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Abstract: Shrimp oil (SO) rich in n-3 fatty acids and astaxanthin, mixed with antioxidant-rich tea
seed oil (TSO), was microencapsulated using mung bean protein isolate and sodium alginate and
fortified into whole wheat crackers. SO and TSO mixed in equal proportions were emulsified in a
solution containing mung bean protein isolate (MBPI) and sodium alginate (SA) at varied ratios. The
emulsions were spray-dried to entrap SO-TSO in MBPI-SA microcapsules. MBPI-SA microcapsules
loaded with SO-TSO showed low to moderately high encapsulation efficiencies (EE) of 32.26–72.09%
and had a fair flowability index. Two selected microcapsules with high EE possessed the particle
sizes of 1.592 and 1.796 µm with moderate PDI of 0.372 and 0.403, respectively. Zeta potential
values were −54.81 mV and −53.41 mV. Scanning electron microscopic (SEM) images indicated that
microcapsules were spherical in shape with some shrinkage on the surface and aggregation took
place to some extent. Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC)
analyses of samples empirically validated the presence of SO-TSO in the microcapsules. Encapsulated
SO-TSO showed superior oxidative stability and retention of polyunsaturated fatty acids (PUFAs) to
unencapsulated counterparts during storage of 6 weeks. When SO-TSO microcapsules were fortified
in whole wheat crackers at varying levels (0–10%), the crackers showed sensorial acceptability with
no perceivable fishy odor. Thus, microencapsulation of SO-TSO using MBPI-SA as wall materials
could be used as an alternative carrier system, in which microcapsules loaded with PUFAs could be
fortified in a wide range of foods.

Keywords: shrimp oil; tea seed oil; mung bean protein; encapsulation; oxidation; cracker

1. Introduction

Food lipids have been engineered to enhance their stability towards lipid oxidation.
Microencapsulation is a potential technique, which has been successfully applied to protect
the sensitive core material from the environment. Marine oils, susceptible to oxidation such
as shrimp oil and fish oil, have been encapsulated to enhance their storage stability [1,2].
Shrimp oil has been previously encapsulated using the spray-drying method, in which
carboxymethyl cellulose, lecithin, and fumed silica were used as wall materials [3].

Shrimp oil, extracted from the inedible portion of shrimp, is a rich source of as-
taxanthin, which is reported to possess 100 times higher antioxidant property than α-
tocopherol [4]. Shrimp oil also contains high amounts of polyunsaturated fatty acids
(PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) [5].
PUFAs are known to improve health conditions related to CVD and Alzheimer disease [6].
Tea seed oil has been traditionally used as medicine for several diseases including stom-
achache and burn injuries as well as antitussive and anthelmintic in China [7]. Due to
its high polyphenol and flavonoid content, tea seed oil has superior anti-inflammatory,
anticancer, and antithrombotic effects [8,9]. It is also known for preventing obesity and
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lowering cholesterol [10]. In a recent study, tea seed oil was reported to contain diverse
phenolic compounds having a strong antioxidant capacity [11].

Food fortification is a cost-effective intervention to address the issues of nutrition
deficiency globally as well as the value addition of foods to target a specific population [12].
Functional foods containing omega-3 fatty acids are one of the fastest-growing food product
categories in the United States and Europe. Numerous products fortified with omega-3
fatty acids are present in markets all over the world [13]. Owing to the remarkable health
benefits of shrimp oil and tea seed oil, they can be fortified in many food systems as
nutraceuticals. However, shrimp oil has a large amount of PUFAs prone to oxidation
along with a fishy odor. The blending of shrimp oil with tea seed oil rich in antioxidative
compounds could lower oxidation. Blended sunflower oil and Moringa oleifera oil were
documented to enhance oxidative stability of resulting oils [14]. In addition, a carrier
system is necessary to protect the oils from oxidative deterioration and simultaneously
to mask the fishy odor. Spray-drying microencapsulation has been successfully used as
a delivery system for the entrapment of sensitive compounds. The spray-drying process
is economical; however, it can lead to substantial variation in the microencapsulation
matrix as well as the size and surface of microcapsules [15]. Spray drying of shrimp oil
nanoliposomes resulted in the formation of stable microcapsules with high solubility and
flowability [3].

Proteins and carbohydrates have been used extensively as wall materials in spray-
drying microencapsulation [16]. Proteins are amphiphilic in nature with the emulsifying
property. They can form stable oil-in-water emulsions. Moreover, upon drying of these
emulsions, the proteins form a dense network around the oil, thus encapsulating the core.
A combination of proteins and polysaccharides was reported to yield higher encapsulation
efficiency [17]. The use of plant-based proteins is being recommended all over the world
because of their low cost, high abundance, low allergenicity, and wide acceptability [18].
Legume proteins have extensive uses in the functional food industry [19]. Mung bean
protein has significant functional properties that can be used for several food processing
applications [20]. Sodium alginate, as a hydrocolloid, has also been used in the food
industry, particularly for making complexes via coacervation with proteins [21]. However,
no information on the use of mung bean protein isolate and sodium alginate as wall
materials for encapsulation of shrimp oil is available.

Whole wheat cracker is a popular food containing dietary fibers. It has gained increas-
ing interest due to its crunchy texture and health benefits. With the addition of shrimp
oil and tea seed oil, the nutritional quality of the crackers can be further enhanced and
promoted by nutraceutical properties associated with the increased essential fatty acids.
Therefore, this study aimed to encapsulate the mixed shrimp oil and tea seed oil using
mung bean protein and sodium alginate as wall materials by spray-drying and to charac-
terize the resultant microcapsules. Mixed shrimp oil/tea seed oil microcapsules were also
fortified into whole wheat crackers and sensorially characterized.

2. Materials and Methods
2.1. Materials

Shrimp oil (SO) was extracted from Pacific white shrimp cephalothorax following the
method of Gulzar and Benjakul [22]. Tea seed oil (TSO) from Camellia oleifera seeds was
procured from a local market. Sodium alginate (SA) (seaweed origin) was purchased from
Qingdao Mingyue Seaweed Group Co., Ltd., Qingdao, China.

2.2. Preparation of Mung Bean Protein Isolate

Mung bean protein isolate (MBPI) was prepared following the method of El Adawy [23].
Briefly, mung beans were milled to obtain a fine flour and subsequently sieved to remove
the coarse particles. The mung bean flour was defatted by mixing with butyl alcohol at
a flour/solvent ratio of 1:10 (w/v) and stirred for 1 h. Defatted mung bean flour was
dispersed in distilled water (DW) at 5% (w/v). The pH was adjusted to 9 using 0.1 N NaOH
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and the mixture was shaken for 1 h at room temperature. The dispersion was centrifuged
at 10,000 g for 15 min at 4 ◦C. The supernatant was collected, followed by pH adjustment
to 4 using 2 M HCl and centrifugation at 10,000 g for 15 min at 4 ◦C, respectively. The
precipitate was washed with DW and lyophilized.

