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Abstract: Thalidomide is effective in patients with refractory cutaneous lupus erythematosus (CLE).
However, the mechanism of action is not completely understood, and its use is limited by its potential,
severe side-effects. Immune cell subset analysis in thalidomide’s CLE responder patients showed a
reduction of circulating and tissue cytotoxic T-cells with an increase of iNKT cells and a shift towards
a Th2 response. We conducted an RNA-sequencing study using CLE skin biopsies performing
a Therapeutic Performance Mapping System (TMPS) analysis in order to generate a predictive
model of its mechanism of action and to identify new potential therapeutic targets. Integrating
RNA-seq data, public databases, and literature, TMPS analysis generated mathematical models
which predicted that thalidomide acts via two CRBN-CRL4A- (CRL4CRBN) dependent pathways:
IRF4/NF-ҡB and AMPK1/mTOR. Skin biopsies showed a significant reduction of IRF4 and mTOR
in post-treatment samples by immunofluorescence. In vitro experiments confirmed the effect of
thalidomide downregulating IRF4 in PBMCs and mTOR in keratinocytes, which converged in an
NF-ҡB reduction that led to a resolution of the inflammatory lesion. These results emphasize the
anti-inflammatory role of thalidomide in CLE treatment, providing novel molecular targets for
the development of new therapies that could avoid thalidomide’s side effects while maintaining
its efficacy.

Keywords: cutaneous lupus; thalidomide; mechanism of action; new therapy

1. Introduction

Cutaneous Lupus Erythematosus (CLE) is common and encompasses a wide range
of dermatologic manifestations. As many as 70–80% of patients can develop skin lesions,
which can be an early sign of systemic involvement [1,2]. CLE can be classified into
specific and non-specific lesions, of which discoid lupus erythematosus (DLE) and subacute
cutaneous lupus erythematosus (SCLE) are the most prevalent forms [3]. Early effective
treatment may resolve the lesions, but delayed or inadequate treatment can result in
permanent scarring, especially in DLE [4].

First-line therapies for CLE are antimalarial agents and/or topical steroids, together
with sun protection [5]. Although most patients respond to this regimen, 30 to 40% of
cases will be refractory [6]. For this minority, there is no consensus treatment algorithm,
and several systemic agents have shown a variable response [7]. Thalidomide, a glutamic
acid derivative with immunomodulatory and anti-inflammatory effects, has been used suc-
cessfully in several oncological and chronic inflammatory dermatological conditions [8,9].
First prescribed for refractory CLE in 1975 [10], thalidomide use has increased following its
reported efficacy, reaching 80–90% [6,10,11]. However, large-scale clinical trials are lacking,
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and serious adverse events such as teratogenicity, neurotoxicity, and thrombosis restrict its
use [12–15].

Although thalidomide’s mechanism of action (MoA) has been studied, little is known
of the molecular basis of its immunomodulatory effect in CLE. In vitro studies have demon-
strated that thalidomide inhibits neutrophil chemotaxis, phagocytosis, angiogenesis, and
production of tumour necrosis factor alpha (TNF-α). It also interacts with the T-helper
response and regulation of transcription factor nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-ҡB) [16–19]. In the absence of an effective and safe treatment, a
better understanding of thalidomide’s MoA can help to identify key target molecules for
the development of new therapeutic agents.

Genome-wide gene expression profiling is increasingly used to investigate patho-
genetic mechanisms and identify potential disease biomarkers [20]. RNA sequencing
(RNA-seq) is a widely used method to study overall transcriptional activity. RNA-seq is
a powerful investigative tool using transcriptome changes as a proxy for drug effect and
has led to the discovery of potential biomarkers in several diseases, yet standard library
construction is costly [21–23]. Using a mathematical model including the comparative
RNA-sequencing data, we identified different molecular signalling signatures that provide
novel insights into thalidomide’s MoA and potential therapeutic targets.

2. Materials and Methods
2.1. Patients

Six-millimetre punch skin biopsies for RNA-seq and blood samples for peripheral
blood mononuclear cells (PBMCs) isolation were taken from 10 patients with active CLE,
before and 4 weeks after thalidomide treatment (Table S1; see Supplementary Materials).
CLE diagnosis and classification was based on clinical and histological criteria according
to the 2004 Dusseldorf classification [24]. Disease activity was assessed by the validated
modified CLE Disease Area and Severity Index (CLASI) [25]. The study was approved by
the Vall d’Hebrón Ethics Committee and informed consent was obtained from all subjects.

