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Abstract. Transforming growth factor-/~ (TGF-/~) is 
secreted in a latent form and activated during co- 
culture of endothelial cells and smooth muscle cells. 
Plasmin located on the surface of endothelial cells is 
required for the activation of latent TGF-/3 (LTGF-B) 
during co-culture, and the targeting of LTGF-/3 to the 
cellular surface is requisite for its activation. In the 
present study, the cellular targeting of LTGF-/~ was ex- 
amined. We detected the specific binding of '~5I-large 
LTGF-#I isolated from human platelets to smooth 
muscle cells but not to endothelial cells. A mAb 
against the latency-associated peptide (LAP) of large 
LTGF-B1 complex, which blocked the binding of ~25I- 
large LTGF-/31 to smooth muscle cells, inhibited the 

activation of LTGF-B during co-culture. The binding 
of 125I-large LTGF-B1 could not be competed either by 
mannose-6-phosphate (300 #M) or by the synthetic 
peptide Arg-Gly-Asp-Ser (300 #g/ml). These results 
indicate that the targeting of LTGF-/3 to smooth mus- 
cle cells is required for the activation of LTGF-/3 dur- 
ing co-culture of endothelial cells and smooth muscle 
cells. The targeting of LTGF-B to smooth muscle cells 
is mediated by LAP, and the domain of LAP responsi- 
ble for the targeting to smooth muscle cells may not 
be related to mannose-6-phosphate or an Arg-Gly-Asp 
sequence, both of which have been previously pro- 
posed as candidates for the cellular binding domains 
within LAP. 

T 
RAr~SFORMXNG growth factor-B (TGF-/3)~, a member 
of a family of 25-kD homodimeric polypeptides, is 
produced and secreted by a variety of cell types includ- 

ing endothelial cells and smooth muscle cells and has potent 
activities on cell growth, motility, and differentiation (for re- 
view see Lyons and Moses, 1990; Massague, 1990; Robert 
and Sporn, 1992). However, TGF-/3 is usually secreted as a 
biologically inactive latent form (Pircher et al., 1984; 
Wakefield et al., 1987). There are three components of the 
latent TGF-B (L'I'GF-B) complex: (a) the mature TGF-B; (b) 
the TGF-B latency-associated peptide (LAP); and (c) the la- 
tent TGF-/3 binding protein (LTBP) (Miyazono et al., 1988; 
Wakefield et al., 1988; Tsuji et al., 1990). LAP is a 75-kD 
homodimer representing the NH2-terminal remnant of the 
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proTGF-/L LTBP is a protein of 125-160 kD that is attached 
to LAP by a disulfide bond, and is required for the assembly 
and secretion of LTGF-/3 (Miyazono et al., 1991). LTGF-/3 
composed of the mature TGF-/$, LAP, and LTBP is denoted 
the large LTGF-/$ complex, whereas the complex composed 
of the mature TGF-B and LAP is denoted the small LTGF-/$ 
complex. It has been reported that both endothelial cells and 
smooth muscle cells secrete large LTGF-~ (Flaumenhaft et 
al., 1993). Since TGF-# is secreted in a latent form, the dis- 
sociation of mature TGF-/3 from the latent complex is essen- 
tial for expression of its biological activities postsecretion. 
Although LTGF-/3 can be activated by transient acid, base, 
heat, or chaotrophic agents like urea in a test tube, the mech- 
anism of the activation of LTGF-~ in vivo remains unex- 
plained. LTGF-/3 is activated by proteolysis of the latent com- 
plex with plasmin and cathepsin D (Lyons et al., 1988), 
or by alteration of carbohydrate structures within the LAP 
(Miyazono and Heldin, 1989). Plasmin cleaves LAP and 
releases mature TGF-/~ from LTGF-/3 (Lyons et al., 1991). 
In tissue culture conditions, LTGF-/3 is activated by co- 
culture of bovine endothelial cells and bovine pericytes/ 
smooth muscle cells. The TGF-/3 formed inhibits the migra- 
tion and proliferation of bovine endothelial cells (Antonelli- 
Orlidge et al., 1989; Sato and Rifkin, 1989). The activation 
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of LTGF-/3 during co-culture is mediated by plasminogen ac- 
tivator (PA)-plasmin activity (Sato and Rifkin, 1989). PA- 
plasmin is localized on the cellular surface (for review see 
Mignatti and Rifkin, 1993). Targeting of LTGF-/3 to the cell 
surface appears to be required for the activation of LTGF-/3 
during co-culture of two cell types (Dennis and Rifkin, 1991; 
Flaurnenhaft et al., 1993). However, the characterization of 
the cellular targeting of LTGF-/3 has not been previously done. 