2.3. Preparation of MBPI/SA/SO-TSO Emulsions

MBPI (1, 2, and 3 g) was dispersed in 100 mL of DW, and pH was adjusted to 10 using
0.1 M NaOH to solubilize MBPI. SA was added at the fixed MBPI/SA ratio of 10:1 (w/w).
Finally, the mixed SO/TSO (1:1), so-called SO-TSO, was added to the above solutions at
0.5, 0.75, and 1 g under vigorous stirring at 30 ◦C for 1 h, in which a homogenous mixture
was obtained.

2.4. Spray-Drying Microencapsulation of MBPI/SA/SO-TSO Emulsions

The MBPI/SA/SO-TSO emulsions were spray-dried using a laboratory-scale spray-
dryer (LabPlant Ltd., LabPlant SD-05, Huddersfield, UK). The sample was fed to the drying
chamber by a peristaltic pump at the feed rate of 5 mL min−1. The inlet temperature was
kept at 180 ± 2 ◦C at the airflow rate of 4.3 m s−1 and the outlet temperature was 105 ± 2 ◦C.
Spray-dried powders or microcapsules with varying wall materials (MBPI and SA) and
SO-TSO ratios including MBPI:SA:SO-TSO ratios of 1:0.1:0.5, 1:0.1:0.75, 1:0.1:1, 2:0.2:0.5,
2:0.2:0.75, 2:0.2:1, 3:0.3:0.5, 3:0.3:0.75, and 3:0.3:1 (w/w/w) were labelled as MC1, MC2, MC3,
MC4, MC5, MC6, MC7, MC8, and MC9, respectively.

2.5. Characterization of Microcapsules
2.5.1. Encapsulation Efficiency

Encapsulation efficiency (EE) of microcapsules loaded with SO-TSO was measured
following the method of Takeungwongtrakul et al. [24]. Surface oil and total oil from
powders were recovered and quantified. Surface oil was recovered by mixing 2 g of powder
with 15 mL of hexane. The mixture was shaken by a vortex mixer (G-560E, Vortex Genie
2, Scientific Industries, Inc., Bohemia, NY, USA) at room temperature for 2 min. Filtration
was carried out through a Whatman No. 1 filter paper. The extraction of surface oil was
carried out three times. The hexane was pooled and placed in a round-bottom flask and
evaporation of the solvent was done. The total oil was measured by dissolving 2 g of
powder in 25 mL of 0.88% (w/v) KCl solution + 25 mL of methanol and 50 mL chloroform.
The mixtures were homogenized for 5 min at 15,000 rpm and transferred to a separating
funnel. The chloroform layer was collected, and chloroform was removed by evaporation
using a rotary evaporator. EE was then calculated as follows (1):

EE (%) =
TO − SO

TO
× 100 (1)

where TO and SO are total oil content and surface oil content, respectively.

2.5.2. Flowability

Flowability of microcapsules loaded with SO-TSO was determined using the Carr
index (Ci) calculated by the following equation (2):

Ci (%) =
(ρt − ρu)

ρt
× 100 (2)

where ρt is the tapped density of the microcapsule samples and ρu is the untapped density
of microcapsules. Tapped density is measured by filling a graduated cylinder with the
microcapsules and mechanically tapping the cylinder up and down 50 times against the
table. The volume of the microcapsules was calculated from the graduations of the cylinder
when no further change in volume took place after tapping of the cylinder. Tapped density
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was then calculated. Untapped density is the normal bulk density of microcapsules,
calculated as mass per volume of microcapsules without any tapping.

2.6. Characterization of SO-TSO Microcapsules

Microcapsules using the optimal ratio of MDPI, SA, and SO-TSO that yielded the
desirable encapsulation efficiency and flowability were selected for characterization.

2.6.1. Particle Size, Poly-Dispersity Index (PDI), and Zeta Potential

Particle size, poly-dispersity index (PDI), and zeta (ζ) potential of SO-TSO microcap-
sules were determined using a PALS Zeta potential analyzer (Brookhaven instruments corp,
Holtsville, NY, USA). Microcapsule samples were suitably diluted in ethanol and measured
at 25 ◦C for size, PDI, and ζ potential.

2.6.2. Microstructure

Microstructures of microcapsules loaded with SO-TSO were analyzed using a scanning
electron microscope (SEM) (Quanta 400, FEI, Eindhoven, the Netherlands). The samples
were mounted on individual bronze stubs and sputter-coated with a gold layer (Sputter
coater SPI-Module, West Chester, PA, USA). The samples were visualized at an acceleration
voltage of 20 kV and 5–10 Pa pressure. Magnifications from 10,000 to 100,000× were used.

2.6.3. FTIR Spectra

MBPI, SA, SO-TSO, and the selected microcapsules loaded with SO-TSO were ana-
lyzed for their functional groups using an FTIR spectrometer (Bruker Model Equinox 55,
Bruker Co., Ettlingen, Germany). Spectra of the mid-infrared region (4000–400 cm−1) were
collected in 32 scans at a resolution of 4 cm−1.

2.6.4. Differential Scanning Calorimetry

Differential scanning calorimeter (Perkin Elmer, Model DSC7, Norwalk, CA, USA)
was used. Accurately weighed samples were loaded onto aluminum pans and sealed.
Temperature scanning was performed at 10 ◦C/min over the range of −40 to 250 ◦C.

2.7. Oxidative Stability of SO-TSO and Microcapsules Loaded with SO-TSO

SO-TSO samples and selected microcapsules placed in sealed polythene pouches were
stored at room temperature for 6 weeks. A SO-TSO sample and oil from microcapsules
were tested for lipid oxidation at weeks 0 and 6. Before analysis, the total oil from the
microcapsules was extracted using the method described previously.

2.7.1. Lipid Oxidation

Peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) were mea-
sured by the titration method, as described by Pudtikajorn and Benjakul [25] and the
method as tailored by Buege and Aust [26], respectively.