2.2. RNA-Seq and System Biology Analysis

Whole skin RNA was extracted following the protein and RNA Isolation kit’s instruc-
tions (Thermofisher Scientific, Waltham, MA, USA). For library construction, total RNA
(1 µg) was used following the Illumina TruSeq™ RNA Sample Prep Kit (Illumina, San
Diego, CA, USA) manufacturer’s instructions. The resulting libraries were subjected to Illu-
mina Hiseq 2000 sequencing platform version 3, producing 2× 75 bp run with >65 M reads
(Illumina, San Diego, CA, USA). Sequences were analyzed for quality control (FASTQC)
and aligned to the Human genome (GRCh38) with STAR program V2.5.2a [26,27]. Sequenc-
ing reads were processed using the RSEM program (version 1.2.28) [28] and differential
expression calculated by DESeq2 [29]. Data are available from Gene Expression Omnibus
(GSE162424). We generate models to predict thalidomide’s MoA by a Therapeutic Perfor-
mance Mapping System (TMPS) approach (Anaxomics Biotech, Barcelona, Spain). TPMS
combines RNA-seq data with a complete characterization of CLE/Thalidomide using
biological information from KEGG, Binding Database, BioGRID, REACTOME, Pubmed,
Drug Bank, Stich and Supertarget [30–37] (See Supplementary Materials).

2.3. Flow Cytometry

PBMCs cell phenotype was analyzed by seven-colour flow cytometry (LSR Fortessa,
BD Biosciences, Franklin Lakes, NJ, USA). For cell surface staining, conjugated monoclonal
antibodies were used (BD Biosciences) (Table S2; see Supplementary Materials). Isotype
controls were used for gate setting. Data were analyzed using FCS Express 4 Flow Research
software (BD Biosciences, Erembodegem, Belgium).
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2.4. Immunofluorescence and Immunohistochemistry

Immunohistochemistry (IHC) and immunofluorescence (IF) were performed as de-
scribed on paraffin-embedded and frozen sections, respectively [37,38] using purified
monoclonal antibodies listed in Table S3. Stained samples were evaluated by two blinded
dermatopathologists and cell counts were quantified using Image J V1.42 (see Supplemen-
tary Materials).

2.5. In Vitro Ubiquitination Assay

Recombinant Human CRBN + DDB1 + CUL-4A + RBX1 (Abcam, Cambridge, UK)
(1 µM), Human AMPK1 Fisher (ThermoFisher, Waltham, MA, USA) (1.5 µM) and Thalido-
mide (100 µM) were used with the E3 Ligase Auto-Ubiquitilylation Assay Kit (Abcam,
Cambridge, UK) following the manufacturer’s instructions. Reactions were incubated at
37 ◦C for 2 h before separation by SDS–PAGE followed by western blot analysis.

2.6. Co-Immunoprecipitation for Cell-Based Ubiquitination Assay

Epidermal keratinocytes were stimulated with UVB for 6h and then treated with
thalidomide. After 24 h, cells were washed twice with PBS and lysed with RIPA buffer
(Sigma Aldrich, St. Louis, MI, USA) together with protease inhibitor cocktail (Sigma
Aldrich, St. Louis, MI, USA). After centrifugation at 10,000 rpm for 15 min, supernatant
was collected.

Concurrently, Dynabeads™ Protein G for Immunoprecipitation (Invitrogen, Waltham,
MA, USA), were washed and incubated with anti-AMPK antibody (1:250) (Abcam, Cam-
bridge, UK) in PBS 0.02% Tween™ 20 for 15 min at room temperature in order to obtain
the Antibody-bead complex. Then, the mix was incubated with the obtained supernatant
from the cell lysis. After 1 h at room temperature, the antibody-bead-AMPKprotein com-
plexes were obtained. Finally, AMPK protein was eluted with elusion buffer (50 mM
glycine pH 2.8) for 2 min at room temperature. Supernatants were subjected to western
blot analysis for AMPK and ubiquitin protein analysis.

2.7. Protein Extraction and Western Blot

Skin protein samples were obtained using the PARIS kit following manufacturer’s
instructions (see Supplementary Materials). Protein concentrations were determined using
the BCA protein assay kit (Bio-Rad, Hercules, CA, USA). Then, 50 µg of protein was
loaded into 12% SDS-PAGE and transferred to PVDF membranes (Millipore, Billerica, MA,
USA) by Semi-Dry Electrophoretic Transfer (Bio-Rad, Hercules, CA, USA). Membranes
were blocked with 5% BSA (RT, 1 h) followed by overnight incubation (4 ◦C) with specific
primary antibodies (Abcam, Cambridge, UK, Table S3). Secondary HRP-labelled antibodies
were added (1:500) and visualized using ECL Detection System (Santa Cruz Biotechnology,
Dallas, TA, USA).

2.8. RNA Extraction and RT-qPCR

RNA from cultured lysed cells was obtained with RNeasy Mini Kit (Qiagen, Hilden,
Germany). RNA was transcribed into cDNA with High-Capacity cDNA Reverse Transcrip-
tion Kit (Applied Biosystems, Foster City, CA, USA). Gene expression was assessed by
TaqMan assays (Applied Biosystems, Foster City, CA, USA) (Table S4; see Supplementary
Materials).