In the present study, we isolated large LTGF-~ (LLTGF- 
/31) from human platelets, and examined the binding of ~25I- 
LLTGF-/31 to endothelial cells or smooth muscle cells. 
Moreover, mAbs against LAP and LTBP were developed, 
and the roles of LAP and LTBP on the activation and target- 
ing of LTGF-~ were examined. We found that 12~I-LLTGF- 
~1 was bound only to smooth muscle cells but not to en- 
dothelial cells, and that at least LAP of the LTGF-fl complex 
was responsible for the cellular targeting to smooth muscle 
cells. By eliminating cellular targeting of LTGF-/3 with a 
mAb against LAP, the activation of LTGF-/3 during co- 
culture was blocked. 

Materials and Methods 

Cel/s 

Porcine aortic endothelial (PAE) ceils were isolated by scraping an en- 
dothelial layer from the porcine aorta with a blade. The cells were plated 
on a gelatin-coated plastic dish, and cultivated in DME containing 5 % FCS. 
Porcine aortic smooth muscle (PASM) cells were isolated from the same 
tissue using the explant technique, and were grown in DME containing 
5% FCS. 

Isolation and Iodination of Human Platelet 
Large LTGF-f31 
Isolation of LLTGF-~I from human platelets was performed by the method 
described previously (Okada et al., 1989). Isolated LLTGF-/31 was labeled 
with 12~I by chloramine-T method (Ono et al., 1982). The specific activity 
of 125I-LLTGF-/~I was 6.93 × 105 cpm/ng. 12SI-LLTGF-~I was analyzed by 
SDS-PAGE as follows. 125I-LLTGF-/31 was cross-linked with 2 mM bis 
(sulfosuccinimidyl) Suberate (Pierce Chemical Co., Rockford, IL) for 20 
rain at 4°C as described (Flaumenhaft et al., 1993). 125I-LLTGF-/~I or 
cross-linked t25I-LLTGF-~I was run on a Z5% SDS gel under reducing or 
nonreducing conditions and iodinated proteins were visualized by autoradi- 
ography. 

Binding Assay of Large LTGF-[31 to PAE Cells or 
PASM Cells 
PAE cells and PASM cells were cultured separately in 35-ram plastic dishes. 
After the cells reached confluence, the binding experiments were per- 
formed. The cells were preincubated in serum-free DME containing 0.1% 
BSA for 5 h at 37°C. Next, the cells were washed with PBS and incubated 
with I~I-LLTGF-~I in DME containing 0.1% BSA at4°C for 3 h. 100-fold 
concentration of unlabeled LLTGF-fll were added to determine a non- 
specific binding. After the incubation, the cells were washed with ice-cold 
PBS three times, and the cell-associated radioactivities extracted by 0.5% 
Triton X-100 were determined. In several experiments, either mAbs as de- 
scribed below, 300 t~M of mannose-6-phosphate (Sigma Immunochemicals, 
St. Louis, MO), or 300 #g/ml of Arg-Gly-Asp-Ser (Sigma Immunochemi- 
cals) were added during the incubation period. 

