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Coelomactra antiquata is an important aquatic economic shellfish with high medicinal
value. However, because C. antiquata has no reference genome, a lot of molecular biology
research cannot be carried out, so the analysis of its transcripts is an important step to
study the regulatory genes of various substances in C. antiquata. In the present study, we
conducted the first full-length transcriptome analysis of C. antiquata by using PacBio
single-molecule real-time (SMRT) sequencing technology. The results identified a total of
39,209 unigenes with an average length of 2,732 bp, 23,338 CDSs, 251 AS events, 9,881
lncRNAs, 20,106 SSRs, and 2,316 TFs. Subsequently, 59.22% (23,220) of the unigenes
were successfully annotated, of which 23,164, 18,711, 15,840, 13,534, and 13,474
unigenes could be annotated using NR, Swiss-prot, KOG, GO, and KEGG databases,
respectively. This study lays the foundation for the follow-up research of molecular biology
and provides a reference for studying the more medicinal value of C. antiquata.
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INTRODUCTION

The Coelomactra antiquata is a bivalve marine creature that lives in the bottom sand (Kong and Li,
2009). As a wide temperature shellfish, it is predominantly distributed in the western Pacific Ocean,
the Indian Peninsula, Japan, and the coast of China. In China, C. antiquata is distributed from
Liaoning province in the north and Guangxi Zhuang autonomous region in the south (Kong et al.,
2007). The meat of the C. antiquata is tender, delicious, and nutritious, making it a remarkable
species with high economic value (Liu et al., 2006). However, due to excessive fishing in recent
decades, the natural population of C. antiquata has gradually decreased (He et al., 2021). Fortunately,
the artificial breeding of C. antiquata has gradually matured in recent years of continuous attempts
(Liu et al., 2012; Chen., 2018a; Chen., 2018b).

In addition to research on mitochondrial genomes (Meng et al., 2012, 2013; Shen et al., 2016), the
content of previous research mainly focused on its morphological research (Kong et al., 2007),
population genetic comparison (Kong and Li, 2007), and organizational composition research of C.
antiquata (Wu et al., 2019). As well, there was some research on the possible role of this bivalve in
disease treatment. For example, treating diabetic mice with different doses of C. antiquata extract can
reduce the blood glucose concentration of diabetic mice and increase the antioxidant activity of
serum (Wen et al., 2015). Also, using a dose of 30 mg/kg of C. antiquata polysaccharides on human
carcinoma of esophagus cells transplanted in nude mice, its inhibitory rate of 28.85% was recorded
(Yang et al., 2015).
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According to the above description, there have been many
reports on the genetic, morphological, and disease treatment
effects of C. antiquata, but there are few studies on the
transcriptome level. Transcriptome sequencing (RNA-seq) is a
technology that uses high-throughput sequencing technology to
sequence and analyze all or part of mRNA, small RNA, and no-
codingRNA in cells or tissues. RNA-seq can identify genes
involved in a variety of biological processes and obtain
relevant transcripts in biological processes (De Klerk et al.,
2014; Chen et al., 2020). With the continuous development of
nucleic acid sequencing technology and the advent of third-
generation sequencing technology, the full-length
transcriptome can be obtained more simply and accurately
(Schadt et al., 2010). Compared with the first-generation and
second-generation sequencing technologies, the third-generation
sequencing technology can directly obtain the full-length
transcript sequence without assembling, which can truly reflect
the transcriptome information of the sequenced species (Li et al.,
2008; Bleidorn, 2016; Jia et al., 2020). This study used PacBio’s
single-molecule real-time (SMRT) sequencing technology to
generate comprehensive full-length transcriptome of C.
antiquata. We then systematically carried out structural
analysis and functional annotation of those full-length
transcriptomes to obtain a large amount of usable sequence
information. From this sequence information, we can see that
many transcripts of C. antiquata have signal transduction,
synthesis, and metabolism functions, indicating that there may
be many biologically active substances in C. antiquata that
participate in the life processes. This study will provide data
for follow-up study of certain functional genes, molecular biology
research, and exploration of possible biomedical functions of C.
antiquata.