2.9. Proliferation Assays

Proliferation assays were performed using CyQUANT NF Cell Proliferation Assay
Kit (Invitrogen), following manufacturer’s instructions.

2.10. Cell Culture

Human epidermal adult Keratinocytes (HEKa) were cultured in EpiLife serum-free
media with Human Keratinocyte Growth Supplement (Life Technologies, Carlsbad, CA,
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USA) and isolated PBMCs from healthy volunteers (Vacutainer CPT, BD Biosciences) in
RPMI medium (Life Technologies, Carlsbad, CA, USA; see Supplementary Materials).

2.11. Gene Silencing

Third passage cultured cells at 30–50% confluence were transfected with interferon
regulatory factor 4 (IRF4) or mechanistic target of rapamycin (mTOR) small interfering
RNA (siRNA, ThermoFisher) or a silencer negative control (ThermoFisher, AM4615) using
the lipofectamine CRISPRMAX Cas9 Reagent following the manufacturer’s instructions
(ThermoFisher, Waltham, MA, USA). After 24 h, cells were treated with TNF-α (10 ng/mL)
or U.V for 6 h and analyzed by qPCR-RT or immunofluorescence.

2.12. Co-Culture Experiments

Co-cultures were performed in modified 24-well plates with cell culture inserts (0.4-µm
pore; BD Biosciences, Franklin Lakes, NJ, USA). HEKa cells were cultured at the bottom
overnight. Isolated healthy donor PBMCs, stimulated with TNF-α for 6 h, were placed
in the upper part of the insert and treated with thalidomide (100 ng/mL). After 24 h, the
insert was removed, and HEKa cells were analyzed by immunofluorescence or RT-qPCR.

2.13. Statistical Analysis

Data are represented as mean ± SEM. Comparison between groups and differential
gene expression was calculated with paired or unpaired t-tests as applicable using Prism
GraphPad (GraphPad Software, v7.0, San Diego, CA, USA). p values≤ 0.05 were considered
statistically significant. RT-qPCR analysis was calculated using Fold Change differences
with 2−∆∆Ct method.

3. Results
3.1. Immunoregulatory Effects in CLE Peripheral Blood and Skin

Ten thalidomide-treated CLE patients were included (Table S1) (see Supplementary
Materials). Seven (70%) achieved clinical remission (CLASI = 0). Following treatment,
responder patients had a reduction in peripheral cytotoxic CD8+ T-cells (p = 0.044) and
an increase of iNK T-cells (p = 0.006) (Figure 1a). iNK T-cell related cytokines were not
different after treatment; however we observed a tendency to decrease granulate cytokines
(perforin A and granzyme B) in post-treatment samples (Figure S1). No significant changes
in CD4+ T percentages or in dendritic cells, B-cells, or T regs were observed. Analysis of
distinct Th subsets showed a skew towards a Th2 response (p = 0.018) (Figure 1b).

The immunohistochemical study results of the skin infiltrating cells mirrored the ones
observed in peripheral blood with a significant reduction in the number of CD8+ T-cells
(p = 0.013, Figure 1c) and an increase in iNK T-cells post-thalidomide (p = 0.004, Figure 1d).

3.2. RNA-Sequencing with Therapeutic Performance Mapping System (TMPS) Analysis Revealed
Thalidomide’s Mechanisms in CLE

We first identified relevant proteins in CLE pathogenesis and thalidomide through
the analysis of published biological information that allowed us to establish the protein
network (Tables S5 and S6; Figures S2 and S3). To obtain further insight into the molecular
basis of CLE, we performed an RNA-seq. Comparative analysis of the skin RNA sequenc-
ing of thalidomide responder patients revealed 448 differentially expressed transcripts,
of which 339 were protein coding genes (|log2(FC)| ≥ 1; Adj. p value < 0.05, data avail-
able GSE162424). To construct the Thalidomide’s MoA, the RNA-seq data was used to
restrict the models (see Supplementary Materials). Finally, we identified twenty-seven
differential molecules of which 14 were CLE effectors (Table S7, Figure 2). In our model,
we found thalidomide to act by two CRL4CRBN-dependent mechanisms: (a) downregu-
lating IRF4 leading to an inhibition of the NF-ҡB signalling pathway; and (b) regulating
AMPK1/mTOR signalling pathway (Figure 2).
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Figure 1. Thalidomide ameliorates skin inflammation by decreasing CD8+ T cells, increasing iNK-Tcells and promoting a
Th2 response in CLE. (a) Flow cytometry percentages of T helper (CD3+CD4+), T cytotoxic cells (CD3+CD8+) and iNK Tcells
(CD3+6B11+) in PBMCs of responder patients (n = 7) before and after thalidomide treatment. (b) Post-thalidomide, CLE
patients had lower percentages of Th1 (CCR5+ CXCR3+) T cells and higher percentages of Th2 (CCR4+CCR3+). (c) Skin
immunohistochemistry to evaluate infiltrating CD4+ and CD8+ in skin biopsies of CLE. Graphs represent the average signal
intensity (n = 3). (d) Immunofluorescence of post-treatment skin samples showed a significant increase of iNK Tcells (6B11+
cells). Scale bar = 200mm. * p < 0.05; ** p < 0.005; *** p < 0.0001.
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Figure 2. Proposed thalidomide mechanism of action in Cutaneous Lupus Erythematosus (CLE). On the one hand, in the
presence of thalidomide, CRL4CRBN complex ubiquitinates IKZF1/3 promoting downstream modulation of IRF4 and, on
the other hand, prevents the ubiquitination of AMPKa1, increasing the expression of phosphorylated RPTOR which in turn
inhibits mTOR signaling. Therefore, thalidomide modulates IRF4 and AMPK/mTOR pathways and their downstream
effector molecules contributing to the resolution of inflammatory lesions in CLE.