2.7.2. Fatty Acid Profile

Fatty acid profile expressed as fatty acid methyl esters (FAMEs) was determined using
gas chromatography (GC), as detailed by Gulzar and Benjakul [27]. Briefly, lipid samples
(10 mg) were dissolved in 1 mL of hexane and esterified with 200 µL of 2 M methanolic
sodium hydroxide at 50 ◦C for 5 min. The mixture was cooled and added with 200 µL of
2 M methanolic hydrochloric acid. The prepared mixture was vortexed thoroughly and
then centrifuged at 3500× g for 10 min. The hexane phase was collected and injected into
gas chromatography (Agilent GC 7890B; Santa Clara, CA, USA). Injection temperature was
maintained at 250 ◦C and the initial column temperature was first reduced to 80 ◦C. The
temperature was increased at 4 ◦C min−1 ramp for 40 min to 220 ◦C and finally reached
240 ◦C. The eluted compounds were detected by a flame ionisation detector (FID) at 270 ◦C
as a detector temperature. The chromatographic peaks of the samples were identified
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from the retention times of FAME, compared to those of standards (Supelco 37 Component
FAME Mix). Fatty acid content was calculated based on the peak area ratio and expressed
as a percentage.

2.8. Fortification of Selected Microcapsules Loaded with SO-TSO in Whole Wheat Crackers
2.8.1. Preparation of Whole Wheat Crackers Fortified with Microcapsules

The whole wheat crackers were prepared following the method of Benjakul and
Karnjanapratum [28]. Selected microcapsules loaded with SO-TSO were blended with
whole wheat flour at a concentration of 0, 2.5, 5, 7.5, and 10% (w/w). The ingredients were
mixed in a dough mixer (KitchenAid casserole multifunctional 5 k, KitchenAid, Benton
Harbor, MI, USA) for 3 min and thereafter added with water and mixed at low speed
for 3 min. The dough was sheeted and cut into the desired shape with a thickness of
0.4 mm. Finally, the shaped cracker dough was baked in an electric oven (Mamaru MR-
1214, Mamaru Co., Ltd., Bangkok, Thailand) at 180 ◦C for 15 min. Wheat crackers were
cooled and packed in zipped polythene bags.

2.8.2. Sensory Evaluation of Whole Wheat Crackers

Sensory analysis of whole wheat crackers fortified with SO-TSO was performed
following the method of Meilgaard et al. [29]. Each sample was assigned a random three-
digit code and served in white plastic trays at room temperature under the fluorescent
daylight-type illumination. Sixty non-trained panelists, who were familiar with whole
wheat cracker consumption (age 25–35 years), took part in sensory evaluation. The panelists
were asked to evaluate for appearance, color, fishy odor, rancid flavor, texture, taste, and
overall likeness of fortified whole wheat crackers using a 9-point hedonic scale (1, extremely
dislike; 9, extremely like). Panelists were asked to rinse their mouths after evaluating
each sample.

2.8.3. Chemical Composition of Selected Whole Wheat Cracker

Crackers fortified with microcapsules with the highest sensory acceptability score
and a control sample (without microcapsules) were analyzed for moisture, protein, fat,
and ash contents, using analytical method Nos. of 925.45(A), 981.10, 948.15, and 923.03,
respectively [30]. Oil from the selected cracker was extracted and subjected to fatty acid
profile analysis, as explained above.

2.9. Statistical Analysis

A completely randomized design was used for this study. Experiment and analysis
were done in triplicate. ANOVA was performed using the SPSS software (Statistical Package
for Social Science, IBM software, New York, NY, USA). Duncan’s multiple range test and
t-test were used for mean comparison.

3. Results and Discussion
3.1. Encapsulation Efficiency (EE) and Flowability

EE of microcapsules loaded with SO-TSO using MBPI and SA as wall materials
ranged between 32.26 and 72.09% (Table 1). The highest EE was found in the sample
using MBPI:SA:SO-TSO of 3:0.3:0.5, while the lowest EE was obtained in the sample using
MBPI:SA:SO-TSO (1:0.1:1). It was implied that a higher protein-to-oil ratio was directly
proportional to the higher EE of powder samples. EE is highly influenced by the solubility
of the protein, which subsequently affects the emulsifying properties of the protein. The
high solubility of protein results in the extensive diffusion of protein chains to the oil/water
interface and consequently stabilizes the small droplets of oil [31]. During spray-drying,
the droplets are transformed into aerosols and the oil is intensively distributed inside them.
Upon the evaporation of water from the aerosols, the oil is effectively encapsulated inside
the surrounding protein acting as a wall material [32]. Mung bean protein is reported
to have a solubility of 70.6% at pH 10 [33]. Apart from the hydrophobic protein–protein
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interactions, which stabilized the wall, the addition of an anionic polysaccharide (sodium
alginate) resulted in the formation of a protein-anionic polysaccharide complex by electro-
static interactions, thereby promoting cooperative adsorption of protein-polysaccharide
at the interface of oil droplets, which could enhance the EE [34]. Nevertheless, anionic
polysaccharides also acted as protective hydrocolloids by inhibiting the aggregation and
precipitation of charged dispersed proteins, thus increasing the soluble protein-anionic
polysaccharide complexes [34]. Incorporation of a polysaccharide into the emulsion also
provides stability by thickening the aqueous phase surrounding the oil droplet and delay-
ing the coalescence of oil globules [17]. The combination of protein and polysaccharide
results in the formation of a multilayer emulsion in which protein forms the first layer due
to its high surface activity, whereas the polysaccharide forms the subsequent layer, which
provides strong steric and electrostatic repulsion [35]. In another study, multilayer emul-
sions were formed by whey protein isolate and sodium alginate for microencapsulation of
flaxseed oil [36]. Multilayer emulsions can significantly prevent the degradation of encapsu-
lated compounds. Chitosan-pectin multilayer emulsions showed 3–4 times less degradation
of astaxanthin during storage than conventional emulsions [37]. Protein-polysaccharide
complexes have been exploited for stabilizing polyunsaturated fatty acids [38] and mi-
croencapsulation of flavor oils in cheese [39]. The results indicated that the molecular
interactions between protein-polysaccharides and their relative concentrations significantly
influenced the encapsulation of SO-TSO.

Table 1. Encapsulation efficiency (EE) and Carr index (Ci) of SO-TSO encapsulated using MBPI and
SA at varied levels.

