). 
This SNP can significantly decrease TBP’s affinity for the IL1B 
promoter (Figure 1B) and cause underexpression of IL1B. A pri-
mary keyword search yielded laboratory data (102) on a mouse 
model of human rheumatoid arthritis; these data showed that 
an IL1B deficiency elevates the risk of this autoimmune disease  

[its risk is twofold higher among women than among men 
(101)]. The final cross-validating keyword search (hereinafter: see 
Figure 2) yielded a retrospective study (103) showing significantly 
frequent co-occurrence of some pairs of rheumatic diseases and 
cancers. In addition, another research group (104) reported that 
rheumatoid arthritis can be a complication of gastric disease 
treatment that is based on non-steroidal anti-inflammatory drugs. 
One more paper (105) revealed that a high body-mass index is 
associated with a reduced risk of rheumatoid arthritis in men but 
not in women. These three independent findings mostly support 
our prediction of two rheumatoid arthritis-related candidate SNP 
rs1143627 and rs549858786 markers.

http://www.frontiersin.org/Immunology/
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TaBle 3 | Known and nearby candidate snP markers (of monogenic diseases) that may also be candidate snP markers of autoimmune diseases.

gene (OMiM iD) dbsnP (12) 
rel. 142 or 
see (ref)

5′ flank wt
mut 

3′ flank KD, nM Known diseases and observations in the case 
of known snP markers (ref) or hypothetical 
ones in the case of the candidate SNP 
markers predicted by us in (this work);  
see Figure 2

(ref) or  
(this work)

wt
mut

Δ Z α

StAR (600617) rs16887226 cagccttcag
 

c
t  

gggggacatt
10
10

 =  0 0.5 Hypertensive diabetic patients (EMSA: an 
unknown TF-binding site is disrupted rather than a 
TBP-binding site)

(132)  
(this work) 
(133–136)

Hypothetically, low resistance to endotoxins (diet 
and training may restore this resistance in obese 
postmenopausal women)

rs544850971 tcagcggggg
 

a
g 

catttaagac
10
12

↓ 5 10−2 Hypothetically, hypertension in diabetes (waist 
circumference ≥87 cm in women) and low 
resistance to endotoxins (diet training may restore 
this resistance in obese postmenopausal women)

(this work)

APOA1 (107680) (137) tgcagacata
 

a
c  

Ataggccctg
3
4

↓ 5 10−6 Hematuria; fatty liver; obesity (137)  
(this work) 
(11, 113, 114, 
138)

Hypothetically, hypoalphalipoproteinemia causes 
atherosclerosis-related autoimmune diseases 
(double prevalence among women)

F3 (134390) rs563763767 ccctttatag
 

c
t  

gcgcggggca
3
2

↑ 6 10−6 Myocardial infarction; thrombosis (139)  
(this work) (14, 
140, 141)

Hypothetically, Hughes syndrome-associated 
thrombosis (lethal during pregnancy)

TNFRSF18 
(603905)

rs111426889 gtgctataaa
 

c
t  

gccgccccct
4
2

↑ 8 10−6 Resistance to parasites (142)  
(this work) (11, 
143, 144)

Hypothetically, some autoimmune diseases 
(fourfold prevalence among women)

NOS2 (163730) (147) gtataaatac
 

t
c 

tcttggctgc
2
1

↑ 3 10−2 Resistance to malaria or epilepsy (145–147) 
(this work) 
(148–150)

Hypothetically, inflammation and tissue damage 
in pemphigus vulgaris (double prevalence among 
women)

MBL2 (154545) rs72661131 tctatttcta
 

t
c 

atagcctgca 2
4

↓ 12 10−6 Variable immunodeficiency; preeclampsia; and 
stroke

(151–153) 
(this work) (13, 
154–160)Hypothetically, preterm delivery in pregnant 

diabetic women and cardiovascular events in 
rheumatoid arthritis

rs562962093 atctatttct
 

a
g 

tatagcctgc
2
5

↓ 15 10−6 Hypothetically, high risk of preterm delivery in 
pregnant diabetic women, cardiovascular events 
in rheumatoid arthritis

(this work)

rs567653539 tttctatata
 

g
a 

cctgcaccca
2
1

↑ 12 10−6 Hypothetically, high risk of cardiovascular events in 
rheumatoid arthritis

(this work)

DHFR (126060) rs10168 ctgcacaaat
 

a
g  

gggacgaggg
15
9

↑ 9 10−6 Resistance to methotrexate treatment of leukemia (161)  
(this work) 
(162–165)