In order to confirm the proposed mechanism models, we further investigated the effect
of thalidomide in the CRL4CRBN–IKZF1/3 and AMPK1 interaction. It is well-known that
in the presence of thalidomide, IKZF1/3 acts as a substrate for the CRL4CRBN complex, and
both Ikaros (IKZF1) and Aiolos (IKZF3) are ubiquitinated and targeted for degradation by
the ubiquitin–proteasome system [38]; however, the effect of thalidomide in the CRL4CRBN-
AMPK1 interaction is not well known. Our in vitro studies showed that in the presence
of thalidomide, there was a significant reduction of the ubiquitin-dependent proteasomal
degradation of AMPKa1, the catalytic subunit of the 5′-prime-AMP-activated protein
kinase (AMPK) (Figure 3a).

Next, we further study the effect of thalidomide treatment in the two signalling path-
ways by measuring the identified key molecules at a protein level in the skin biopsies of
CLE patients. Immunofluorescence in post-thalidomide skin biopsies showed a decrease
expression of CRBN (p = 0.012 epidermis; p = 0.008 dermis), IRF4 (p = 0.0031 dermis), and
NF-ҡB (p < 0.001 epidermis; p = 0.001 dermis), whereas mTOR expression was reduced
primarily in the epidermal keratinocytes (p < 0.001, Figure 3b). Following thalidomide treat-
ment, there was an increase of AMPKa1 (p < 0.001) and phosphorylated RPTOR (p < 0.001)
protein expression levels in the epidermis (Figure 3b). Results were confirmed also by
western blot (Figure S4).
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Figure 3. Protein levels of key target molecules identified in the analysis of the thalidomide mechanism of action. (a) In vitro
ubiquitination of AMPKa1 by the CRL4CRBN showed a reduction of the AMPKa1 ubiquitination in the presence of
thalidomide. (b) Immunofluorescence of CLE lesional skin of paired patients showed a downregulation of CRBN (red),
IRF4, NF-ҡB, mTOR (green) and upregulation of AMPK1a (red) and phosphorylated RPTOR (Phospho-Rptor, green) after
thalidomide treatment. Counterstaining of nuclei is shown in blue. Average intensity fluorescence score evaluated by
blinded expert pathologists in the epidermis and the dermis of the CLE skin sections (n = 5). Scale bar = 200mm. * p < 0.05;
** p < 0.005; *** p < 0.001.
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3.3. Thalidomide Modulates PBMCs via the IRF4/NF-ҡB Signalling Pathway

Our immunofluorescence findings indicate that thalidomide may modulate the IRF4
pathway in the dermal inflammatory infiltrates. We performed in vitro experiments
with stimulated PBMCs treated with thalidomide that showed a significant reduction
of IRF4 (p < 0.01) and NF-ҡB (p < 0.01) expression but no changes were observed in mTOR
(Figures 4a and S5). Gene expression analysis of final effector molecules showed a signifi-
cant reduction of NF-ҡB-related cytokines (IL-1β, IL-8 and TNFα (9.09, 5.25 and 33.3-fold
decrease, respectively) and CCL3 (6.25-fold decrease). The analysis of the T helper subsets
showed an increase of the Th2/Th1 ratio (GATA3/T-bet) (1.26 and 1.63-fold increase, re-
spectively) with a significant reduction of IL-2 levels (1.45-fold decrease, Figure 4b). No
significant changes were found in PBMCs proliferation and autophagy (Figures S6 and S7).
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NF-ҡB and IRF4 protein levels (green staining) in PBMCs treated with thalidomide (Th) or with 