Sample Wall Materials (w/w/w) EE (%) Carr Index (Ci) (%)

MC1 MBPI:SA:SO-TSO (1:0.1:0.5) 45.27 ± 1.09 d,* 23.92 ± 1.04 c

MC2 MBPI:SA:SO-TSO (2:0.2:0.5) 65.61 ± 2.23 b 22.25 ± 1.28 c,d

MC3 MBPI:SA:SO-TSO (3:0.3:0.5) 72.09 ± 2.97 a 20.02 ± 1.17 d

MC4 MBPI:SA:SO-TSO (1:0.1:0.75) 33.74 ± 1.64 e 27.61 ± 1.34 b

MC5 MBPI:SA:SO-TSO (2:0.2:0.75) 56.44 ± 1.98 c 21.31 ± 1.15 d

MC6 MBPI:SA:SO-TSO (3:0.3:0.75) 63.62 ± 2.64 b 21.18 ± 1.09 d

MC7 MBPI:SA:SO-TSO (1:0.1:1) 32.26 ± 1.33 e 31.63 ± 1.19 a

MC8 MBPI:SA:SO-TSO (2:0.2:1) 43.22 ± 1.87 d 27.09 ± 1.67 b

MC9 MBPI:SA:SO-TSO (3:0.3:1) 58.29 ± 2.72 c 21.39 ± 1.34 d

Note: SO-TSO: a mixture of shrimp oil-tea seed oil (1:1); MBPI: mung bean protein isolate; SA: sodium alginate.
Values are presented as mean ± SD (n = 3). * Different lowercase superscripts in the same column indicate the
significant difference (p < 0.05).

Flowability of powders corresponds to the free-flowing nature of the powders and
is considered an important functional property of food powders. Carr index is reliable
for determining the flowability of powders. The lower Ci values correspond to the higher
flowability of powders [40]. High hygroscopicity and the presence of surface oil on the
microcapsules led to the formation of agglomerates. Agglomeration of microcapsules
was undesirable since it reduced the solubility and wettability of microcapsules upon
rehydration. It was observed that the microcapsules with low EE had high Ci (Table 1),
indicating that the microcapsules contained more surface oil and were more likely to form
the agglomerates. MC7 showed the highest Ci value, while MC3, MC5, MC6, and MC9 had
the lowest Ci value (p < 0.05). It was noted that microcapsules with high MBPI content in
the wall exhibited high flowability as ascertained by low Ci values. Milk powders with
high surface fat were more cohesive, compared to low-fat milk powders [41]. Overall, the
microcapsules were free-flowing with little agglomeration, particularly in the samples with
high EE.

Based on the results, the ratio of wall materials used had a significant effect on the
EE and flowability of the microcapsules. The low EE of microcapsules with a lower
oil/wall ratio could be attributed to the insufficient wall material to produce a sufficiently
strong structural matrix, thinner layer of wall material between encapsulated oil, and/or
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destabilization of weak emulsion droplets during spray drying [42]. It was reported by Ra-
makrishnan et al. [43] that the EE values of microcapsules with fish oil/wall ratio of 1:1 was
in the range of 30–40% and it was increased to more than 70% when the oil/wall ratio was
increased to 1:3. Based on high EE and flowability of spray-dried SO-TSO microcapsules,
the MC3 (MBPI:SA:SO-TSO = 3:0.3:0.5) and MC6 (MBPI:SA:SO-TSO = 3:0.3:0.75) samples
were further characterized for their physical and chemical properties.

3.2. Particle Size, Poly-Dispersity Index (PDI), and Zeta Potential

Particle sizes of MC3 and MC6 samples are tabulated in Table 2. Both samples were
micrometer in size. The MC3 sample was larger in size as compared to MC6. The variation
in the size of samples was related to the difference in EE of the samples, which affected
the amount of oil loaded per gram of wall material. The MC3 samples had higher EE
(Table 1). Consequently, a higher amount of SO-TSO loaded per gram of MBPI-SA was
attained, making the microcapsules larger in size. Gulzar et al. [44] documented that
chitosan nanoparticles loaded with shrimp oil having high EE were larger in size than
those with lower EE. MC3 and MC6 samples had PDI of 0.403 and 0.372, respectively
(Table 2). PDI is indicative of heterogeneity or the size distribution of particles in a system.
Values below 0.05 are considered as monodisperse and the PDI values above 0.7 indicate
that the samples have a broad size distribution [45]. Based on PDI, the samples were
moderately distributed in size. Variation in particle size could occur due to several reasons
including an uneven drying rate, non-uniform atomization associated with varying droplet
size, emulsion stability, and wall material composition [46–48]. In the case of spray-
drying microencapsulation, high PDI is not uncommon, due to the aforementioned reasons.
Agustinisari et al. [49] reported the PDI of 0.468–0.705 for spray-dried whey protein-
maltodextrin conjugates and chitosan microcapsules loaded with eugenol. In another study,
PDI values of 0.288–0.530 were obtained in the spray-drying microencapsulation of sardine
oil using vanillic acid-grafted chitosan as wall material [50]

Table 2. Particle size, poly-dispersity index (PDI), and zeta potential of spray-dried microcapsules
loaded with SO-TSO having MBPI and SA as wall materials.

Sample Size (µm) PDI Zeta Potential (mV)

MC3 1.796 ± 0.043 a 0.403 ± 0.01 a −54.81 ± 0.53 a

MC6 1.592 ± 0.043 b 0.372 ± 0.01 b −53.41 ± 0.69 b

Note: SO-TSO: mixture of shrimp oil-tea seed oil (1:1); MBPI: mung bean protein isolate; SA: sodium alginate;
MC3: spray-dried microcapsules containing 3% MBPI, 0.3% SA, and 0.5% (w/w) SO-TSO; MC6: spray-dried
microcapsules containing 3% MBPI, 0.3% SA, and 0.75% (w/w) SO-TSO. Values are presented as mean ± SD
(n = 3). Different lowercase superscripts in the same column indicate the significant difference (p < 0.05).