MATERIALS AND METHODS

Sample Collection for Iso-Seq
One C. antiquata (Shell length: 87 mm, shell width: 65 mm,
shell height: 40.5 g) sampled from Leizhou in Guangdong
Province. Tissues including blood, mantle, adductor muscle,
lip, foot, gill, inlet pipe, outlet pipe, kidney, intestine, liver, and
gonad were rapidly collected, immediately frozen in liquid
nitrogen, and then stored at −80°C for preservation until
RNA extraction.

RNA Extraction
Total RNA was separately extracted from these tissue samples
(Jia et al., 2020; Zheng et al., 2020). The purity, concentration,
and absorption peak of the extracted RNA were measured using
a NanoDrop 2,000 spectrophotometer (Thermo Fisher Scientific
Inc., United States). Agarose gel electrophoresis was mainly
used to detect the genomic contamination, purity of samples,
and the Agilent 2,100 was used to determine the RIN value
accurately detecting the integrity of RNA. When the test results
met the requirements, RNA samples from 12 tissue were mixed
together for the following library preparation.

Library Preparation and SMRT Sequencing
The Clonetech SMARTerTM PCR cDNA Synthesis Kit was used
to reverse transcribe the pooled total RNA into cDNA.
Afterwards, polymerase chain reaction (PCR) was employed to
amplify the cDNA and using primers with Oligo dT. The
amplified cDNA was purified with PB magnetic beads. After
purification, all full-length cDNAs were end-repaired and
connected with SMRT dumbbell adaptors. Exonuclease
digestion was implemented to remove sequences that failed to
ligate to the adapters. The resulting sequences were purified
again. Finally, a SMRTbell library was constructed. Prior to
sequencing, the accurate quantification of the libraries was
assessed by Qubit 3.0 and the size of the libraries were
detected by Agilent 2,100. Then the full-length transcriptome
was sequenced with PacBio sequencer.

Sequencing Data Processing
The raw sequencing data were processed using the SMRTlink
(Hon et al., 2020) software with the parameters: --min_passes 3;
--min_length 50; --max_length 15,000. The high-quality
sequencing reads produced by a single molecule in the
sequencing process are called polymerase read, and the
polymerase reads remove the sequencing adapters to form
subreads. A circular consensus sequence (CCS) was obtained
from the subreads. The CCS sequence was checked to see whether
it contained 5′primer, 3′primer, and polyA. Their positional
relationships were assessed and later divided the CCS
sequence into three categories: the full-length sequence (FL),
the full-length non-concatemer sequence (FLNC), and the full-
length non-chimeric sequence with polyA. ICE of SMRTlink
software was used to cluster FLNC sequences and obtain a set of
cluster consensus sequences. Further the sequences were polished
by Arrow algorithm (Cao et al., 2020) and obtained the FLNC
polished high quality consensus Sequences. Finally, CD-HIT (Li
& Godzik, 2006) software (parameters: -c 0.99; -G 0; -aL 0.90; -AL
100; -aS 0.99; -AS 30) was used to perform clustering and de-
redundancy. The unigenes from high quality full-length
transcripts were used for subsequent analysis.

Function Annotation
To obtain basic annotations information, non-redundant
transcripts were annotated against six different databases,
namely, Non-supervised Orthologous Groups (NR),
EuKaryotic Orthologous Groups (KOG), Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), Swiss-Prot,
and Pfam databases. DIAMOND (Buchfink et al., 2014) software
(parameters: --more-sensitive; -k 10; -e 1e-5) was used for NR,
Swiss-Prot, KOG, GO, KEGG databases analyses, and the Hmmer
package (Nguyen et al., 2016) with default parameters utilized for
Pfam database analyses.

Structure Analysis
CDS, LncRNA, and TFs Prediction
TransDecoder software (Haas et al., 2013) (parameters: -G
universal; -S; -m 100) was used to predict the coding
sequences (CDS) of transcripts. Transcripts longer than 200
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nucleotides (nts) were used for the long noncoding RNA
(lncRNA) prediction. Four methods, Coding Potential
Calculator 2 (CPC2) (Kang et al., 2017) (default parameters),
Coding-Non-Coding Index (CNCI) (Sun et al., 2013)
(parameters: -m pl), Coding Potential Assessment Tool
(CPAT) (Wang et al., 2013) (default parameters), and PLEK
(Li et al., 2014) (parameters: -minlength 200), were integrated to
identify lncRNA in the transcripts and depict the intersection of
the results predicted by the four methods. For the TF
(transcription factor) analysis, we used DIAMOND (Buchfink
et al., 2014) software to align the sequences to the AnimalTFDB
(animal transcription factor database) for TFs prediction.

Simple Sequence Repeat Analysis
With the default parameters of MISA 1.0 (Beier et al., 2017), all
SSRs present within the transcriptome sequences were identified
and count the regional distribution of some SSRs. In the process
of identification, the minimum value of repeat number varied
with different repeat units per unit sizes and their minimum
number of repetitions were: 1–10, 2–6, 3–5, 4–5, 5-5, and 6–5. For
instance, 1–10 indicates that a single nucleotide must be repeated
at least 10 times to be detected. The SSR were divided into seven
types: Mono-, Di-, Tri-, Tetra-, Penta-, Hexa-, and
compound SSR.

Alternative Splice Prediction
In this study, IsoSeq_AS_de_novo software (Palareti et al., 2016)
with default parameters was used to perform Alternative splice
analysis of the non-redundant sequences, and this software used a
method that does not require reference sequences to detect AS
isoforms.

RESULT

SMRT Sequencing Data Analysis
By using the PacBio Sequel II sequencing platform, we obtained
956,679 of polymerase read (about 112.26 Gb). In a total of
87,338,730 subreads, an average length of the subread was
1,173 bp and an N50 length of 2,347 bp. After self-correction
among subreads, 660,201 CCS reads were gained in which a mean
of the CCS read length was 2,416 bp. The amount of CCSs for
each transcript ranges from 2 to 24,103, with an average of 9, and
the average accuracy of the obtained CCS data was 0.99951. By
detecting the sequences, 5,057,806 CCSs were identified as full-
length reads and 495,198 were identified as FLNC reads with an
average length was 2,423 bp and an N50 length of 3,057 bp. Then,

41,056 polished transcripts were obtained. Finally, the redundant
reads were removed by CD-HIT and 39,209 unigenes with amean
length of 2,732 bp were obtained (Table 1). The length
distribution of unigenes is as shown in Figure 1. The majority
of unigenes were between 1,000 and 4,000 bp (28,643, 73.05%),
and the longest unigenes was about 8,000.

Functional Annotation
In all, 39,208 transcripts were annotated in the five databases, of
which 23,264 (59.33%), 13,534 (34.52%), 13,474 (34.36%), 15,840
(40.40%), and 18,711 (47.72%) transcripts were, respectively,
matched to the NR, GO, KEGG, KOG, and Swiss-Prot
databases (Figure 2A). A total of 8,359 (22.84%) transcripts
were annotated in all the databases (Figure 2B). Aligning each
transcript with the homologous sequence of the NR library, it was
determined which species the sequence with the best comparison
result belongs to, and count the number of homologous
sequences aligned with each species. According to statistics,
the species with the most homology was Mizuhopecten
yessoensis (6,118 transcripts), followed by Crassostrea gigas
(4,276), Crassostrea virginica (3,471), and Lottia gigantea
(1,281) (Figure 2C).

According to GO classification statistics of the transcripts, the
annotated results included three broad categories: Biological
process (22,917 transcripts), Cellular component (26,837) and
Molecular function (15,073). The Cellular process (5,413,
39.99%), Cell (4,702, 34.74%), and Binding (6,879, 50.82%)
were the most annotated transcripts in the three categories
mentioned above (Figure 2D).

In KEGG pathways, the transcripts were assigned to five main
categories: Cellular processes (3,845 transcripts), Environmental
information processing (2,604), Genetic information processing
(2,192), Metabolism (4,291), and Organismal systems (5,359).
Signal transduction (2,129, 15.80%) was the largest group of
transcripts, followed by Transport and catabolism (1,498,
11.12%) (Figure 2E).

The KOG classifications of the transcripts obtained clusters of
26 functional categories (Figure 2F). A total of 2,543 (16.05%)
transcripts were annotated in General function prediction only,
which is the most among functional categories. Next was the
Signal transduction mechanisms (2,159, 13.63%).

