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Editorial on the Research Topic

Population Pharmacogenomics (PGx): FromVariant Identification to Clinical Implementation

It is by now well-established that genetic differences underlie the inter-individual variability in
pharmacokinetics, response, and toxicity of many drugs. Gene families of particular interest in
this context include those encoding cytochrome P450 enzymes (CYPs), other drug metabolizing
enzymes, such as N-acetyltransferases (NATs), DPD, and TPMT, as well as drug transporters of
the ATP-binding cassette (ABC) and solute carrier (SLC) superfamilies (Lauschke et al., 2017,
2019; Roden et al., 2019). In total, associations between germline polymorphisms and drug-related
phenotypes are established for more than 200 drugs and have been included into the respective
labels. Well-established and mechanistically understood examples include links between DPYD
and TPMT genotype with fluoropyrimidine and thiopurine toxicity, respectively, associations of
CYP2D6 and CYP2C19 metabolizer status with the response to various anti-depressants and anti-
psychotics, as well as correlations between variations in human leukocyte antigen (HLA) genes
encoding the major histocompatibility complex and severe hypersensitivity reactions to abacavir,
carbamazepine, and allopurinol.

To render the implementation of the testing of such pharmacogenomic biomarkers into routine
clinical care a cost-effective allocation of health care resources, it is important to know, besides other
parameters, the population-specific frequency of the polymorphisms in question. For instance,
previous research showed that preemptive testing ofHLA-B∗15:02 of 50–150 patients was sufficient
to prevent one adverse drug reaction (ADR) due to carbamazepine in China and South-East
Asia, whereas >10,000 individuals would need to be tested in Japan, or throughout Africa and
Europe (Zhou et al., 2021). As a consequence, preemptive HLA-B∗15:02 genotyping is only
cost-effective for individuals of South-East Asian ancestry. Similarly, we and others have shown
striking ethnogeographic differences for multiple polymorphisms in CYPs, drug transporters,
DPYD, and TPMT (Gordon et al., 2014; Fujikura et al., 2015; Mizzi et al., 2016; Zhou et al.,
2017, 2020; Schaller and Lauschke, 2019; Petrovic et al., 2020; Xiao et al., 2020; Runcharoen et al.,
2021). While these studies provided an important first step, they only considered seven global
populations. Thus, further efforts whichmap the relevant pharmacogenomic variability with higher
population resolution can be expected to facilitate the guidance of refined strategies to guide
genotype-informed care.

In this Research Topic, Fukunaga et al. mapped the population-specific frequencies of NAT2
alleles and experimentally characterize their functional consequences. Specifically, the authors
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analyzed the frequencies of NAT2∗4, ∗5, ∗6, and ∗7 based
on genetic data from 990 Japanese individuals and compared
results to available frequency information from the 1000
Genomes Project populations. Furthermore, they experimentally
determined Km, Vmax, and CLint of these alleles using eight
different model substrates. Based on these data, the authors
concluded that frequencies of slow or ultra-slow acetylators, i.e.,
those carrying one or more ∗5, ∗6, or ∗7 alleles, was between 30
and 55% in Europeans, Africans and South Asians, whereas the
prevalence of slow acetylator phenotypes in Japanese and other
East Asians was substantially lower (4–11%).

In an additional study, Zhang et al. analyzed the patient
benefits of the implementation of CYP2C19 genotyping
for the guidance of antiplatelet therapy in China. In this
observational study of patients undergoing percutaneous
coronary intervention, clopidogrel, or ticagrelor was
recommended to be prescribed depending on the absence
or presence of CYP2C19 loss-of-function (LOF) alleles (∗2
or ∗3), respectively. While cardiologists mostly adhered to
the pharmacogenetic recommendations, those patients with
CYP2C19 LOF alleles that were prescribed clopidogrel in
opposition to the pharmacogenetic recommendation had
significantly higher rates of major cardiac or cerebrovascular
adverse events (7.8 vs. 4.0%; p= 0.029). No significant differences
in major bleeding events were observed between genotype and
treatment groups. These results are particularly important
as the currently available evidence regarding the benefits
of pharmacogenomics-guided treatment for cardiovascular
diseases is limited with mixed results (Zhu et al., 2020).

Lastly, an interesting study by the Human Heredity and
Health in Africa (H3Africa) Consortium provides an overview
of the pharmacogenomic variation in Sub-Saharan Africa
based on 458 high-coverage whole genome sequences. The
authors find drastic differences in population frequencies
between the different ethnogeographic groups and identify

930 single nucleotide variants (SNVs) with putative functional
consequences, most of which were restricted to specific
populations. Together with other studies (Radouani et al., 2020;
Pernaute-Lau et al., 2021), this resource increases the available
information about the pharmacogenetic diversity in Africa
considerably and incentivizes functional testing of the identified
variants in question.

In summary, we are confident that the papers included
in this Research Topic increase our understanding of
pharmacogenomic population diversity and provide
useful information for the optimization and facilitation of
population-specific precision public health efforts in previously
understudied populations.
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