The ζ potential values of MC3 and MC6 are shown in Table 2. The MC3 sample
presented a slightly higher ζ potential value than the MC6 sample. This could be attributed
to the smaller size of MC6, in which positively charged residues of proteins could be
neutralized by alginate (anionic) polymers to a higher extent. Ofir et al. [51] reported that
the absolute values of ζ potential were affected by the particle size of colloidal suspension.
Gulzar and Benjakul [3] found higher negative ζ potential values of freeze-dried shrimp
oil nanoliposomes with larger particle sizes, compared to the spray-dried counterparts.
MC3 and MC6 samples showed negative values of ζ potential, indicating the presence of
a large amount of negatively charged moieties on the surface of the powders. At neutral
pH used for emulsion preparation, proteins become mostly negatively charged since the
pH is higher than pI. Mung bean protein was reported to have a pI of 5 [52]. Overall,
higher values of ζ potential signify higher stability of the microcapsules due to increased
electrostatic repulsions among the particles, leading to less agglomeration or flocculation
of the powders [3].
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3.3. Microstructure

SEM micrographs of MC3 and MC6 samples are illustrated in Figure 1. Both samples
were spherical with uneven surface indentation. Surface dents or wrinkles are generally
caused by uneven drying rates, the nature and composition of wall materials, and atomiza-
tion [53]. Generally, a rapid drying rate at high temperature affects the surface morphology
of spray-dried powders, mainly caused by the differential shrinkage of the surface and
core [54,55]. Spray drying is a complicated process in which any single droplet may experi-
ence a unique temperature-humidity environment as the drying progresses. It was reported
by Andersson et al. [56] that the surface shrivels (wrinkles) in spray-dried microcapsules
prepared from the native milk serum proteins were caused by the differential diffusion
rates of protein aggregates found underneath the outer protein layer. It was also observed
that MC3 and MC6 samples underwent aggregation to some degree. This could plausibly
be caused by the high outlet drying temperature, which is above the wall material’s glass
transition (Tg) [57]. Sodium alginate polymer, with a Tg at 81 ◦C, was reported to form
strong inter- and intramolecular hydrogen bonds in the film when blended with starch [58].
Aggregates could also be formed by the surface oil that adhered the microcapsules together.
Similar observations for agglomerated spray-dried capsules incorporated with fish oil were
reported by Binsi et al. [59]. Despite the formation of some aggregates, the flowability of
the microcapsules was still acceptable as measured by the Carr index (Table 1).

Figure 1. Scanning electron micrographs of spray-dried microcapsules loaded with SO-TSO having
MBPI and SA as wall materials. SO-TSO: mixture of shrimp oil-tea seed oil (1:1); MBPI: mung bean
protein isolate; SA: sodium alginate; MC3: spray-dried microcapsules containing 3% MBPI, 0.3% SA,
and 0.5% (w/w) SO-TSO; MC6: spray-dried microcapsules containing 3% MBPI, 0.3% SA, and 0.75%
(w/w) SO-TSO.

3.4. FTIR Spectra

FTIR spectra of SO-TSO, MBPI, SA, MC3, and MC6 samples are illustrated in Figure 2.
Characteristic stretching peaks in SO-TSO were found at 2920 cm−1 assigned to the –
CH2– groups, which corresponded to the saturated fatty acid chains, and at 2850 cm−1,

corresponding to the aliphatic –CH– group representing the degree of unsaturation of
oil [60]. Stretching vibrations were detected at 1750–1700 cm−1, corresponding to the
esterified bonds between fatty acid chains and glycerol backbone in the SO-TSO sample [60].
Furthermore, the vibrations at ~1450 cm−1 could be correlated with the free fatty acids (FFA)
present in the SO-TSO [61]. Depending upon the oxidation status and method of extraction
of shrimp oil, FFA could be present between 9.11–34.9% in shrimp oil [5,22]. Asymmetric
vibrations between ~1260–1150 cm−1 in the SO-TSO sample corresponded to the phosphate
group of the phospholipid moiety. As reported by Gulzar and Benjakul [61], phospholipids
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were abundantly present in shrimp oil (45.98%). Several major bands were observed in
the MBPI sample. Those peaks were characteristic of all protein isolates. Kudre et al. [33]
reported that the peaks between 3411–3305 cm−1 of amide A of MBPI represented the free
and hydrogen-bonded NH group of the protein. The peak at 1640 cm−1 corresponded to
the amide I band of the secondary structure of legume proteins [62]. The peak at 1550 cm−1

associated with the amide II band of the MBPI represented the –NH bending and –CN
stretching vibrations [63]. In addition, prominent peaks were also observed at 1160 cm−1

and 990 cm−1, which were attributed to the C–O stretching modes from ester bonds [64].
Large absorption bands in the range of 3600–3000 cm−1 were seen in the SA due to the
stretching vibration band of –OH groups in the alginic acid. Observed bands at ~1600 cm−1

and 1400 cm−1 were attributed to the symmetric and symmetric stretching vibrations of the
COO– groups, respectively [65]. Stretching C–C peak at ~1030 cm−1 suggested strong O–H
binding vibration, which was characteristic of the guluronic acid present in the polymer
chain of alginates [65]. In the case of MC3 and MC6 samples, characteristic peaks from
SO-TSO, SA, and MBPI were observed in the spectra, indicating the presence of SO-TSO
and MBPI in the microcapsule samples. Moreover, the peaks at 2920 cm−1, 2850 cm−1,
and 1750 cm−1 were observed at a higher amplitude in MC6, implying the presence of a
higher quantity of free SO-TSO especially on the surface in the sample, compared to MC3.
Coincidentally, peaks that were characteristic of protein became lower in amplitude for
MC6, indicating the lower ratio of proteins as the wall in this sample (Table 1). Therefore,
the results obtained from FTIR spectra were handy in confirming the presence of SO-TSO
in spray-dried microcapsules.

Figure 2. FTIR spectra of SO-TSO, MBPI, SA, MC3, and MC6 (for Captions, see Figure 1).
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3.5. Differential Scanning Calorimetry

DSC thermograms of MC3 and MC6 samples are illustrated in Figure 3. Sharp en-
dothermic peaks were observed at 156.17 ◦C and 163 ◦C for MC3 and MC6 samples,
respectively. These peaks depicted the denaturation of MBPI present in the microcapsule
wall. In a study reported by Branch and Maria [66], DSC thermograms demonstrated
denaturation temperature of MBPI at 157.9 ◦C. The higher endothermic peaks in the MC6
sample might be due to the presence of higher oil content in the sample (Table 1). Proteins
in the wall or protein-alginate in the wall were stabilized by polar hydrogen bonds and
non-polar hydrophobic interactions or ionic interactions [66]. Heat applied was able to
destroy intermolecular bonds. Larger interactions among the molecules required more
energy at higher temperatures to disrupt the bonds. In MC6 samples, the presence of more
hydrophobic interactions between the SO-TSO and MBPI was postulated, as shown by
higher Tmax. The difference in the enthalpy of denaturation of the two samples was also
dependent on the temperature of denaturation. Differences in the protein denaturation
temperatures were controlled majorly by nonpolar hydrophobic interactions and a type of
“cooperativity” between the polar and nonpolar groups [67]. Smaller peaks in MC3 and
MC6 at −8 ◦C and −9.42 ◦C, respectively, could be attributed to the transition of SO-TSO
from crystalline to amorphous state (melting). Camellia oil was reported to have Tmax at
−6.65 ◦C, owing to the melting of oil [68]. Thus, microcapsules loaded with SO-TSO in
MBPI-SA as wall material had varying thermal properties, depending on the ratio of mixed
oil used in the formulation. Additionally, the interaction of oil and proteins in the wall or
state of oil in the microcapsules affected the thermal stability of the resulting microcapsules.