Preparation of mAbs against LAP or LTBP 
Isolated LLTGF-fll was treated with 6 M urea to dissociate mature TGF-/3 
from LAP-LTBP complex. LAP-LTBP complex was further isolated by gel 
filtration chromatography using a Superose 6 column (Pharmacia-LKB 
Biotechnology, Uppsala, Sweden) in the presence of 6 M urea. Isolated 
LAP-LTBP complex was dialyzed against PBS. Adult SD rats or BALB/c 

mice were immunized by intraperitoneal injection of LAP-LTBP com- 
plex-KLH (Hemocianin Keyhole Linpet) conjugate mixed with aluminium 
gel and Bordetella pertusis, followed by six boosters of antigen at intervals 
of 1 wk. The animals which showed a high reactivity to the antigen were 
sacrified 3 d after the last boost. The spleen cells from the animals were 
fused with murine myeloma cells, P3-X63.Ag8-U1 (P3-U1), using polyeth- 
ylene glycol No. 1000. The fused cells were suspended in the hypoxan- 
thine/aminopterine/thymidine medium and distributed into 96-well culture 
plates. The ceils were cultured for 14 d and their supernatants were analyzed 
by ELISA. ELISA was performed as follows. 50 #1 of antigen solution 00 
#g protein/ml in PBS) was placed in each well of 96-weU E.I.A. micro titra- 
tion plate (Flow Laboratories, Mclean, VA), and left for overnight at 4°C. 
After blocking with 1% BSA in PBS, 50/zl of diluted mAbs were added 
to each well, and were left for 2 h at room temperature. After washing the 
plate, peroxidase-labeled rabbit anti-rat or anti-mouse Igs (Dakoputts, 
Glostrup, Denmark) were allowed to react for 2 h at room temperature. 2,2- 
azinobis 3-ethyl benzothiazoline-6-sulfonic acid diammonium was used as 
a substrate of the enzyme reaction and the samples were measured at 415 
urn. The hybridoma cells which produced antibodies against LAP or LTBP 
were subsequently cloned. 

Purification and Characterization of mAbs 
The mAbs were purified by an affinity chromatographical technique using 
a protein G-Sepharose column (Pharmacia-LKB Biotechnology) from as- 
cites obtained from nude mice inoculated with hybridomas. The subclass 
of mAbs was determined by ELISA using a mAb typing kit (Zymed Labs., 
Inc., S. San Francisco, CA). Reactivities of mAbs against LAP or LTBP 
were determined by Western blotting technique. The LAP-LTBP complex 
was applied to SDS-PAGE, and then transferred onto a polyvinylidene 
difluoride membrane. After being blocked with 1% BSA in PBS, proteins 
on the membrane were exposed to react with mAbs for 2 h at room tempera- 
ture. After being washed, the membrane was exposed to peroxidase-labeled 
rabbit anti-rat or anti-mouse Igs (Dakopatts) for overnight at 4"C. Immune 
complexes on the membrane were visualized by an immunostaining kit HRP 
(Konica, Tokyo, Japan). 

Migration of PAE Cells and Co-culture Migration of 
PAE Cells in the Presence of PASM Cells 
Each of these experiments was performed as previously described (Sato and 
Ritkin, 1988, 1989). Briefly, PAE cells were grown in a 35-ram plastic dish. 
When the cells became confluent, the monolayer was wounded with a razor 
blade and incubated for 24 h in DME containing 0.1% BSA. For the co- 
culture migration experiments, 1.5 x 104 PASM cells were plated after the 
wounding, and incubated for 24 h in DME containing 0.1% BSA. mAbs, 
mature TGF-fll (R & D Systems, Minneapolis, MN), polyclonal rabbit 
anti-TGF-/~ antibody (100 t~g/ml protein A-purified IgG) (R & D Systems), 
or each of mAbs (10/~g/ml IgG) was added during the migration periods. 
Migrated PAE cells were determined by counting the migrated cells in four 
different fields (xl00). 

Results 

Large LTGF-~ isolated from human platelets was iodinated 
and characterized by SDS-PAGE as described in Materials 
and Methods. Under reducing conditions, mature TGF-/31, 
LAE and LTBP were found to be iodinated (Fig. 1, lane A). 
Under nonreducing conditions, two bands of LAP-LTBP 
complex and mature TGF-~ were observed (Fig. 1, lane B). 
When cross-linked tESI-LLTGF-/31 was applied to SDS-PAGE 
under non-reducing conditions, a single band of 200 kD, the 
large LTGF-~ complex, was observed (Fig. 1, lane C). 