Structure Analysis
CDS Prediction
The number and length of 5′UTR, 3′UTR, and CDS were
identified by transdecoder software. In total, 15,555 transcripts
were predicted in the 5′UTR, 20,550 in the 3′UTR, and 23,338 in

TABLE 1 | Description of full-length sequencing in C. antiquata.

Type Total number Min length Average length Max length N50

Polymerase read 956,679 51 117,339 425,391 189,911
Subread 87,338,730 51 1,173 274,252 2,347
CCS 660,201 48 2,416 14,948 3,136
FLNC 495,198 50 2,423 8,687 3,057
Unigenes 39,209 66 2,732 8,074 3,324
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the CDS. As shown in Figure 3, most of the CDS, 19,643
transcripts (84.16%) lengths, were less than 2,000 nt, 14.13%
ranged from 2,000 to 4,000 nt (3,299 transcripts), and only
396 transcripts representing 1.69% were over 4,000 nt.

Identification of lncRNAs
We identified 14,493, 13,827, 14,027, and 11,074 lncRNAs by
CNCI, CPAT, CPC2, and PLEK, respectively. The results of these
four methods were integrated and 9,881 lncRNA transcripts were
predicted totally (Figure 4A). By comparing the length
distribution density of lncRNA and original mRNAs, it was
found that there were more lncRNAs with lengths between
1,000 and 2,000 nt than mRNAs, and the longest predicted
lncRNA does not exceed 8,000 nt (Figure 4B).

SSR Analysis
SSR analysis of the transcriptome revealed a total of 20,106 SSRs
using MISA 1.0 software. Upon careful scrutiny of the obtained
SSRs, the most predominant was the mono-nucleotide repeats
(9,443), which accounted for 46.96%, followed by the di-
nucleotide repeats (5,932), representing 29.50%, and tri-
nucleotide repeats (3,379), accounted for 16.80%. However,
tetra-nucleotide, penta-nucleotide, and hexa-nucleotide repeats
accounted for a very small number, 4.92, 1.15, and 0.64%,
respectively. Besides, the number of repetitions for most SSRs

were 5-8 and 9–12 (Figure 5). Since some transcripts cannot
predict the CDS, the total number of SSRs that can be counted in
different regions was 9,804. Among the 9,804 SSRs, the number in
the 3′UTRwas the most (8,024), followed by the CDS (1,354), and
the 5′UTR (426) was the least (Table 2).

Transcription Factor Prediction
TF is a key factor in regulating gene expression in animals. In this
study, 2,316 TFs from 59 TF families were identified by
DIAMOND software. List the top 20 TF families in Figure 6,
the BHLH family (369, 15.93%) was the most represented,
followed by the zf-C2H2 family (278, 12.00%).

Alternative Splice Prediction
A total of 251 AS events were detected via the
IsoSeq_AS_de_novo in all unigenes obtained by SMRT
sequencing. Due to the lack of an available C. antiquata
reference genome, it is necessary to further characterize the
types of AS events in future studies.

DISCUSSION

PacBio RNA-seq has fast sequencing speed, high accuracy, and
long readings. Because of the advantages of PacBio RNA-seq, it

FIGURE 1 | Length distribution of unigenes obtained from C. antiquata SMRT library.
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FIGURE 2 | Functional annotation in C. antiquata. (A) Statistics of the transcripts annotated in different databases. (B) Venn diagram of annotations in NR, GO,
KEGG, KOG, and SwissProt databases. (C)Distribution of the top 10 species with matched transcripts in the NR database. (D)Distribution of GO terms for all annotated
transcripts in biological process, cellular component, and molecular function. (E) KEGG pathways enriched by transcripts. (F) COG categories of the transcripts.
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has beenwidely used in various species research (Ma et al., 2019; Xue
et al., 2019; Luo et al., 2020; Zheng et al., 2020; Chen et al., 2021).
Because C. antiquata is an important economic shellfish with high
medicinal potential, there are many studies now. The present study
provides the first full-length transcriptome resource for C. antiquata
using PacBio single-molecule long-read sequencing technology. By
processing and analyzing the sequenced data, a total of 39,209
unigenes were finally identified, with an average length of 2,732
bp. In previous studies, some researchers used the Illumina platform
to sequence the transcriptome, and obtained the second-generation
transcriptome data of the C. antiquata (Yi et al., 2019). The second-
generation sequencing identified 214,732 unigenes with a mean
length of 616.2 bp. Compared with the results measured by second-
generation sequencing, the total number of transcripts obtained by
the SMRT sequencing technology in this study is larger and the
average length is longer.