Hypothetically, resistance to methotrexate in 
autoimmune diseases, without negative effects on 
bone mineral density in women

SOD1 (147450) rs7277748 ggtctggcct
 

a
g  

taaagtagtc
2
7

↓ 17 10−6 Amyotrophic lateral sclerosis (double prevalence 
among men), which may hypothetically be an 
autoimmune disease and, in addition, autoimmune 
diseases can often precede amyotrophic lateral 
sclerosis

(166)  
(this work) 
(167–169)

wt, ancestral allele; mut, minor allele; KD, an estimate (79) of the dissociation constant KD of the TBP-promoter complex corresponding to the conditions in vitro (71); Δ, a change: 
overexpression (↑), deficiency (↓), norm (=); Z, Z-score; α = 1 − p, significance [where p is the probability rate (79) shown in Figure 1]; TF, transcription factor; EMSA, electrophoretic 
mobility shift assay.
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The Human INS Gene
The human INS gene (insulin) contains the known SNP marker 
of type 1 diabetes after neonatal diabetes mellitus (rs5505) 
(106); this mutation can increase the blood level of insulin 
(Figure  1C), promote the development of type 1 diabetes 
(107), and increase the risk of other autoimmune diseases 
(Table  1). In addition, it was reported that women who have 
6q24-transient neonatal diabetes mellitus are at risk of a relapse 
(108). We predicted (79) insulin overexpression in the case of 

the unannotated SNP rs563207167 in the same promoter, as is 
the case for rs5505 (Table 1). Thus, we propose rs563207167 as 
a candidate SNP marker of the same gender-biased autoimmune 
disease (106–108).

Regarding another unannotated SNP rs11557611, we predicted 
(79) an insulin deficiency (Table 1), and we found (using the pri-
mary keyword search) a medical hypothesis that in vivo insulin 
deficiency is a possible cause of demyelinating disease (109), thrice 
more prevalent among young white women than among non-white 
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individuals (11). The cross-validating keyword search pinpointed 
clinical cases of demyelinating diseases as a complication of type 1  
diabetes in children (110). Thus, we propose rs11557611 as a 
candidate SNP marker of autoimmune demyelinating diseases.

The Human CETP Gene
The human CETP gene (plasma cholesteryl ester transfer 
protein) contains a minor variant of the promoter: the deletion 
G–72GGCGGACATACATATAC–54 between positions −72 and −54, 
which was implicated in hyperalphalipoproteinemia that reduces 
atherosclerosis risk (111). This effect is twofold greater in women 
than in men (112). This SNP significantly lowers expression of CETP 
(Figure 1D). Regarding two candidate SNP markers – rs17231520 
and rs569033466 (located within the above-mentioned 18-bp dele-
tion between positions −72 and −54) – we predicted (79) signifi-
cant overexpression of CETP (Table 1) and linked them (by means 
of a primary keyword search) with hypoalphalipoproteinemia that 
increases the risk of premature atherosclerosis-related coronary 
disease and autoimmune diseases (113, 114). The cross-validating 
keyword search produced an article on atherosclerosis as a risk fac-
tor of coronary diseases (115). This finding may serve as a rationale 
for our prediction of rs17231520 and rs569033466 as candidate 
SNP markers of both atherosclerosis-related autoimmune disease 
and coronary diseases.

The Human MMP12 Gene
The human MMP12 gene (matrix metallopeptidase 12) contains the 
known SNP marker (rs2276109) of a reduced risk of chronic asthma 
in children and in smokers (116, 117) as well as with the reduced 
risk of systemic sclerosis (117) that is exacerbated by menopause in 
women (12). This SNP causes MMP12 underexpression (Figure 1E), 
in agreement with clinical data (118). A primary keyword search 
produced empirical data (119) that overexpression of this gene in 
human keratinocytes may be associated with psoriasis (12). After 
that, the cross-validating keyword search showed that asthma 
elevates the risk of psoriasis (120), whereas psoriasis and systemic 
sclerosis often co-occur (121). We also predicted another candidate 
SNP marker (rs572527200) (79), whose numerical values were 
identical to those in the case of the above-mentioned rs2276109. 
Thus, we propose rs2276109 and rs572527200 as candidate SNP 
markers of a low risk of psoriasis, asthma, and systemic sclerosis.