The cellular targeting of LTGF-~ was determined by the 
binding of 125I-LLTGF-~l to PAE cells or PASM cells. It 
was found that 1:SI-LLTGF-/31 bound specifically to PASM 
cells, but did not bind to PAE cells (Fig. 2 A). Thus, the tar- 
geting of LTGF-/~ appears to be cell-type specific to PASM 
cells. A Scatchard analysis revealed that there were high- and 
low-affinity binding sites on a PASM cell (Fig. 2 B): a high- 
affinity site with a dissociation constant of '~140 pM and 
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Figure 1. Autoradiography of 125I-LLTGF-131 isolated from human 
platelets. (Lane A) t25I-LLTGF-/31 run on a 7.5% SDS gel under 
reducing conditions. (Lane B)t25I-LLTGF-/31 run on a 7.5% SDS 
gel under nonreducing conditions. (Lane C) Cross-linked ~25I- 
LLTGF431 run on a 7.5% SDS gel under nonreducing conditions. 
Iodinated proteins were visualized by autoradiography. 

1,264 sites per cell and a low-affinity site with a dissociation 
constant of about 5.1 nM and 13,850 sites per cell. 

It has been suggested that LAP and/or LTBP play a role 
in the activation of latent TGF-/3 during co-culture (Dennis 
and Rifldn, 1991; Flaumenhaft et al., 1993). To clarify pos- 
sible roles of LAP and/or LTBP on the activation of LTGF-~, 
we developed 10 hybridoma lines which produced mAbs that 
recognized either LAP or LTBP isolated from human plate- 
lets (Table I). We examined the effects of mAbs on the activa- 
tion of LTGF-/3 during co-culture of endothelial cells and 
smooth muscle cells. The migration of PAE ceils was deter- 
mined by the wound migration assay, as described in 
Materials and Methods. When PAE cells were co-cultivated 
with PASM cells after wounding, PASM cells inhibited the 
migration of PAE cells by ~50 % of control after a 24-h incu- 
bation (Fig. 3). 10 /zg/ml of each mAb was added to co- 
cultures, and we observed that KM704, which recognizes 

Table L Anti-human Platelet LAP and LTBP mAbs 

mAbs Recognition site Species Subclass 

KM698 LAP Rat IgG2a 
KM699 LTBP Rat IgG2a 
KM700 LTBP Rat IgG1 
KM701 LTBP Rat IgG 1 
KM702 LAP Rat IgG2a 
KM703 LTBP Rat IgG2a 
KM704 LAP Rat IgG2a 
KM705 LTBP Rat IgG 1 
KM706 LTBP Rat IgG1 
KM707 LAP Mouse IgG1 

mAbs against human platelet LAP and LTBP were developed and character- 
ized as described in Materials and Methods. 

LAP, neutralized the inhibitory effect of PASM ceils on the 
migration of PAE cells (Fig. 3). The neutralizing effect of 
KM704 was concentration dependent, and 10 /~g/ml of 
KM704 almost completely neutralized the inhibitory effect 
of PASM cells on the migration of PAE cells (Fig. 4). The 
effect of KM704 was further characterized as follows. 
KM704 (10 #g/ml) did not affect the basal migration of PAE 
cells (Fig. 5). Exogenously added mature TGF-131 (1 ng/ml) 
inhibited the migration of PAE cells, and KM704 did not 
affect the inhibitory effect of exogenous mature TGF-/31 (Fig. 
5). Co-cultivation of PASM cells inhibited the migration of 
PAE cells, and the inhibition by PASM cells was abrogated 
by both neutralizing polyclonal anti-TGF-~ antibody (100 
#g/ml) and KM704 (10 /~g/ml) (Fig. 5). These findings 
confirm that KM704, a mAb against LAP, blocks the activa- 
tion of LTGF-/~ during co-culture of PAE cells and PASM 
cells. We did not observe any mAbs against LTBP capable 
of blocking the activation of LTGF-/~ during co-culture. 

The targeting of LLTGF-/3 to the cell surface is believed 
to be required for the activation of TGF-/3 during co-culture 
and that targeting is mediated through LAP and/or LTBP 
(Dennis and Rifkin, 1991; Flaumenhaft et al., 1993). There- 
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Figure 2. The binding of 12sI- 
LLTGF-fll to porcine cells. 
(A) PAE cells or PASM cells 
were preincubated at 37°C for 
5 h in serum-free DME con- 
taining 0.1% BSA. The cells 
were washed with PBS and in- 
cubated with z25I-LLTGF-fll 
(0.2 ng) at 4°C for 3 h in DME 
containing 0.1% BSA. 100- 
fold concentration of unla- 
beled LLTGF-fll was added to 
determine nonspecific bind- 
ing. After the incubation, the 
cells were washed with ice- 
cold PBS three times and the 
cell associated radioactivities 
were determined. Bound ~I- 

LLTGF-/~I to the cells as a percent of added t25I-LLTGF-/~l was expressed. Values are means of triplicated samples. (B) Scatchard Analy- 
sis of the binding of 125I-LLTGF-/31 to PASM cells. PASM cells were incubated with varying concentrations of 125I-LLTGF-/~l at 4°C for 
3 h in DME containing 0.1% BSA. After the incubation, the cells were washed with ice-cold PBS three times and the cell-associated radioac- 
tivities were determined. The cell-associated radioactivities were analyzed by the Scatchard procedure. 
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Figure 3. The effects of mAbs on the inhibition of PAE cell migra- 
tion by PASM cells. A confluent monolayer of PAE cells was 
wounded with a razor blade and incubated in DME containing 0.1% 
BSA for 24 h. For the co-culture migration assay, 1.5 x 104 of 
PASM cells were plated after the wounding of PAE cells and in- 
cubated for 24 h. Each of mAbs (10 #g/ml) was added to the co- 
culture migration assay. The number of PAE cells that had migrated 
was determined as described in Materials and Methods. Values are 
means and SDs of eight random fields in duplicated samples. 

fore, the effect of mAbs on the targeting of large LTGF-/3 to 
PASM cells was examined. We found that KM704 (10/zg/ml) 
blocked the binding of t2~I-LLTGF-B1 to PASM cells, whereas 
other mAbs did not (Table II). Thus, LAP was found to be 
involved in the targeting of  LTGF-/3 to PASM cells, and the 
elimination of  the targeting of  LTGF-/3 to PASM cells by 
KM704 blocked the activation of latent TGF-/3 during co- 
culture. LAP contains two potential cellular binding domains: 
mannose-6-phosphate and an Arg-Gly-Asp sequence. There- 
fore, we examined whether mannose-6-phosphate or an Arg- 
Gly-Asp sequence in LAP might be responsible for the 
targeting of  LLTGF-/3 to PASM cells. The binding of t25I- 
LLTGF-/3 to PASM cells showed no competitive inhibition 
by either mannose-6-phosphate (300 #M) or the synthetic 
peptide Arg-Gly-Asp-Ser (300 #g/ml). In the same experi- 
ment, the binding of ~2~I-LLTGF-/3 to PASM cells was again 
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Figure 4. Dose-dependent neutralization of the co-culture inhibi- 
tion by KM704. Wound migration assays were performed as de- 
scribed in Fig. 3. KM704 (0.3, 1, 3, 10 #g/mi) was added to the 
co-culture migration assays. The number of PAE ceils that had 
migrated was determined. Values are means and SDs of eight ran- 
dom fields in duplicated samples. 
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Figure 5. The effect of KM704 on the activation of LTGF-/3 during 
co-culture of PAE cells and PASM cells. Effects of KM704 and/or 
exogenous TGF-/31 on the basal migration of PAE cells were exam- 
ined. KM704 (10 #g/ml), exogenous mature TGF-/31 (1 ng/ml), or 
KM704 (10 #g/ml), plus exogenous mature TGF-/31 (1 ng/ml) were 
added to the wound migration assays and incubated for 24 h. Effects 
of polyclonal neutralizing anti-TGF-/3 antibody and KM704 on the 
co-culture migration were examined. Polyclonal neutralizing anti- 
TGF-/3 IgG (100 #g/ml) or KM704 (10 #g/ml) were added to the 
co-culture migration assay and incubated for 24 h. The number of 
PAE cells that had migrated was determined. Values are means and 
SDs of eight random fields in duplicated samples. 