Figure 3. DSC thermograms of MC3 and MC6 (for Captions, see Figure 1).
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3.6. Oxidative Stability of Microcapsules Loaded with SO-TSO
3.6.1. Lipid Oxidation

Peroxide value (PV) and TBARS value of SO-TSO and oil extracted from MC3 and
MC6 before and after storage at room temperature for 6 weeks are depicted in Figure 4a,b.
PV of oil extracted from MC3 and MC6 samples at week 0 was higher (p < 0.05) compared
to that of SO-TSO, plausibly due to the exposure of oil to high temperature during spray-
drying. However, oil extracted from both microcapsules showed lower PV than SO-
TSO after 6 weeks of storage. The result suggested that encapsulation of SO-TSO in
MBPI-SA microcapsules was effective in conquering the oxidative deterioration of the
oil. Nevertheless, there was some increase in PV of oil from MC3 and MC6 samples after
6 weeks. This could be ascribed to the oxidation of surface oil present on microcapsules.
Encapsulation of oil has been reported to retard oxidative deterioration by forming the
barrier against oxygen and prooxidants [1,3,69,70]. Shrimp oil, in particular, is highly
susceptible to oxidation due to the presence of oxygen-sensitive PUFAs [61]. TBARS values
had a similar trend to that of PV. TBARS value of SO-TSO was augmented by 2 times over
the storage period of 6 weeks, reflecting the quality deterioration of oil by the formation of
secondary oxidation products. TBARS value of oil from MC3 and MC6 significantly rose
(p < 0.05) after 6 weeks, most likely owing to the oxidation of surface oil of microcapsules. A
higher TBARS value was found in MC6 than in MC3. This was related well with the higher
surface oil of the former (lower EE). In addition to the protective effect of the wall, the
antioxidants present in the SO-TSO also helped in the retardation of oxidation. Astaxanthin
in SO reacts with the radicals, thus protecting the lipids from oxidation [71]. Phenolic
compounds in TSO [11] also acted as an antioxidant to retard oxidation of PUFAs in SO.
Overall, the quality of SO-TSO was well preserved from oxidation by the encapsulation
using MBPI-SA as wall materials.

3.6.2. Fatty acid Profile

Fatty acid profiles of SO-TSO and oils extracted from MC3 and MC6 before and
after storage of 6 weeks are shown in Table 3. Oleic acid (C18:1) was found to be the
predominant fatty acid in the SO-TSO. Oleic acid is the most abundant monounsaturated
fatty acid (MUFA) present in TSO (56.98%) and SO (14.90%) [72,73]. Palmitic acid was the
dominant saturated fatty acid (SFA). PUFAs in the SO-TSO were majorly contributed by
the SO, which was rich in PUFAs, particularly DHA, EPA, and linoleic acid [73]. There
was a sharp decline in the PUFA content of SO-TSO after 6 weeks of storage. The loss of
PUFA content was caused by their rapid oxidation [61]. Compared to 36.67% loss in the
PUFA content of SO-TSO after storage, the losses in the PUFA content of oil from MC3
and MC6 were 8.14% and 9.58%, respectively. The results demonstrated the high potency
of microcapsules to retard the oxidation in the oils. Moreover, the antioxidants in SO-
TSO inherently provided protection to the oil from oxidative deterioration. Nevertheless,
additional protection such as the packaging of microcapsules was still necessary to maintain
the quality of SO-TSO.
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Figure 4. Peroxide value (a) and TBARS values (b) of SO-TSO, oil extracted from MC3, and oil
extracted from MC6 stored for 0 and 6 weeks. Bars represent the standard deviation (n = 3). Different
lowercase letters on the bars denote significant difference (p < 0.05) (for Captions, see Figure 1).

Table 3. Fatty acid profile of SO-TSO, oil extracted from MC3, and oil extracted from MC6 on the 0th
and 6th week of storage.

Fatty Acids (%)
Week 0 Week 6

SO-TSO MC3 MC6 SO-TSO MC3 MC6

C14:0 (Myristic) 1.32 ± 0.08 a 1.33 ± 0.07 a 1.34 ± 0.04 a 1.36 ± 0.05 a 1.34 ± 0.04 a 1.37 ± 0.08 a

C15:0 (Pentadecanoic) 0.47 ± 0.01 b 0.49 ± 0.01 a,b 0.50 ± 0.01 a 0.51 ± 0.01 a 0.50 ± 0.01 a 0.51 ± 0.02 a

C16:0 (Palmitic) 13.99 ± 0.27 b 14.07 ± 0.24 b 14.01 ± 0.22 b 14.79 ± 0.18 a 14.41 ± 0.21 a,b 14.52 ± 0.19 a

C16:1 (Palmitoleic) 1.61 ± 0.09 a 1.59 ± 0.11 a 1.57 ± 0.07 a 1.27 ± 0.06 b 1.51 ± 0.07 a 1.50 ± 0.08 a

C17:0 (Heptadecanoic) 1.09 ± 0.04 b 1.11 ± 0.02 b 1.13 ± 0.04 b 1.21 ± 0.07 a 1.14 ± 0.03 a,b 1.16 ± 0.01 a,b

C17:1 cis 10 (cis-10-Heptadecanoic) 0.31 ± 0.01 a 0.30 ± 0.01 a 0.28 ± 0.02 a,b 0.19 ± 0.03 c 0.28 ± 0.01 a,b 0.26 ± 0.03 b

C18:0 (Stearic) 4.98 ± 0.09 b,c 4.93 ± 0.07 c 4.95 ± 0.10 b,c 5.99 ± 0.11 a 5.05 ± 0.09 b,c 5.11 ± 0.08 b

C18:1 (Oleic) 50.55 ± 0.67 a 50.24 ± 0.71 a 50.36 ± 0.64 a 48.27 ± 0.78 b 50.02 ± 0.69 a 49.82 ± 0.81 a

C18:2 (Linoleic) 8.51 ± 0.19 a 8.36 ± 0.25 a 8.32 ± 0.22 a 5.52 ± 0.21 c 7.56 ± 0.19 b 7.49 ± 0.18 b

C18:3 (alpha-Linolenic) 0.91 ± 0.02 a 0.89 ± 0.01 a 0.88 ± 0.01 a 0.41 ± 0.01 c 0.78 ± 0.02 b 0.77 ± 0.03 b

C20:0 (Arachidic) 0.54 ± 0.01 c 0.53 ± 0.01 c 0.54 ± 0.01 c 0.66 ± 0.01 a 0.54 ± 0.01 c 0.57 ± 0.01 b

C20:1 (Eicosenoic) 0.82 ± 0.03 a 0.81 ± 0.02 a 0.78 ± 0.03 a 0.71 ± 0.04 b 0.79 ± 0.02 a 0.77 ± 0.04 a

C20:2 (Eicosadienoic) 0.56 ± 0.02 a 0.54 ± 0.03 a,b 0.53 ± 0.01 a,b,c 0.36 ± 0.03 d 0.50 ± 0.04 b,c 0.49 ± 0.01 c
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Table 3. Cont.