The results on the Known snP Markers of 
Monogenic Diseases That May also Be 
candidate snP Markers of gender-Biased 
autoimmune Diseases
The Human HBB and HBD Genes
The human HBB and HBD genes (β- and δ-chains of hemo-
globin, respectively) contain seven known SNP markers 
(rs34500389, rs33981098, rs33980857, rs34598529, rs33931746, 
rs397509430, and rs35518301) of resistance to malaria and 
thalassemia (Cooley’s anemia) (122). These SNPs cause under-
expression of these genes (122) (Table 2). In addition, we pre-
dicted three candidate SNP markers (rs281864525, rs63750953, 
and rs34166473) of the same disorders (79) because these SNPs 

can also cause underexpression of HBB and HBD (Table  2).  
A primary keyword search revealed a retrospective analysis of 
autoimmune disease cases in children (123), where anemia is 
associated with a high risk of autoimmune diseases underly-
ing hypergammaglobulinemia in women. One more cross-
validating keyword search produced a review (124) showing 
an association between thalassemia and autoimmune diseases. 
Thus, we predicted ten candidate SNP markers of a gender-
biased autoimmune complication of hypergammaglobulinemia 
(rs35518301, rs34166473, rs34500389, rs33981098, rs33980857, 
rs397509430, rs34598529, rs33931746, rs281864525, and 
rs63750953) (123).

The Human ACKR1 Gene
The human ACKR1 gene (atypical chemokine receptor 1) contains 
the known SNP rs2814778 marker of malaria resistance (125) 
and of a lower white-blood cell count (126), a reduced neutrophil 
count (127), asthma, and high total IgE levels (128). This SNP can 
reduce the expression of this gene (79), in line with other stud-
ies (125–128), as shown in Table 2. A primary keyword search 
allowed us to propose rs2814778 as a candidate SNP marker of 
a lower risk of multiple sclerosis (129) and rheumatoid arthritis 
(130) and a candidate marker of a higher risk of other autoim-
mune diseases underlying hypergammaglobulinemia in women 
(123), as shown in Table  2. Indeed, the final cross-validating 
keyword search uncovered a retrospective association between 
asthma and subsequent autoimmune diseases diagnosed at 
least 5 years after asthma (131).

The Human StAR Gene
The human StAR gene (steroidogenic acute regulatory protein) 
contains a biomedical SNP marker of hypertension in diabetes 
(rs16887226) (132), with the highest risk at the waist circumference 
>87 cm in women and >99 cm in men (133). The EMSA showed 
that this SNP disrupts a tissue-specific unknown transcription 
factor-binding site rather than the ubiquitous TBP-binding site 
(132) and reduces this gene’s expression. Table 3 shows that our 
prediction (79) is supported by these EMSA data (132). Near this 
known rs16887226 marker, we predicted a candidate SNP marker 
of hypertension in diabetes (rs544850971) (79) because it can 
damage the TBP-binding site and thus reduce StAR expression, 
as rs16887226 does. Using a primary keywords search, we further 
predicted that during a deficiency in StAR as a mediator between the 
circadian and immune systems, both rs16887226 and rs544850971 
can serve as separate candidate SNP markers of low resistance to 
endotoxins (134) and of a good chance for partial restoration of this 
resistance by training in postmenopausal women (135). Lastly, the 
cross-validating keyword search pinpointed a clinical association 
(136) between the endothelial dysfunction and the hypertension, 
diabetes, and endotoxemia pathologies whose candidate SNP 
rs16887226 and rs544850971 markers were predicted here (Table 3).

The Human APOA1 Gene
The human APOA1 gene (apolipoprotein A-I) contains the 
−35A → C substitution inside a proven TATA box (the canoni-
cal form of the TBP-binding sites). This substitution reduces the 
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expression of this gene and thus is the SNP marker of hematuria, 
fatty liver, and obesity (137). A primary keyword search revealed 
a knockout APOA1−/− mouse model of human hypoalphalipopro-
teinemia (113) characterized by an elevated risk of atherosclerosis-
related autoimmune diseases (118) [double prevalence among 
females (112)]. After that, the cross-validating keyword search 
yielded a review showing obesity-induced development of athero-
sclerosis in children and in adolescents (138). Thus, we predicted 
this known SNP marker of obesity to be a candidate SNP marker 
of atherosclerosis-related autoimmune diseases (Table 3).