blocked by KM704 (10 #g/ml) (Fig. 6). These results suggest 
that neither the mannose-6-phosphate nor an Arg-Gly-Asp 
sequence in LAP is involved in the binding of ~25I-LLTGF-/3 
to PASM cells, and that KM704 might recognize an entirely 
different domain of LAP responsible for the targeting of 
LTGF-/3 to PASM ceils. 

Discussion 

The activation of  LTGF-/3 during co-culture was previously 

Table II. The Effects of  mAbs on the Specific Binding of  
125I-LLTGF-(31 to PASM cells 

The specific binding of ~2~I-LLTGF-~I 
mAbs to PASM cells (percent of control) 

KM698 92 
KM699 107 
KM700 101 
KM701 113 
KM702 94 
KM703 93 
KM704 24 
KM705 105 
KM706 101 
KM707 103 

PASM cells were incubated with ~25I-LLTGF-/31 for 3 h in DME containing 
O. 1% BSA as described in Fig. 2. 100-fold concentration of unlabeled LLTGF- 
/31 was added to determine nonspecific binding. Each of mAbs (10 #g/ml) was 
added simultaneously with nSI-LLTGF-fll. After the incubation, the specific 
binding was determined. Bound ~2~I-LLTGF-/31 to the cells as a percent of 
added 125I-LLTGF-/31 was expressed. 
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Figure 6. The effects of mannose-6-phosphate or the synthetic pep- 
tide Arg-Gly-Asp-Ser on the specific binding of ~25I-LLTGF-/31 to 
PASM cells. PASM cells were incubated with )25I-LLTGF-#l (0.2 
ng) for 3 h in DME containing 0.1% BSA as described in Fig. 2. 
100-fold concentration of unlabeled LLTGF-/31 was added to deter- 
mine nonspecific binding. Mannose-6-phosphate (300/zM), Arg- 
Gly-Asp-Ser (300 #g/ml), or KM704 (/0 #g/ml) was added simul- 
taneously with ~25I-LLTGF-/31. After the incubation, the specific 
binding of 125I-LLTGF-~l to PASM cells were determined. Bound 
12SI-LLTGF-~l to the cells as a percent of added ~25I-LLTGF-31 
was expressed. 

demonstrated by the combination of bovine aortic or capil- 
lary endothelial cells and bovine aortic smooth muscle cells 
or bovine retinal pericytes (Antonelli-Orlidge et al., 1989; 
Sato and Rifkin, 1989; Sato et al., 1990). Here, we observed 
that LTGF-/3 was activated during co-culture by using a por- 
cine cell system as well. This activation was also observed 
using a human system (data not shown), and so the activation 
of LTGF-/3 during co-culture of endothelial cells and smooth 
muscle cells appears to be general and not restricted to the 
bovine system. 