PBS + 1%DMSO (control conditions). Dapi was used to stain nuclei of cells (blue). (b) RT-qPCR of 

Figure 4. Thalidomide modulates the IRF4/NF-ҡB pathway in PBMCs. (a) Immunofluorescence of NF-ҡB and IRF4 protein
levels (green staining) in PBMCs treated with thalidomide (Th) or with PBS + 1%DMSO (control conditions). Dapi was
used to stain nuclei of cells (blue). (b) RT-qPCR of NF-ҡB inflammatory effectors CXCL3, TNFα, IL-8, IL-1β and IL2 was
performed in PBMCs treated with or without thalidomide. Ratio T helper 2 vs. 1 was evaluated via gene expression
of their transcription factors. (c) IRF4-silenced PBMCs were stained in order to evaluate NF-ҡB and IRF4 protein levels
(green). Control condition was performed using a non-targeting siRNA. (d) Gene expression in IRF4-silenced PBMCs were
determined by RT-qPCR. Fold change was calculated over control conditions. GADPH was used as endogenous control.
Scale bar = 50 µm. * p < 0.05, ** p < 0.005, *** p < 0.001.

To demonstrate that the thalidomide anti-inflammatory effect in PBMCs is dependent
on IRF4 modulation, we silenced IRF4. We showed that IRF4 silencing induced similar
results to the ones observed in thalidomide-treated cells with a reduction of NF-ҡB protein
levels (p < 0.01) and a downregulation of IL-1β, IL-8, TNFα (1.87, 2.89 and 11.04-fold
decrease, respectively) and CCL3 expression levels (1.27-fold decrease, Figure 4b). siIRF4
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PBMCs showed also a shift of the Th1/Th2 balance with an increase of the Th2/Th1 ratio
and a significant reduction of IL-2 levels.

3.4. Thalidomide Modulates the AMPK1/mTOR-NF-ҡB Signalling Pathway in Keratinocytes

mTOR epidermal expression in pre-treated samples led us to study thalidomide’s
effect on keratinocytes through this signalling pathway. First, we demonstrated at a tissue
level the effect of thalidomide in AMPK. Keratinocyte cell-based ubiquitination was per-
formed in the presence or absence of thalidomide. A significant increase of AMPKa1 protein
levels were observed in thalidomide-treated keratinocytes in comparison to control con-
ditions (p < 0.001, Figure 5a). Simultaneously, a significant reduction of ubiquitin-protein
conjugates were observed suggesting that ubiquitination of AMPKa1 is more pronounced
in the absence of thalidomide (p = 0.0201, Figure 5a). This observation was also con-
firmed by western blot (Figure S8). mTOR expression levels decreased in UVB-stimulated
keratinocytes following thalidomide (p = 0.009, Figure 5b). Conversely, upregulation of
AMPKa1 and phosphorylated RPTOR expression levels were observed (p = 0.036 and
p = 0.003, respectively, Figure 5b). The gene expression analysis of downstream mTOR-
dependent cytokines (IL-10, TGFβ and INFα) in thalidomide-treated keratinocytes only
showed a significant reduction of TGFβ (6.69-fold decrease, Figure 5c). Keratinocyte prolif-
eration, apoptosis and autophagy after thalidomide were analysed and no changes were
observed (Figures S9 and S10).
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Figure 5. Thalidomide modulates the AMPKa1/mTOR in keratinocytes. (a) In vivo ubiquitination was performed in
keratinocytes treated or non-treated with thalidomide. Immunofluorescence of AMPKa1 (red) or ubiquitin-proteins
conjugates (green) revealed that in the presence of thalidomide AMPKa1 was not degraded. Scale bar = 50 µm. * p < 0.05,
*** p < 0.0005. (b) Protein levels of AMPKa1 (red), mTOR and phosphorylated RPTOR (Phospho-RPTOR, green) were
measured using immunofluorescence in keratinocytes treated with thalidomide (Th) or with PBS+1%DMSO (control
conditions). Nuclei of cells were marked with dapi (blue stainning). Scale bar = 50 µm. * p < 0.05, ** p < 0.005. (c) RT-qPCR
of mTOR inflammatory effectors TGFβ, IL-10, INFα was performed in UVB-treated keratinocytes in the presence or not of
thalidomide. Fold changes were calculated over control. * p < 0.05.
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We also studied the ability of thalidomide to modulate NF-ҡB in keratinocytes, since
epidermal NF-ҡB levels were significantly reduced in skin biopsies following thalidomide
treatment. The treatment of these cells with thalidomide reduced significantly the NF-ҡB
protein levels (p = 0.005, Figure 6a). Furthermore, gene expression analysis of NF-ҡB-
dependent cytokines (TNFα, IL8, IL1β, IL6, CXCL1 and MMP9) showed a reduction of IL-1β
(5-fold decrease), TNFα (6.71-fold decrease) and CXCL1 (2.67-fold decrease) (Figure 6b).
This NF-ҡB reduction was also observed in keratinocytes when mTOR was silenced, along
with an increase of AMPKa1 protein levels (p < 0.05) (Figure 6c). Downregulation of TGFβ
(1.92-fold decrease), IL-1β (19.88-fold decrease), TNFα (3.70-fold decrease) and CXCL1
(4.29-fold decrease) gene expression levels were also observed (Figure 6d).
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Figure 6. Thalidomide effect in keratinocytes is dependent on mTOR. (a) Immunofluorescence showed a reduction of
NF-ҡB protein levels in keratinocytes in the presence of thalidomide (green staining). Scale bar = 50 µm. ** p < 0.005. (b) A
reduction of NF-ҡB-related cytokine gene expression was confirmed by RT-qPCR analysis. Fold change was calculated over
control conditions. GADPH was used as endogenous control. * p < 0.05, ** p < 0.005. All the experiments were performed in
triplicate (c) AMPK1a and NF-ҡB protein levels were measured by immunofluorescence in silenced mTOR keratinocytes
and control keratinocytes (non-specific silenced gene). Scale bar = 50 µm. * p < 0.05, *** p < 0.0005. (d) Gene expression
of related cytokines were measured by RT-qPCR analysis in silenced mTOR keratinocytes (simTOR). Fold change was
calculated over non-silenced mTOR keratinocytes (control conditions). * p < 0.05, ** p < 0.005.