Fatty Acids (%)
Week 0 Week 6

SO-TSO MC3 MC6 SO-TSO MC3 MC6

C20:5 (EPA) 2.21 ± 0.12 a 2.13 ± 0.11 a 2.15 ± 0.09 a 1.29 ± 0.14 b 2.01 ± 0.09 a 1.98 ± 0.15 a

C22:6 (DHA) 6.58 ± 0.11 a 6.47 ± 0.09 a 6.45 ± 0.12 a 4.40 ± 0.13 c 6.04 ± 0.12 b 5.91 ± 0.17 b

C23:0 (Tricosanoic) 1.02 ± 0.07 a 1.01 ± 0.05 a 1.03 ± 0.01 a 1.07 ± 0.04 a 1.04 ± 0.06 a 1.06 ± 0.01 a

C24:1 (Nervonic) 0.31 ± 0.01 a 0.30 ± 0.01 a,b 0.30 ± 0.01 a,b 0.26 ± 0.02 c 0.29 ± 0.01 a,b 0.28 ± 0.02 b,c

Others 4.19 ± 0.12 b 4.37 ± 0.20 a,b 4.26 ± 0.18 b 4.67 ± 0.24 a 4.44 ± 0.17 a,b 4.34 ± 0.16 a,b

Saturated fatty acid (SFA) 23.71 ± 0.28 c,d 22.97 ± 0.22 e 23.49 ± 0.33 d 25.62 ± 0.29 a 24.01 ± 0.27 b,c 24.31 ± 0.19 b

Monounsaturated fatty acid (MUFA) 53.71 ± 0.72 a 53.25 ± 0.63 a 53.31 ± 0.52 a 50.69 ± 0.66 b 52.91 ± 0.54 a 52.62 ± 0.67 a

Polyunsaturated fatty acid (PUFA) 18.90 ± 0.29 a 18.41 ± 0.27 b 18.36 ± 0.22 b 11.97 ± 0.19 d 16.91 ± 0.25 c 16.65 ± 0.23 c

Note: SO-TSO: mixture of shrimp oil-tea seed oil (1:1); MBPI: mung bean protein isolate; SA: sodium alginate;
MC3: spray-dried microcapsules containing 3% MBPI, 0.3% SA, and 0.5% (w/w) SO-TSO; MC6: spray-dried
microcapsules containing 3% MBPI, 0.3% SA, and 0.75% (w/w) SO-TSO. Different lowercase superscripts in the
same row indicate the significant difference (p < 0.05).

3.7. Acceptability of Whole Wheat Crackers Fortified with MC3

Likeness scores of whole wheat crackers fortified with MC3 at 0, 2.5, 5, 7.5, and 10%
(w/w) are tabulated in Table 4. There was no difference in the appearance and color
likeness scores of the samples, irrespective of the amount of MC3 added (p > 0.05). For
appearance, all samples were round in shape (Figure 5) with similar diameters. With the
increase in MC3 levels, the crackers appeared more orange in color, due to the presence
of an increased amount of SO, which contained the reddish-orange pigment astaxanthin
(Figure 5). There was no perceivable fishy odor in all fortified samples, confirming that the
inherent fishy odor in shrimp oil was completely masked by encapsulation. The rancid
flavor was also within acceptable limits, as indicated by the high score. One of the most
paramount advantages of encapsulating shrimp oil is the masking of an offensive fishy
odor, which is highly disliked and makes fortification of shrimp oil difficult in foods [74].
Encapsulation of shrimp oil in nanoliposomes could significantly mask its fishy odor [75].
The texture of the crackers was neither liked nor disliked by the panelists. Incorporation of
microcapsules up to 7.5% did not have a significant effect on the likeness score for texture
(p > 0.05). However, the cracker fortified with 10% MC3 was found to be more crispy, which
could be caused by the disruption of the gluten network by the microcapsules, especially
when added at a higher level. In general, the texture scores were still above the acceptable
level, in which a score of >5 was obtained. Likeness score for taste indicated that the taste of
crackers was liked by the panelists. However, the sample fortified with 10% MC3 received
the lowest score (p > 0.05). For overall likeness, all the samples except that fortified with 10%
MC3 showed similar scores (p > 0.05). The sensory acceptability of MC3 fortified crackers
became lowered when MC3 at 10% was incorporated (p < 0.05). Overall, encapsulation
could be a promising carrier, which masked the fishy odor of SO-TSO effectively.

Table 4. Likeness scores of whole wheat crackers fortified with MC3 at different levels.

MC3 Level
(%, w/w) Appearance Color Fishy Odor ** Rancid

Flavor ** Texture Taste Overall
Likeness

0 7.20 ± 0.75 a 6.80 ± 1.47 a 7.80 ± 0.60 a 8.10 ± 0.54 a 5.90 ± 1.22 a,b 6.30 ± 0.90 a 6.40 ± 1.02 a,b

2.5 7.10 ± 1.14 a 6.80 ± 1.33 a 7.70 ± 0.78 a 7.70 ± 0.64 a 5.90 ± 0.83 a,b 6.00 ± 1.18 a 6.50 ± 1.28 a,b

5.0 6.80 ± 0.98 a 6.50 ± 1.20 a 7.40 ± 0.92 a 7.60 ± 0.66 a 6.20 ± 0.60 a,b 6.40 ± 0.80 a 6.40 ± 0.80 a,b

7.5 6.80 ± 1.25 a 6.50 ± 0.81 a 7.80 ± 0.60 a 7.50 ± 0.67 a 6.40 ± 0.80 a 6.10 ± 0.54 a 6.60 ± 0.49 a

10.0 6.80 ± 1.47 a 6.40 ± 0.80 a 7.50 ± 0.81 a 7.50 ± 0.77 a 5.50 ± 1.02 b 5.60 ± 0.80 a 5.70 ± 0.64 b

Note: MC3: spray-dried microcapsules containing 3% MBPI, 0.3% SA, and 0.5% (w/w) SO-TSO; MBPI: mung
bean protein isolate; SA: sodium alginate; SO-TSO: mixture of shrimp oil-tea seed oil (1:1). Different lowercase
superscripts in the same column indicate the significant difference (p < 0.05). ** Higher score indicates lower fishy
odor or rancid flavor.
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Figure 5. Whole wheat crackers fortified with MC3 at different levels. MC3: spray-dried microcap-
sules containing 3% MBPI, 0.3% SA, and 0.5% (w/w) SO-TSO.

