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Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with ill-
defined pathogenesis, calling for urgent developments of new therapeutic regimens.
Herein, we applied PandaOmics, an AI-driven target discovery platform, to analyze
the expression profiles of central nervous system (CNS) samples (237 cases; 91
controls) from public datasets, and direct iPSC-derived motor neurons (diMNs) (135
cases; 31 controls) from Answer ALS. Seventeen high-confidence and eleven novel
therapeutic targets were identified and will be released onto ALS.AI (http://als.ai/).
Among the proposed targets screened in the c9ALS Drosophila model, we verified
8 unreported genes (KCNB2, KCNS3, ADRA2B, NR3C1, P2RY14, PPP3CB, PTPRC,
and RARA) whose suppression strongly rescues eye neurodegeneration. Dysregulated
pathways identified from CNS and diMN data characterize different stages of disease
development. Altogether, our study provides new insights into ALS pathophysiology
and demonstrates how AI speeds up the target discovery process, and opens up new
opportunities for therapeutic interventions.
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Abbreviations: AD, Alzheimer’s disease; AI, Artificial intelligence; ALS, Amyotrophic lateral sclerosis; fALS, Familial ALS;
sALS, Sporadic ALS; c9ALS, C9orf72-mediated ALS; CNS, Central nervous system; Cn, Calcineurin; diMN, Direct iPSC-
derived motor neuron; ER, Endoplasmic reticulum; HRE, Hexanucleotide repeat expansion; iPSC, Induced pluripotent stem
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a rare neuromuscular
disease resulting from progressive degeneration of motor
neurons (MNs) in the brain and spinal cord. With involvement
of celebrities, politicians, and athletes worldwide, the Ice Bucket
Challenge in 2014 successfully promoted the awareness of this
devastating illness. It is the most common MN disease (Roman,
1996), with the incidence ranging from 0.6 to 3.8 per 100,000
person-years (Longinetti and Fang, 2019). