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Abstract: Millet is a primary food for people living in the dry and semi-dry regions and is dispersed
within most parts of Europe, Africa, and Asian countries. As part of the European Union (EU) efforts
to establish food originality, there is a global need to create Protected Geographical Indication (PGI)
and Protected Designation of Origin (PDO) of crops and agricultural products to ensure the integrity
of the food supply. In the present work, Visible and Near-Infrared Spectroscopy (Vis-NIR) combined
with machine learning techniques was used to discriminate 16 millet varieties (n = 480) originating
from various regions of China. Five different machine learning algorithms, namely, K-nearest
neighbor (K-NN), Linear discriminant analysis (LDA), Logistic regression (LR), Random Forest (RF),
and Support vector machine (SVM), were used to train the NIR spectra of these millet samples
and to assess their discrimination performance. Visible cluster trends were obtained from the
Principal Component Analysis (PCA) of the spectral data. Cross-validation was used to optimize
the performance of the models. Overall, the F-Score values were as follows: SVM with 99.5%,
accompanied by RF with 99.5%, LDA with 99.5%, K-NN with 99.1%, and LR with 98.8%. Both
the linear and non-linear algorithms yielded positive results, but the non-linear models appear
slightly better. The study revealed that applying Vis-NIR spectroscopy assisted by machine learning
technique can be an essential tool for tracing the origins of millet, contributing to a safe authentication
method in a quick, relatively cheap, and non-destructive way.

Keywords: millet; near-infrared spectroscopy; geographic origin; machine learning

1. Introduction

In most countries of Asia and Africa, millet is a significant crop. For centuries, it
has been considered the staple food for many people living in dry or semi-dry areas of
Asia and Africa. Nearly 10,000 years ago, millet was cultivated in East Asia [1]. It can be
grown in poor fertile soils and is drought-tolerant [2,3]. Many developing countries in
Africa and Asia consume millets as a primary food and produce traditional alcoholic and
non-alcoholic beverages, particularly in India, China, and Eastern and Southern Europe.
During periods of famine, it is the primary food crop of choice. The cultivation of millets
primarily focuses on forage consumption in countries such as the US, Argentina, Brazil,
Australia, and South Africa [4]. The quality of food consumed worldwide is becoming an
issue of growing concern among consumers, resulting in a worldwide need to establish
traceability, authenticity, and originality of agricultural products. The food traceability
system, which the European Union officially recognized (E.U.) in 2000, is an essential tool
for protecting consumers against contamination [5]. Keeping foods free of contamination
and illustrating the complete identification of products receives significant attention in
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many countries. Given the above, it has become evident that a precise way for geograph-
ical origin identification is necessary for food and agricultural products. Near-Infrared
Spectroscopy (NIRS) is a simple, rapid, and non-destructive method that requires very little
sample preparation. Vis-NIR spectroscopy, combined with machine learning algorithms, is
being widely used as a reliable and successful scientific instrument in a variety of fields,
including agricultural food [6], insect-based food [7], organic-fertilizers [8], whey protein
powder [9], petrochemical [10], pharmaceutical [11], environment [12], metabolomics pro-
filing [13], as well as several reviews on recent applications such as [14–17], etc. NIRS
has already been established in the 1960s for cereal analyses [18]. Geographical origins of
many kinds of cereal and other agricultural products have been determined using NIR in
recent years, such as maize [19], walnuts [20], durum wheat [21], rice [22–24], turmeric [25],
kudzu powder [26], Prunus Dulcis [27], Trichosanthis Fructus [28], Chinese mitten crab [29],
edible oils [30], Wolfiporia cocos [31], Argentinean lemon juices [32], honey [33,34], etc.

In addition, NIRS has been applied to millets for feature extraction and variety identi-
fication [35,36] and determination of chemical properties such as moisture, proteins, and
fats, etc. [37,38]. However, there are few reports on different machine learning algorithms
in millet geographic origin discrimination using Vis-NIR Spectroscopy. Considering the
significance of millet as a staple food for many countries worldwide, Vis-NIR Spectroscopy
is hypothesized to be applied for its effective geographic origin discrimination capability.

Therefore, this study aimed to use Vis-NIR Spectroscopy combined with machine
learning algorithms to discriminate 16 distinct millet species originating from different
regions of China. The varietal discrimination could be beneficial for food safety and
adulteration detection.

2. Materials and Methods
2.1. Sample Preparation

Tests were conducted on millet varieties commonly cultivated in different geographical
regions of China and widely consumed by most people. All samples were purchased in the
2019 harvest season. Sixteen varieties (Table 1), 30 samples each, 480 samples were used.

Table 1. Samples of varieties from different geographic regions.

Variety ID. Variety Name Producing Area Number of Samples

S0 Qinxian yellow millet Shanxi Province 30
S1 Mizhi oil millet Shaanxi Province 30
S2 Huangjinmiao millet Inner Mongolia 30
S3 Taohua yellow millet Hebei Province 30
S4 Nandaobeimai millet Liaoning Province 30
S5 Xirui yellow millet Jilin Province 30
S6 Lucun millet Shanxi Province 30
S7 Longshan millet Shandong Province 30
S8 Qinzhou yellow millet Shanxi Province 30
S9 Jinxiang Millet Shandong Province 30
S10 Inner Mongolia yellow millet Inner Mongolia 30
S11 Weizhou yellow millet Hebei Province 30
S12 Fine yellow millet Liaoning Province 30
S13 Organic red millet Liaoning Province 30
S14 Black earth town organic millet Heilongjiang Province 30
S15 Tian-di-Liang-ren organic yellow millet Liaoning Province 30

2.2. Spectral Measurement

Sampling range distance (broad Frequency) was 1.5 nm, having from 350 to 2500 nm
spectrum of experiment, inspection duration was 30 times, and the resolution was 3.5 nm.
A fieldspec3 spectrometer collected the spectrum data test. Software A.S.D. View SpecPro
(Version 6.20 Malvern Pan Analytica Ltd., Malvern, UK) exported the original results [35].
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2.3. Data Analysis

Multivariate NIR spectra statistics (file imported in MATLAB format) were done using
Unscrambler X, v10.1 (CAMO Software AS, Oslo, Norway, 2011). Principal Component
Analysis (PCA) was done to analyze the data and identify millet clustering chances (simi-
larities and differences). The graphical representations of Unscrambler X software were
used to assess the presence of outliers. Before applying and validating machine learning
models, the data were pretreated using six spectra preprocessing techniques which include:
Multiplicative Scatter Correction (MSC), Detrend Correction (DC), Mean Centering (MC),
Standard Normal Variate (SNV), First-Order Derivative (1st Der), and Second-Order Deriva-
tive (2nd Der). The Pretreated data were then employed to classify millet samples as per
their respective certified origins by five different classification models, namely k-Nearest
Neighbor (k-NN), Linear Discriminant Analysis (LDA), Logistic Regression (LR), Random
Forest (RF), and Support Vector Machine (SVM) [28,36,37].

2.4. Chemometrics Study
2.4.1. K-Nearest Neighbor (K-NN)

K-NN categorizes by measuring the Euclidean or Manhattan distance between distinct
features [38]. Using many neighbors (k), similar features belong to a particular category.
The optimized prediction ability was obtained by comparing many k values, which yielded
maximum classification accuracy.

2.4.2. Linear Discriminant Analysis (LDA)

LDA is a technique applied in statistics, machine learning, and pattern recognition
to get a direct mixture of characteristics that describes or distinguishes many groups of
things [39] and is sometimes called Fisher Linear Discriminant (FLD). A high-dimensional
data sample is processed into optimal low dimension data to compress the feature section’s
dimension and obtain group data. After processing, the new subsection’s data sample must
minimize variation inside group Sw (Equation (1)) and increase inter-group interval SB
(Equation (2)). Then, the data sample may obtain the optimum distinction in the subspace
of processing:

Sw = ∑n
i=1 ∑x∈Ci

(x−mi)
(
xj −mi

)T , (1)

SB =
n

∑
i=1

nk(mi −m)(mi −m)T , (2)

nk is the number of training objects for each class, m is the means for each category, mi
is the real mean vector, x is each class object, and n is the number of types. Fisher criteria
(Equation (3)):

J
(
Wopt

) WTSBW
WTSWW

(3)

2.4.3. Logistic Regression (LR)

LR is applied to get uneven correlation in the presence of many descriptive variables.
The method is entirely similar to multiple linear regression, excluding the response variable
is binomial. The outcome is the effect of each variable on the uneven correlation of the
noticed result of importance. The primary benefit is to circumvent contradicting influence
by examining the relationship of all variables simultaneously. LR operates very much like
linear regression but with a binomial response variable [40]. Logistic regression will model
the chance of an outcome based on individual characteristics. Because chance is a ratio,
what is be modeled is the logarithm of the chance given by:

log
(

π

1− π

)
= β1 + β1x1 + β2x2 + . . . βmxm (4)
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where π indicates the probability of an event and βi is the regression coefficients associated
with the reference group and the xi explanatory variables.

2.4.4. Random Forest (RF)

RF uses a resolution forest, which is produced from many decision trees. The mixture
of sacking (bootstrap combination) program and program organization builds a resolution
structure, which utilizes several resolution diagrams as an outcome. It may also be applied
for categorization and regression [41]. RF categorizer uses the sacking of resolution tree
technique to bring an extensive group of trees to enhance efficiency. Assessed with other
groups alike, RF needs minor hyperparameter tuning. Original sacking resolution tree
gives tree-interdependence, which hurts from the effect of enormous variation. Thus, RF
provides a variation minimization by establishing more uncertainty in the tree-generation
technique [42].

2.4.5. Support Vector Machine (SVM)

SVM algorithm is a data mining approach for classification and regression [43], which
depends on the structural risk reduction principle and can overcome over-fitting problems.
SVM [44] is a data evaluation technique based on machine learning, and it is commonly
used in categorization [45].

3. Results
3.1. Spectra Analysis

A comparison of raw spectra from different areas of China revealed no significant
differences. Due to the high overlap in the raw spectrum, it was difficult to detect the
distinct bands. It is also possible that the model effectiveness could be adversely affected
due to the presence of noise and background information in the raw spectrum. As a means
of achieving a good model and reducing background noise, spectra preprocessing is essen-
tial [28,36,37]. Six spectra preprocessing techniques, which include Multiplicative Scatter
Correction (MSC), Detrend Correction (DC), Mean Centering (MC), Standard Normal
Variate (SNV), First-Order Derivative (1st Der), and Second-Order Derivative (2nd Der),
were comparatively applied in each model to improve the accuracy. Figure 1 presents raw
spectrums of samples from different geographical regions of China.
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Figure 1. Millet Raw spectra from different geographic regions of China. Figure 1. Millet Raw spectra from different geographic regions of China.

3.2. Principal Component Analysis

Principal Component Analysis (PCA) is a widely used technique in the analysis of
spectral data. PCA transformed linear combinations of the original variables into new
variables called principal components (PCs). These PCs are orthogonal and are positioned
based on an interpretation of the variation. The first (PC) analyzed nearly all of the
variations and accompanied the second, third, etc. Generally, the bulk of the variations
were analyzed by the first few PCs [46]. Score biplots are usually used to depict how
sample groups performed according to the two divergent PC models. Figure 2 is a plot of
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PCs score for each variety; a different color represents each for better visualization. They
were using the first three normalization scores of PCs. As shown in Figure 2, PC1, PC2,
and PC3 accounted for 60%, 29%, and 5% of the total variation, respectively.
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Figure 2. Principal Components (PCs) distribution diagrams of individual samples. (a) PC1-PC2;
(b) PC1-PC3.

In contrast, the first three PCs accounted for 94% of the variance. It appears that the
three peak PCs contain almost the complete spectral information of the different regions in
the NIR. It can be seen from Figure 3 that sixteen varieties could be distinguished with little
overlap. An apparent disconnection exists between the varieties. The millet samples were
roughly separated based on geographical origin. It was evident from the PCA evaluation
that chemical compositions differ between the different varieties. Even though the analysis
displayed the cluster trend in three dimensions, the samples could not be effectively
distinguished. Thus, this study employed a sufficient number of multivariate classification
algorithms [28,34]. Therefore, machine learning algorithms may be an appropriate means
of efficiently taking the precise development of spectral characteristics wavelengths and
identifying any spectral sequence that is not identifiable by standard NIR spectrum analysis,
creating feasibility for discrimination of NIR spectroscopic data.
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3.3. Models Optimization

The following machine learning algorithms were applied to classify millet according
to their geographic origin: K-NN, LDA, LR, RF, and SVM. The highest accuracy rate
was selected using the cross-validation (CV) approach [28,47]. A general definition of
machine learning is a program that removes the unknown features from vast quantities of
information and utilizes them for estimation or tagging. As an analytical technique, it is
useful primarily in finding a relationship between sample data as input and output. The
method is typically applied to emerging areas, particularly for identifying the authenticity
of the food. It has a strong ability in the area of food origin tracing [47]. For the geographical
origin of cereals and agricultural commodities, there are several ways, depending on the
analytical methods used and the statistical methods employed, which have been proposed.