The Human F3 Gene
The human F3 gene (coagulation factor F3) contains the 
known SNP rs563763767 marker of the high risk of myocardial 
infarction and thromboembolism whose molecular cause is F3 
overexpression (139) as we predicted in silico and confirmed in 
our experiments in vitro (72). A primary keyword search revealed 
that F3 overexpression is a biochemical marker of Hughes 
syndrome-associated thrombosis (140), which is lethal during 
pregnancy (14). The cross-validating keyword search produced 
a clinical practice report on Hughes syndrome as an earlier easily 
detectable and preventable cause of myocardial ischemia (141). 
Thus, we predicted (Table 3) the known SNP marker of myocar-
dial infarction (rs563763767) to be a candidate SNP marker of 
Hughes syndrome whose early detection is easy and can prevent 
(141) Hughes syndrome-associated thrombosis (140), which is 
lethal during pregnancy (14).

The Human TNFRSF18 Gene
The human TNFRSF18 gene (glucocorticoid-induced TNFR-
related protein) contains the known SNP marker of resistance 
to parasites (rs111426889) (142) due to overexpression of this 
gene (79). A primary keyword search yielded a minireview (143) 
showing that TNFRSF18 overexpression can cause development 
of some autoimmune diseases with fourfold prevalence among 
women (10). Then, the cross-validating keyword search produced 
laboratory data showing that diabetic mice are resistant to myco-
bacteria, whereas a mycobacterial infection prevents this auto-
immune disease (144). Thus, we predicted that the known SNP 
marker of resistance to parasites (rs111426889) can additionally 
be a candidate SNP marker of autoimmune diseases (Table 3).

The Human NOS2 Gene
The human NOS2 gene (inducible nitric oxide synthase 2) contains 
the −51T → C substitution as a known SNP marker of epilepsy 
(145) and resistance to malaria (146, 147) due to overexpression of 
this gene (79) (Table 3). A primary keyword search pointed to an 
empirical study on a mouse model of human pemphigus vulgaris 
(148) where NOS2 overexpression as a biochemical marker was 
found to be associated with inflammation and tissue damage as 
two complications of this autoimmune disease (148). This disease 
is twofold more prevalent among women than among men (149). 
Using the cross-validating keyword search, we found a clinical 
case report of pemphigus vulgaris after antiepileptic therapy 

(150). On this basis, we predicted that this known SNP marker 
of epilepsy can be a candidate SNP marker of inflammation and 
tissue damage as complications of pemphigus vulgaris (Table 3).

The Human MBL2 Gene
The human MBL2 gene (soluble mannose-binding lectin 2) 
contains a known SNP marker (rs72661131) of variable immuno-
deficiency (151), preeclampsia (152), and stroke (153). This SNP 
impairs expression of this gene, as we predicted (79) and proved 
in experiments under both equilibrium (71) and non-equilibrium 
(72) conditions in  vitro. A primary keyword search produced 
clinical findings of a high risk of preterm delivery in pregnant 
diabetic women (13) and a report about cardiovascular events 
in rheumatoid arthritis (154); the latter is twice more frequent in 
women than in men (101). Near this SNP rs72661131, we found 
two unannotated SNPs (rs562962093 and rs567653539), which 
can cause the MBL2 underexpression and overexpression, respec-
tively (Table 3). The cross-validating keyword search yielded six 
articles (155–160) showing that the variable immunodeficiency, 
preeclampsia, stroke disorders, and autoimmune diseases are 
clinically associated. Thus, we predicted three candidate SNP 
markers of preterm delivery in pregnant diabetic women (13) and 
cardiovascular events in rheumatoid arthritis (154) (rs72661131, 
rs562962093, and rs567653539; Table 3).

The Human DHFR Gene
The human DHFR gene (dihydrofolate reductase) contains the 
known SNP marker of resistance to methotrexate treatment in 
children with acute lymphoblastic leukemia (rs10168) (161). This 
SNP causes overexpression of DHFR (79). A primary keyword 
search pointed to autoimmune diseases that are commonly 
treated with this drug (162) because it has no negative effects on 
bone mineral density in women (163). Next, the cross-validating 
keyword search produced two clinical reports (164, 165) showing 
that autoimmune diseases elevate the risk of leukemia. These data 
favor our prediction that the known SNP marker of resistance to 
methotrexate treatment in leukemia (rs10168) can additionally 
be a candidate SNP marker of the same drug resistance in autoim-
mune diseases (162, 163).