The activation of LTGF-/3 during co-culture requires the 
contact of two cell types, and is mediated by PA-plasmin ac- 
tivity (Sato and Rifkin, 1989; Kojima et al., 1991). Since en- 
dothelial cells have the ability to produce PA and secrete 
LTGF-/3, it is not clear why the activation of LTGF-B requires 
secondary cells. It is reported that endothelial cells treated 
with exogenous bFGF highly enhance PA activity and acti- 
vate LTGF-/3 in homotypic culture conditions (Flaumenhaft 
et al., 1992). However, this does not explain the mechanism 
of activation during co-culture of endothelial cells and 
smooth muscle ceils. Evidence supports the concept that the 
cellular targeting of LTGF-/3 is required for the activation 
during co-culture (Dennis and Rifkin, 1991; Flaumenhaft et 
al., 1993); but it remains obscure why activation requires 
two different cell types, as well as contact between these two 
cell types. Our present study is the first we know of to show 
that LTGF-B is selectively targeted to smooth muscle cells 
but not to endothelial cells, and that elimination of targeting 
of LTGF-/3 to smooth muscle cells appears to block the acti- 
vation during co-culture of endothelial cells and smooth 
muscle cells. This implies a unique mechanism for cellular 
activation of LTGF-/3 during co-culture of endothelial cells 
and smooth muscle cells (Fig. 7). Endothelial cells express 
the PA-plasmin activity on their cellular surface. However, 
as LTGF-B is not targeted to endothelial cells, the activation 

large LTGF-~ 

PA pig plasmin ~- M 

endothelial cell SMC 

Figure 7. Proposed model of latent TGF-~ activation during co- 
culture of endothelial ceils and smooth muscle ceils. Endothelial 
cells express PA-plasmin on their cellular surface. However, latent 
TGF-/3 is not targeted to endothelial cells, but to smooth muscle 
cells. When endothelial cells and smooth muscle cells contact each 
other, PA-plasmin localized on endothelial cell surface activates la- 
tent TGF-B targeted to smooth muscle cells. 

of LTGF-/3 is not efficient in homotypic culture conditions, 
and is observed only when PA activity is highly enhanced by 
exogenous bFGF (Flaumenhafi et al., 1992). On the con- 
trary, LTGF-/3 is targeted to smooth muscle cells, but smooth 
muscle cells do not express enough PA activity to activate 
LTGF-/3 in homotypic culture conditions. And during co- 
culture of endothelial cells and smooth muscle cells with cell 
contact, PA-plasmin localized on the surface of endothelial 
cells efficiently activates LTGF-/3 targeted to smooth muscle 
cells. It is also possible that a cell that possesses both PA ac- 
tivity and the binding sites for LTGF-/3 could activate LTGF-/3 
in homotypic culture conditions. 

A mAb against LAP, KM704, blocked the binding of 
z25I-LLTGF-~ to PASM cells. Therefore, LAP appears to 
play an important role in the targeting of LTGF-B. LAP is 
reported to bind to the mannose-6-phosphate/insulin-like 
growth factor II receptor via mannose-6-phosphates at- 
tached to LAP (Kovacina et al., 1989). However, the binding 
of 125I-LLTGF-/31 to PASM cells could not be competed by 
large amounts of mannose-6-phosphate. The other candidate 
for the binding domain in LAP, an Arg-Gly-Asp sequence 
(Derynck et al., 1985), is not supported by the demonstrated 
failure of large amounts of synthetic peptides containing an 
Arg-Gly-Asp sequence to competitively inhibit the binding 
of ~5I-LLTGF-~I to PASM cells. Thus, the responsible do- 
main in LAP for the targeting of LTGF-/3 to PASM cells re- 
mains uncertain until the recognition site of KM704 in LAP 
is identified. LTBP, another molecule of large LTGF-B com- 
plex, is also suggested to be involved in the targeting and ac- 
tivation of LTGF-B during co-culture (Flaumenhafi et al., 
1993). Although we did not observe any mAbs against LTBP 
which affect the targeting and activation of large LTGF-B 
during co-culture, we cannot exclude the possibility that 
LTBP participates in the targeting of large LTGF-/i LTBP 
contains 16 EGF-like domain repeats and three copies of a 
motif with eight cysteine residues (Kanzaki et al., 1990; 
Tsuji et al., 1990), and the EGF-like domain repeats are pro- 
posed to be involved in protein-protein interaction. It is pos- 
sible that LTBP acts together with LAP in the targeting of 
large LTGF-B to the cell surface. Further study is required 
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to clarify the binding site of large LTGF-3 on the surface of 
smooth muscle ceils and the possible relationship between 
LAP and LTBP in the mechanism of targeting of large 
LTGF-~. 
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