3.3.1. Discrimination Results from the Different Models

Data obtained from the Vis-NIR spectroscopic measurements were analyzed using
machine learning algorithms. A calibration set (70%) and a testing set (30%) were used
to evaluate the models and test their efficacy in classification. Cross-validation (CV) is a
powerful technique to reduce overfitting likeliness [37]. ML discrimination models have
both strengths and weaknesses. A small number of the ones applied in the present study
demonstrated their ability to distinguish millet that originates from distinct geographic
regions in China. The discrimination results are shown in Table 2.

Table 2. Effect of preprocessing techniques on the five different models.

Discrimination Rate (%) Preprocessing MSC Detrend MC SNV 1st Der 2nd Der

K-NN
Calibration 100 99.80 99.90 100 100 100

Testing 98.84 98.61 99.30 99.07 98.84 90.50

LDA
Calibration 99.30 99.53 99.53 99.76 99.53 89.68

Testing 98.80 99.00 98.90 98.61 99.00 88.65

LR
Calibration 98.61 98.71 98.84 98.41 98.90 90.67

Testing 98.37 98.61 98.80 98.37 98.84 88.88

RF
Calibration 100 100 100 100 100 100

Testing 99.07 99.30 99.30 99.30 99.53 91.20

SVM
Calibration 99.30 99.30 99.53 99.20 99.53 95.53

Testing 99.07 99.07 99.40 98.84 99.20 91.89

MSC: Multiplicative Scatter Correction; MC: Mean Centering; SNV: Standard Normal Variate; K-NN: K-Nearest Neighbor; LDA: Linear
Discriminant Analysis; LR: Logistic Regression; RF: Random Forest; SVM; Support Vector Machine.

K-NN model. Figure 4a. Shows the performance of the K-NN model. K-NN is a
linear and non-parametric technique that attained the best discrimination accuracy at an
optimized PC = 6 and K = 2. The mean centering (MC) preprocessing procedure was found
to be most excellent. As shown in Table 2, the optimal discrimination rate by the K-NN
model was 99.90% for the calibrations and 99.30% for the testing set.

LDA model. Figure 4b. Shows the performance of the LDA model. The total number
of best of PCs was as reported by the optimum accuracy rate achieved by CV. The optimum
accuracy rate was 99.53% and 99.00% for the calibration and testing set, respectively, when
PCs = 7. Table 2 displays the effect of preprocessing techniques applied. Detrend correction
and first-order derivative (DC and 1st Der) were used to improve the accuracy of LDA in
both the calibration and testing set, respectively.

LR model. Figure 4c. An illustration of the accuracy rate of the LR algorithm following
CV. The LR as a linear regression attained an optimal discrimination rate after optimization
when PC = 7. The best preprocessing method was the first-order derivative (1st Der)
(Table 2). The best accuracy rate by the LR algorithm was 98.90% and 98.84% for the calibrations
and testing set, respectively.



Foods 2021, 10, 2767 7 of 12

Foods 2021, 10, x FOR PEER REVIEW 7 of 12 
 

 

LR model. Figure 4c. An illustration of the accuracy rate of the LR algorithm follow-
ing CV. The LR as a linear regression attained an optimal discrimination rate after opti-
mization when PC = 7. The best preprocessing method was the first-order derivative (1st 
Der) (Table 2). The best accuracy rate by the LR algorithm was 98.90% and 98.84% for the 
calibrations and testing set, respectively. 

RF model. Figure 4d. A display of the accuracy of the RF algorithm. The total number 
of optimum PCs were as obtained in the excellent accuracy rate by CV. The optimum rate 
was 100% and 99.53% for the calibration and testing sets, respectively, at optimum PCs = 
5. Table 2 displays the effect of preprocessing techniques applied. First-order derivative 
(1st Der) was used to improve the accuracy of RF in the calibration and testing set. 

SVM model. Figure 4e. The accuracy rate of the SVM algorithm following the CV. 
The CV was carried out to verify the strength of the algorithm. Table 2 also shows the 
percentage enhancement by the preprocessing methods used. An accuracy rate for MC 
and MSC preprocessing techniques of 99.53% and 99.40% for calibration and testing set 
can be noted. As shown in table 3, there are two sets of calibrated data (70%) and a test set 
(30%), which were used to evaluate the models and test their ability to classify. 

 
Figure 4. (a) Cross-validation discrimination rates of K-NN model at different PCs, (b) Cross-validation discrimination 
rates of LDA model at different PCs at different PCs, (c) Cross-validation discrimination rates of LR model at different 
PCs, (d) Cross-validation discrimination rates of RF model at different PCs, (e) Cross-validation discrimination rates of 
SVM model at different PCs, (f) Cross-validation discrimination rates of the five models at different PCs. 

Figure 4. (a) Cross-validation discrimination rates of K-NN model at different PCs, (b) Cross-validation discrimination
rates of LDA model at different PCs at different PCs, (c) Cross-validation discrimination rates of LR model at different PCs,
(d) Cross-validation discrimination rates of RF model at different PCs, (e) Cross-validation discrimination rates of SVM
model at different PCs, (f) Cross-validation discrimination rates of the five models at different PCs.

RF model. Figure 4d. A display of the accuracy of the RF algorithm. The total number
of optimum PCs were as obtained in the excellent accuracy rate by CV. The optimum rate
was 100% and 99.53% for the calibration and testing sets, respectively, at optimum PCs = 5.
Table 2 displays the effect of preprocessing techniques applied. First-order derivative
(1st Der) was used to improve the accuracy of RF in the calibration and testing set.

SVM model. Figure 4e. The accuracy rate of the SVM algorithm following the CV.
The CV was carried out to verify the strength of the algorithm. Table 2 also shows the
percentage enhancement by the preprocessing methods used. An accuracy rate for MC and
MSC preprocessing techniques of 99.53% and 99.40% for calibration and testing set can be
noted. As shown in Table 3, there are two sets of calibrated data (70%) and a test set (30%),
which were used to evaluate the models and test their ability to classify.
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Table 3. The overall performance of the multivariate classification methods.

Models
Total Millet Samples Discrimination Rate (%)

Calibration Set Prediction Set Calibration Set Prediction Set

K-NN 1008 432 99.90 99.30
LDA 1008 432 99.53 99.00
LR 1008 432 98.90 98.84
RF 1008 432 100 99.53

SVM 1008 432 99.53 99.40

3.3.2. Evaluation of the Accuracy of the Discrimination Models

An assessment of the discrimination accuracy of the models was conducted using
the well-known F-Score [48–50], which measures how good origin discrimination is in
comparison with reference classification. It consists of the precision and recall values which
are used in the extraction of information. The precision, Recall, and F-Score are defined as
follows, and their values are given in Table 4.

Precision =
True positives

True positives + False positives
(5)

Recall =
True positives

True positives + False Negatives
(6)

F-Score = 2 × Precision × Recall
Precision + Recall

(7)

Table 4. Precision, Recall, and F-Score values.

Models Precision Recall F-Score

K-NN 0.992 0.990 0.991
LDA 0.995 0.995 0.995
LR 0.988 0.988 0.988
RF 0.995 0.995 0.995

SVM 0.995 0.995 0.995

A Vis-NIR Spectroscopy was used to determine how millet varieties differ in how
some incident radiation is reflected, transmitted, and absorbed. As presented in Figure 1,
the emitted energy produced a series of stripes and a few peaks. The stripes are composed
of overtones and a mixture of elemental vibrations, which are proportional to the natural
properties of the samples. Despite their similarities when observed with the naked eye,
many valuable and non-valuable properties exist. Hence, the need to apply ML algorithms
to obtain useful information from each stripe. In addition, selecting the spectral area
free of water is essential to reducing water absorption lines and noise. In this study, the
spectral region of 400–2500 nm was chosen. The area has characteristics that may be used to
distinguish millet varieties. Reflectance measurements were also made, and they revealed
sixteen distinct classes (Figure 2), which illustrate the sixteen millet-producing regions.
These differences result from physicochemical characteristics unique to each class.

The principal component analysis (PCA) converted the linear combinations of the
original variables into new variables called principal components (PCs). It is due to
differences in physical and chemical properties of the different classes. These PCs are
orthogonal and positioned according to the interpretation of the variation. The first PC
interpreted almost all the variations, followed by the second and third, etc. Generally,
most of the variations were analyzed by the first few PCs [46]. Using the two PCs, the
score biplots are employed to present the score space for sample groupings. The PCs score
plots are shown in Figure 2. A distinct shape and color distinguish each variety for easier
visualization. The PCs were normalized using their first three scores. It was found that
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the PC1, PC2, and PC3 explained 60%, 29%, and 5% of the total variance, respectively,
whereas the first three PCs accounted for 94% of the total variance. The three peak PCs
are particularly significant since they contain nearly the full spectral detail of the spectral
regions in the NIR. It can be seen from Figure 3 that sixteen varieties could be distinguished
with little overlap. There is a distinct separation between the varieties. Generally, millet
samples from different geographical regions were separated. PCA analysis revealed that
the chemical compositions of different varieties differed significantly. Even though the
analysis produced a 3-dimensional cluster trend, the samples could not be discriminated.

Thus, five machine learning algorithms were used in this study, including K-NN,
LDA, LRM, LR, RF, and SVM [28,34,36]. As illustrated in Figures 4 and 5, CV was applied
to verify the accuracy and capability of the algorithms. As can be observed, the two non-
linear models (RF and SVM) performed slightly better than the three linear models (K-NN,
LDA, and LR), which may be because non-linear models can perform well with high-
dimensional data. In the case of k-NN, because it does not infer anything about features
or data collection, it was speedy and moderately not fast, respectively, at calibration and
prediction sets. It was determined that the algorithm obtained the k-nearest neighbors
for every finding, which is not algorithmically straightforward. The LDA considered the
entire data collection and evaluated the variability, which makes it susceptible to outliers.
It may be that the good performance of LR is due to its ability to predict the target variable
accurately when independent variables are uncorrelated with it and correlated with one
another. As the total number of groupings and Decision Trees (DTs) increases, so does
the efficiency of the RF algorithm. The RF method employed primary discrimination
tests based on multiple arbitrarily generated subgroups, where the group with the greater
number is regarded as the obtained discrimination outcome. The method employed a DTs
bagging process and searched for the best feature among many indiscriminate features
to improve the model’s predictability. Accordingly, the high accuracy achieved by SVM
can be attributed to its flexibility and the ability to build generic models, even using just a
few sample training data sets. The optimum separation hyperplane (OSH) is extrapolated
from the data. OSH assumes that all classes are uniquely differentiated, which implies
a model that can be adapted to a wide variety of situations. Finally, by considering the
F-Score values, linear and non-linear algorithms (K-NN, LDA, LR, RF, and SVM) provided
positive results. However, non-linear models appear to be slightly more accurate. Several
factors may influence millet varieties depending upon their geographic origins, such as
the condition and quality of the soil element in the different regions for ingestion by millet
plants, and these characteristics generally depend on the soil’s cation exchange capacity pH
and nutrient content. The differences can be influenced by crop maturity at harvest, artificial
irrigation, fertilizer applications, and other agricultural practices in a particular region [51].
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Neighbor; LDA: Linear Discriminant Analysis; LR: Logistic Regression; RF: Random Forest; SVM;
Support Vector Machine.



Foods 2021, 10, 2767 10 of 12

4. Conclusions

The discrimination capability of Vis-NIR Spectroscopy was demonstrated using
machine-learning algorithms. Five algorithms were used, and millet samples were classi-
fied according to their geographical origins. For each model, cross-validation (CV) was
conducted to optimize the classification accuracy, which was calculated from the highest
classification rate. SVM and RF appeared to perform slightly better than the other linear
models, with F-score values of 99.5%, LDA at 99.5%, K-NN at 99.1%, and LR at 98.8%. This
study represents an essential contribution as few studies discuss several machine learning
algorithms for millet geographic origin discrimination using NIRS due to the current trend
in the EU for the establishment of Protected Geographical Indications (PGI) and Protected
Designation of Origin (PDO). The investigation, however, observes some findings. There is
a need for more robust origin models capable of better detecting regional and temporal vari-
ations in the future. Specifically, a large dataset representing wide variability (geographic
origin, harvest period, and harvest year) should be analyzed.
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