Silencing IRF4 in keratinocytes had no effect in NF-ҡB protein levels (Figure S11), rein-
forcing the evidence of a crosstalk between NF-ҡB- and AMPK/mTOR-signaling pathway.

3.5. Thalidomide-Treated PBMCs Downregulate Keratinocyte mTOR Signalling Pathway

As the interaction between epithelial cells and the immune system is tightly regu-
lated, we performed cross-talking in vitro functional studies between thalidomide-treated
PBMCs and keratinocytes (Figure 7a). Thalidomide-treated PBMCs co-cultured with ker-
atinocytes produced a significant downregulation of keratinocyte mTOR protein levels
and an increase of the inhibitor AMPKa1 and phosphorylated mTOR (Figure 7b). Analysis
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of gene expression levels showed the reduction of MTOR (6.6-fold decrease), an increase
of AMPKa1 (2.20-fold increase), a decrease of NFKB1 (2.94-fold decrease) and related
cytokines (TGFβ, IL1β and TNFα) (Figure 7c). Cross-talking studies using IRF4-silenced
PBMCs also showed the same effect in mTOR and phosphorylated mTOR protein levels
(Figure 7d). Gene expression levels of MTOR, NFKB1, TGFβ, TNFα (4.24, 3.84, 2.36 and
9.13-fold decrease, respectively) and AMPKa1 (2.58-fold increase, Figure 7e).
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Figure 7. In vitro co-culture of PBMCs and keratinocytes revealed a predominance of IRF4-thalidomide effect. (a) PBMCs
were stimulated with TNFα and treated or non-treated with thalidomide (Th) and co-cultured with keratinocytes. After
24 h of co-culture, keratinocytes were analysed by immunofluorescence and gene expression assays. A similar experiment
was performed using non-silenced or IRF4-silenced PBMCs (siIRF4). (b) mTOR protein levels (green) were significantly
decreased in the presence of Th-treated PBMCs, whereas AMPKa1 (red) and phosphorylated RPTOR (green) were increased
after thalidomide treatment. (c) Keratinocyte gene expression levels of the mTOR-related molecules and inflammatory
effectors were measured by RT-qPCR. (d) mTOR protein levels in keratinocytes also decreased in the presence of IRF4-
silenced PBMCs. Phosphorylated-RPTOR increased in keratinocytes after PBMCs were IRF4 silenced (e) mTOR related
molecules and inflammatory effectors were measured by RT-qPCR in keratinocytes after co-cultured with non-silenced or
IRF4-silenced PBMCs. Scale bar = 50 µm. * p < 0.05, ** p < 0.005, *** p < 0.001.
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4. Discussion