The Human SOD1 Gene
The human SOD1 gene (soluble superoxide dismutase 1) contains 
the known SNP marker of familial amyotrophic lateral sclerosis 
(rs1143627) (166) caused by underexpression of this gene, as 
we predicted in  silico (79) and proved in in  vitro experiments 
(72). Although this degenerative disorder of the central nervous 
system is not generally considered an autoimmune disease, our 
primary keyword search revealed a relevant empirical study on 
a mouse model of human multiple sclerosis (167). It shows an 
association of amyotrophic lateral sclerosis with autoimmune 
diseases (167). It is worth mentioning that amyotrophic lateral 
sclerosis occurs twice as often in men (168); this situation is 
not characteristic of autoimmune diseases. The cross-validating 
keyword search yielded an epidemiologic review (169) of the 
autoimmune diseases preceding amyotrophic lateral sclerosis. 
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Thus, we predicted the known SNP marker of amyotrophic lateral 
sclerosis (rs1143627) to be a candidate SNP marker of autoim-
mune diseases.

The results of the statistical comparison 
between the computationally Predicted 
and experimentally Measured –ln(KD) 
Values of the TBP-Promoter affinity
As a final cross-validation test, we conducted a statistical 
comparison between the −ln(KD) values of the TBP-promoter 
affinity that were predicted in silico (Tables 1–3) and measured 
by the EMSA in vitro (72). On an absolute natural logarithmic 
scale, Figure 3A shows a significant correlation, namely: linear 
(r = 0.75; α < 0.0025), Goodman–Kruskal’s generalized (γ = 0.53; 
α < 0.01), Spearman’s rank correlation (R = 0.76, α < 0.0025), and 
Kendall’s rank correlation (τ = 0.52; α < 0.01). On the other hand, 
Figure 3B shows this correlation on a relative natural logarith-
mic scale: r = 0.77 (α < 0.0025), γ = 0.65 (α < 0.0025), R = 0.81 
(α < 0.0025), and τ = 0.65 (α < 0.0025). Thus, eight statistical tests 
indicated the robustness of the correlation between our predicted 
values (Tables  1–3) and empirical −ln(KD) values (72). This 
robustness can cross-validate our predictions that known and 
candidate SNP markers of monogenic diseases can be candidate 
SNP markers of autoimmune complications of these diseases.

how to Use candidate snP Markers of 
autoimmune complications of Monogenic 
Diseases
This study is focused on the TBP-binding site because it is the 
best-studied site upstream of the transcriptional start of any 
mRNA in the genome, where RNA polymerase II binds to the 
anchoring TBP–DNA complex at the stage of preinitiation 

complex formation (58). As continuation of our previous analysis 
of monogenic diseases (74–79), here, in addition to the genetic 
susceptibility to diseases  –  previously the only known SNP 
manifestation  –  we identified associations with complications 
of autoimmune diseases (e.g., rs1143627: autoimmune diseases 
often precede amyotrophic lateral sclerosis), gender specificity of 
such complications (e.g., rs72661131 and rs562962093: preterm 
delivery in pregnant diabetic women), autoimmune complica-
tions of non-autoimmune diseases (e.g., Table 2: autoimmune 
diseases underlying hypergammaglobulinemia in women), 
gender-biased epigenetic regulation of gene expression (e.g., 
rs1143627: skewed X chromosome inactivation), drug resist-
ance (e.g., rs10168: resistance to methotrexate treatment of 
autoimmune diseases), and the effects of a lifestyle in women 
(e.g., rs16887226 and rs544850971: diet and training can restore 
resistance to endotoxins). These findings extend the field of 
practical applications of our Web service due to the keyword 
searches (100).

Be that as it may, known SNP markers of monogenic diseases 
are known to cause these disease, whereas the questions “What 
is the cause?” and “What is the consequence?” in relation to the 
pathogenesis of autoimmune diseases are still the focus of active 
biomedical research (15–19). Each candidate SNP marker predicted 
here is only a genome-wide informative landmark in a patient with 
the minor allele of this SNP; this situation can help the patient and 
his/her doctor to improve the lifestyle and treatment, respectively, 
to prevent autoimmune complications of the illness in question. 
As an example, here we predicted a candidate SNP marker of 
Hughes syndrome-associated thrombosis (rs563763767), which 
is lethal during pregnancy (140), whereas Hughes syndrome is 
easy to diagnose early and is a preventable cause of myocardial 
ischemia (141). Keeping this additional information in mind, a 
pregnant woman with the minor allele of this SNP and her physi-
cian can arrange additional diagnostic tests to monitor emergence 
and development of the symptoms of the relevant autoimmune 
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complications, in addition to an adjunctive treatment during her 
pregnancy. Similarly, parents of the obese children or adolescents 
with the –35C allele of the APOA1 gene, when obesity was caused 
by their accelerated development and maturation, can modify the 
diet and lifestyle of their children to reduce the excess body fat 
before an imbalance of the immune system causes atherosclerosis. 
Moreover, two candidate SNP markers predicted by us (rs16887226 
and rs544850971) would be interesting to obese postmenopausal 
women with the minor alleles of these SNPs who developed low 
resistance to endotoxins; these women can resort to training and 
dietary changes in order to restore this resistance (135). By the 
same token, all the other candidate SNP markers predicted here 
(Tables  1–3) may help both patients and clinicians to improve 
quality of life and efficiency of health care.