3.8. Chemical Composition of Cracker

Moisture, lipid, protein, and ash content of whole wheat crackers fortified with 0 and
7.5% MC3 are shown in Table 5. The moisture content of crackers containing microcapsules
was lower than that of the control sample (p < 0.05). This could be attributed to the
lower water retention in the dough as the amount of wheat was reduced and replaced
by microcapsules. The results were concomitant with Benjakul and Karnjanapratum [28],
who reported the decrease in the moisture content of whole wheat crackers when bio-
calcium was added in a dose-dependent manner. The lipid and protein contents of crackers
containing microcapsules were higher (p < 0.05), due to the presence of oil (SO-TSO) and
MBPI in the microcapsules. Fat content was increased by 21.03%, while protein content
was augmented by 27.65%. Ash content was higher in crackers fortified with 7.5% MC3,
while carbohydrate was lower than those found in the control.

Table 5. Chemical composition of whole wheat cracker and that fortified with 7.5% MC3.

MC3 Level
(%, w/w)

Composition (%, w/w, Wet Basis)

Moisture ** Lipid Protein
(g/100 g) Ash Carbohydrate

0 3.05 ± 0.02 a 2.90 ± 0.10 b 12.84 ± 0.11 b 3.23 ± 0.14 b 77.97 ± 0.17 a

7.5 2.06 ± 0.07 b 3.51 ± 0.11 a 16.39 ± 0.14 a 4.28 ± 0.06 a 73.77 ± 0.16 b

Note: MC3: spray-dried microcapsules containing 3% MBPI, 0.3% SA, and 0.5% (w/w) SO-TSO; MBPI: mung
bean protein isolate; SA: sodium alginate; SO-TSO: mixture of shrimp oil-tea seed oil (1:1). Different lowercase
superscripts in the same column indicate the significant difference (p < 0.05). ** Wet weight basis.

The fatty acid profile of the crackers fortified with 7.5% MC3 (Table 6) revealed the
decline in EPA and DHA contents by 23.47 and 29.08%, respectively, compared to the
EPA and DHA contents of SO-TSO. The loss of EPA and DHA could be caused by the
oxidation of oil, especially on the surface of microcapsules by the high baking temperature
of the crackers. Oil extracted from the crackers contained a high amount of linolenic acid
followed by oleic and palmitic acids. For crackers fortified with 7.5% MC3, linolenic acid
was predominant, followed by oleic and palmitic acids. EPA and DHA of oil extracted
from crackers fortified with 7.5% MC3 were found at 1.63 and 4.59%, respectively. These
two n-3 fatty acids were mainly from SO in the microcapsules. Crude lipid from whole
wheat was found to contain 57.9% linoleic acid present principally in the bran [76]. Overall,
the encapsulation of SO-TSO in MBPI-SA microcapsules was able to protect the oxidation
of polyunsaturated fatty acids to a large extent.
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Table 6. Fatty acid profiles of whole wheat cracker and that fortified with 7.5% MC3.

Fatty Acids (%)
MC3 Level (%, w/w)

0 7.5

C14:0 (Myristic) ND 1.85 ± 0.09 a

C15:0 (Pentadecanoic) ND 0.89 ± 0.07 a,b

C16:0 (Palmitic) 16.09 ± 0.21 b 18.37 ± 0.44 a

C16:1 (Palmitoleic) 1.37 ± 0.19 a 1.56 ± 0.10 a

C17:0 (Heptadecanoic) ND 1.52 ± 0.13 a

C18:0 (Stearic) 5.68 ± 0.13 a 5.37 ± 0.08 b

C18:1 (Oleic) 17.37 ± 0.42 b 23.18 ± 0.52 a

C18:2 (Linoleic) 4.96 ± 0.28 a 6.42 ± 0.51 a

C18:3 (alpha-Linolenic) 48.91 ± 0.49 a 28.17 ± 0.17 b

C20:0 (Arachidic) 0.67 ± 0.04 a 0.33 ± 0.01 b

C20:2 (Eicosadienoic) ND 0.34 ± 0.01 a

C20:5 (EPA) ND 1.63 ± 0.17 a

C22:6 (DHA) ND 4.59 ± 0.19 a

C23:0 (Tricosanoic) ND 1.92 ± 0.08 a

C24:1 (Nervonic) ND 0.21 ± 0.01 a

Saturated fatty acid (SFA) 22.46 ± 0.58 b 26.15 ± 0.28 a

Monounsaturated fatty acid (MUFA) 18.71 ± 0.42 b 25.27 ± 0.63 a

Polyunsaturated fatty acid (PUFA) 53.78 ± 0.36 a 41.31 ± 0.31 b

Note: SO-TSO: mixture of shrimp oil-tea seed oil (1:1); MBPI: mung bean protein isolate; SA: sodium alginate;
MC3: spray-dried microcapsules containing 3% MBPI, 0.3% SA, and 0.5% (w/w) SO-TSO; ND: Not detected.
Different lowercase superscripts in the same row indicate the significant difference (p < 0.05).

4. Conclusions

SO-TSO was encapsulated by the combination of MBPI-SA using spray-drying. Emul-
sions formed by different combinations of MBPI-SA and SO-TSO ratios produced microcap-
sules of varying encapsulation efficiency upon spray-drying. Spherical microcapsules with
some shrinkage on the surface were obtained. Microcapsules had moderate flowability.
Encapsulation of SO-TSO resulted in enhanced oxidative stability and retention of PUFAs
over 6 weeks of storage. Fortification of SO-TSO loaded microcapsules up to 7.5% in whole
wheat crackers showed acceptable sensory attributes (overall likeness above 6). Therefore,
the use of low-cost, plant-based proteins, especially mung bean protein isolate together
with the abundantly available sodium alginate seaweed hydrocolloid, was effective for
encapsulating oxidation-sensitive shrimp oil/tea seed oil mixture having excellent health
benefits.
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