In addition, the unigenes obtained were functionally annotated in
databases, and 59.22% of the unigenes were successfully annotated.
The percentage is not very high, and the possible reason is that there
are few studies on molecular biology of this shellfish in the past, the
data collected in the database is incomplete, and the genomic
information of C. antiquata has not yet been referenced.
According to the NR annotation situation, Mizuhopecten
yessoensis has the most homologous sequences annotated, which
reflects the high affinity between C. antiquata and Mizuhopecten
yessoensis. It also provides a valuable data basis for the detailed
comparison of gene expression between the two species in the future.
Among the function statistics against KOG, KEGG, and GO
database, the number of transcripts annotated in KOG was the
largest. More transcripts are involved in intracellular signal
transduction and play a role in the endocrine system to
participate in the metabolism of various substances, which proves
that theremay bemany biologically active substances inC. antiquata
that can be excavated and used in biomedicine.

We also analyzed the structure of the de-redundancy
transcripts. A total of 20,106 SSRs and 9,881 lncRNAs were
predicted. SSR is widely used in genetic diversity testing,
genetic map construction, Gene expression regulation, etc.
(Tranbarger et al., 2012; Chen et al., 2014). Compared with
the number of SSRs and SSR types obtained by sequencing of
the transcriptome of the Tegillarca granosa, the number of SSR
present in C. antiquata was less, and its SSR di-nucleotide repeats
were the most (H. Chen et al., 2017). These differences may be
related to the different tissue specificities of the two shellfishes.
Besides, this study predicted the number of TFs and the detailed
family classification of C. antiquata, The BHIH family has the
largest number. BHLH TFs are the most widespread category in
eukaryotes, and they can participate in various processes in cells,
such as regulating carbohydrate response genes (Yu et al., 2021),
which may indirectly affect the synthesis of various biologically
active substances.

FIGURE 3 | Length distribution of CDSs.

FIGURE 4 | Long non-coding RNA (lncRNA) prediction. (A) Venn diagram of lncRNAs predicted by CNCI, CPAT, CPC2, and PLEK methods. (B) Length
distribution of identified lncRNAs and mRNA in C. antiquata.
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In summary, this study successfully constructed a high-quality
full-length transcriptome ofC. antiquata, and preliminarily analyzed
its transcriptome structure and functional characteristics, obtained
the relevant annotation function of transcripts in the database, and
enriched the genetic information of this species. It has laid a solid
foundation for the mining and utilization of later functional genes
and other molecular biology research.

CONCLUSION

We applied PacBio SMRT sequencing platform to obtain a large
number of full-length transcriptome data of C. antiquata for the
first time. The number and mean length of the unigenes from
SMRT sequencing were much better than those from Illumina
sequencing. And through structural analysis and functional
annotation of the obtained full-length transcripts, gene
function and gene structure information can be obtained more
comprehensively. The acquisition of the full-length transcripts
provides molecular biology data for C. antiquata, which lacks
genomic information. As a species with high medicinal value, in
the future, the full-length transcriptome data can be combined
with the second-generation sequencing results to conduct further
research on the medical effects of its internal substances.
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FIGURE 5 | Summary of SSR types in the C. antiquata transcriptome.

TABLE 2 |Regional distribution of some SSRs in the full-length transcriptome ofC.
antiquata.

Type Number Ratio (%) 59UTR CDS 39UTR

Mono- 4,179 42.63 172 50 3,957
Di- 2,696 27.50 117 38 2,541
Tri- 2,234 22.79 93 1,245 896
Tetra- 501 5.11 19 4 478
Penta- 116 1.18 24 1 91
Hexa- 78 0.80 1 16 61

FIGURE 6 | Identification of TFs inC. antiquata. The number and family of
TFs were predicted by SMRT.
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