With this auxiliary bioinformatic approach, here we could 
perform only something like cross-validation with rough qualita-
tive estimates and limitations of a keyword search in databases 
without exact statistical tests. Consequently, biomedical stand-
ardization of the SNP-disease association data available today 
(100) may advance postgenomic predictive preventive personal-
ized medicine (20).

It should be noted that there are known problems with the 
computational prediction of the TBP-binding site because this 
site may shift depending on whether TBP interacts with an 
ancestral or minor allele of a human gene promoter (170). To 
address this problem, instead of computational prediction of the 
exact location of this 15-bp site within human gene promoters, 
we estimated the maximal value of TBP’s binding affinity for the 
whole 50-bp region where TBP binds to DNA of these promoters 
(59). In addition to the commonly accepted prediction criterion 
of the TBP-binding site [i.e., Bucher’s position-weight matrix 
score (86)], we took into account both prior and subsequent 
molecular events, such as TBP’s sliding along DNA (83) and sta-
bilization of the TBP-promoter complex by bending of the DNA 
axis at a right angle (87), respectively (see Materials and Methods: 
Supplementary Material). In Figure 3, one can see the statistically 
significant correlations between our estimates in silico (this work) 
and empirical in vitro values (72) of TBP’s binding affinity for the 
human gene promoters. Moreover, these correlations are robust, 
i.e., they persist despite variations of linear, rank, or generalized 
correlation criteria. This robustness supports our results on the 
candidate SNP markers of autoimmune complications of mono-
genic diseases.

Finally, it is worth noting that our analysis of the candidate SNP 
markers of autoimmune diseases (Tables 1–3) will merely inform 
physicians about the degree of the molecular (e.g., KD values, 
Z-score, and α value) and biomedical evidence (two rightmost 
columns in Tables 1–3) as a rationale for expensive and labor-
consuming validation of a particular SNP in a particular disease. 
The decisive proof would be the significantly higher frequency 
in patients than in healthy people, and this frequency can be 
confounded by climate, environmental conditions, lifestyles, and 
the ethnic, social, age, and gender composition of cohorts (171). 
Because statistical significance of the predicted SNP markers 
varied from high confidence (α < 10−6) to borderline significance 
(α < 0.05), the proposed markers should be tested according to 
proper biomedical standards and protocols prior to application 

to clinical practice. For the best targeting of our analysis, we 
arranged the ancestral and minor alleles of each candidate SNP 
marker of autoimmune diseases by KD values expressed as affinity 
of TBP’s binding to synthetic aptamers of double-stranded DNA 
26 bp long, as we predicted for in vitro conditions (71). We found 
that these KD values vary from 1 to 60 nM, whereas their varia-
tion among alleles of a certain SNP is within 1 nM, which is less 
than 2% of the KD range. Thus, the allelic variation is too small 
for accurate experimental determination of differences in KD 
without consideration of additional data on the expected range 
of the values to be measured. That is why the predicted KD values 
(Tables  1–3) require empirical verification with sophisticated 
equipment (71–73).

cOnclUsiOn

Here we predicted candidate SNP markers of gender-biased 
autoimmune complications of monogenic diseases (Tables 1–3). 
They are located within TBP-binding sites of human gene pro-
moters. Validation of these markers in accordance with clinical 
standards can bridge the gap between the best-studied SNPs 
(within protein-coding regions of genes) and the worst-studied 
SNPs (in regulatory regions of genes). After that, the validated 
SNP markers can allow physicians to select the best treatment for 
each patient and may help patients to choose a lifestyle reducing 
the risk of autoimmune complications.
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