Our study examined thalidomide’s immunomodulatory mechanism in cutaneous
lupus. CLE has a distinctive T-cell signature with an imbalance towards a Th1 response [39]
and CD8+ T-cell predominance in early inflammatory stages [40]. Thalidomide induced a
reduction of cytotoxic CD8+ T-cells and increased the number of iNKT cells both circulating
and in tissue. Activated cytotoxic lymphocytes (CTLs), like cytotoxic CD8+ T-cells, con-
tribute to basal keratinocyte damage and inflammatory infiltration in CLE, especially at the
dermo-epidermal junction, and correlate with IFN-α expression and damage extension [41].
iNKT cells are a subset of unconventional T-cells which recognise the MHC class I-like
CD1d protein with the expression of an invariant TCR chain (Vα24-Jα18) paired with a
Vβ11 chain [42]. Lupus patients, especially those with severe cutaneous involvement, have
a numerical and functional reduction of circulating iNKT cells, but enrichment has been
described in lesional skin. In line with previous IMiDs studies [43], during lesion resolution,
we found an increment in both tissue and circulating iNKT cells after thalidomide. The
exact role of these cells is not completely understood since they are functionally versatile
and may mediate both pathogenic and regulatory immune functions. Whereas, on the one
hand, iNKT cells participate in the pathogenesis of several skin inflammatory disorders
producing interferon gamma and IL-4 [44], we did not find a difference in their related
cytokines. On the other hand, iNKT has been described as potent downregulators of CD8+
cytotoxic T cells [45]; they are implicated in skin would healing [46,47] and they alleviate
lupus dermatitis in an MRL-lpr/lpr model [48]. Modulation of the different Th subsets
by IMiDs has also generated opposing data [49–51]. In our study, thalidomide induced a
Th2 response both in vivo and in vitro. Some Th2 responses are related to the expression
of wound healing genes and growth factors involved in tissue regeneration [52], so Th2
enhancement may contribute to skin repair.

To further investigate the thalidomide MoA, we combined machine learning ap-
proaches with CLE RNA-sequencing data to obtain a novel predictive model. We showed
that thalidomide modulates CLE by targeting two CRL4CRBN-dependent pathways, down-
regulating IRF4 via IKZF1/3 and mTOR through regulation of AMPK1 activity. The study
confirmed previous reports describing CRBN as the primary target of thalidomide [15,53]
and its expression decreased following treatment both in the dermal inflammatory infil-
trates and epidermis. CRBN functions as a substrate receptor for the cullin-4-containing E3
ubiquitin ligase complex CUL4–RBX1–DDB1 (CRL4A) and is responsible for the recruit-
ment of substrates for degradation by the ubiquitin-proteasome pathway. IMiDs bind to
CRBN and alter the substrate specificity of CRL4CRBN blocking the degradation of proteins
involved in angiogenesis, tumoral activity and inflammation [54,55] but also inducing
teratogenicity [56].

As in other inflammatory skin conditions like psoriasis vulgaris, acne, atopic dermati-
tis, and hidradenitis suppurative [57,58], we found in active lesions of CLE an increased
expression of IRF4 in the dermis and mTOR in the epidermis. Following thalidomide
there was a reduction in these expression levels. Further in vitro experiments confirmed
the effect of thalidomide through the two different signalling pathways according to the
skin cell type. Thalidomide reduced IRF4 signalling in lymphocytes whereas the effect on
mTOR was observed in keratinocytes.

IRF4 is a member of the IRF family of transcription factors, expressed in immune cells
relevant in the IFN signature [59]. IRF4 is required for proper maturation and differentia-
tion of immune cells [60]. IRF4 dysregulation has been described in rheumatoid arthritis
and SLE and it is associated with initiation and disease progression [61]. IMiDs can induce
CRL4CRBN-dependent degradation of the Ikaros family zinc finger protein-1 (IKZF1, Ikaros)
and 3 (IKZF3, Aiolos), two transcription factors involved in lymphoid development and
differentiation and highly expressed in B cell malignancies, leading to an inhibition of IRF4
expression at transcriptional level [38,62,63]. We showed that thalidomide modulates the
IRF4/NF-ҡB signalling pathway in PMBCs and contributes to the resolution of inflamma-
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tion by reducing the expression of NF-ҡB and its dependent cytokines and chemokines
IL-1β, IL-8, TNFα and CCL3.

AMP-activated protein kinase (AMPK) has also been identified as a CRBN-binding
protein [64]. AMPK is an important intracellular energy sensor and is activated by phospho-
rylation of threonine at position 172 (Thr 172) of the α subunit. CRL4CRBN down-regulates
the total quantity of the AMPK α subunit by polyubiquitination. Previous reports have
shown that thalidomide markedly stimulates the activation of AMPK [63,64] and reduces
AMPK α polyubiquitination [65–67]. Accordingly, we demonstrated that thalidomide
reduced the AMPK α ubiquitination in a CRBN-dependent manner and increased its
expression. Consequently, we observed an increase of RPTOR phosphorylation and a
reduction of mTOR signalling. mTOR is a serine threonine kinase crucial in skin home-
ostasis and morphogenesis, especially in the regulation of keratinocyte differentiation
and epidermal stratification [68]. There are two biochemically distinct mTOR complexes,
mTORC1 and mTORC2. The activity of mTORC1 is suppressed by AMPK by directly
phosphorylating at least two regulator proteins, tuberous sclerosis 2 (TSC2) and RPTOR.
In vitro studies showed that treatment with thalidomide or simTOR significantly reduced
keratinocyte-derived cytokines TGFβ, IL-1β, TNFα and CXCL1 (Figure 8a) contributing to
the resolution of inflammation. In addition, we showed that the specific inhibition of mTOR
decreased NF-ҡB expression in keratinocytes. The existence of a crosstalk between mTOR
and NF-κB has been described in other cellular types [69]. Not only have we described a
crosstalk between mTOR and NF-κB in keratinocytes, but we have also shown the ability
of thalidomide-treated PBMCs to reduce the expression of mTOR and related cytokines in
co-culture studies.

Our previous work in DLE [70] and this study confirm the relevance of NF-ҡB in CLE.
NF-ҡB was the common target molecule in which thalidomide acted through different
signalling pathways in their respective skin cells [71]. NF-kB is a key player in the control
of both innate and adaptive immunity. NF-kB activity is essential for lymphocyte survival,
activation, and mounting normal immune responses. Constitutive activation of the NF-
kB pathway is often associated with inflammatory diseases like rheumatoid arthritis,
inflammatory bowel disease, multiple sclerosis, and asthma [72]. Activation of NF-ҡB in
keratinocytes has been reported in psoriasis lesions resulting in the production of multiple
inflammatory molecules that initiate and sustain the inflammatory process [73–76]. In
addition, it has been demonstrated that topical application of an NF-ҡB inhibitor improved
atopic dermatitis in NC/NgaTnd mice [77]. Together, these data support the further study
of NF-ҡB as novel a therapeutic target [78]. While global inhibition may result in profound
side effects by selectively targeting specific NF-ҡB subunits or signalling components
relevant to a particular disease, toxicity can be minimized.
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Figure 8. Thalidomide as alternative therapy in CLE. (a) Thalidomide binds CRBN in the cullin-4
E3 ubiquitin ligase complex (CRL4CRBN) and promotes: A downregulation of mTOR protein, by
reducing the AMPK ubiquitination and increasing the RPTOR phosphorylation that downregulated
NF-ҡB and its related cytokines in keratinocytes. Also promoted is a reduction of IRF4 expression in
lymphocytes that decreases the expression of NF-ҡB and related cytokines. In addition, thalidomide
enhances tissue reparation promoting Th2 responses, iNK T cells and lower prevalence of CD8+ T
cells. (b) Alternative therapeutic drugs targeting NF-ҡB signalling may avoid its important side
effects and maintain its anti-inflammatory properties.

5. Conclusions

Taken together, we demonstrated that thalidomide’s immunomodulatory anti-
inflammatory effect in CLE comprises several mechanisms that include a reduction of
predominantly CD8+T cells, and a switch from Th1 to Th2 response. Furthermore, thalido-
mide reduced NF-ҡB related inflammatory cytokines and chemokines via the modulation
of IRF4- and AMPK/mTOR-signalling pathways. Targeting the function of these key
molecules may be an alternative to thalidomide for the treatment of CLE (Figure 8b).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9121857/s1, Figure S1: PBMCs from patients were extracted pre and post-
thalidomide (n = 5), Figure S2: Topological analysis represents the relationships between proteins
in the mechanism of action over cereblon modulation, Figure S3: Topological analysis represents
the relationships between proteins in the mechanims of action over IRF4, Figure S4: Western blot of
lysates from paired skin biopsies, Figure S5: Immunofluorescence of mTOR in thalidomide-treated
or non-treated PBMCs, Figure S6: Proliferation in healthy PBMCs after thalidomide treatement,
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Figure S7: Immunofluorescence in thalidomide-treated or non-treated PBMCs to monitoring au-
tophagy, Figure S8: Western blot of cell based ubiquitination assay in keratinocytes terated or non-
treated with thalidomide, Figure S9: Profiferation and apoptosis of human epidermal keratinocytes
after thalidomide addition, Figure S10: Immunofluorescence in thalidomide-treated or non-treated
keratinocytes to monitoring autophagy, Figure S11: Immunofluorescence of NF-ҡB in cultured ker-
atinocytes with thalidomide or silenced IRF4, Table S1: Clinical and laboratory characteristics of the
study subjects, Table S2: Conjugated antibodies used in flow cytometry analysis, Table S3: Antibodies
used in immunofluorescence, immunohistochemistry and western blot analysis, Table S4: Primer IDs
used in Taqman RT-qPCR from Applied Biosystems, Table S5: Characterization of cutaneous lupus
erythematosus (CLE) includes 206 proteins distributed in the named motives, Table S6: Detail of the
targets identified for thalidomide and the use of the targets in the different project steps, Table S7:
MoA included 27 proteins with 14 proteins related directly with CLE.
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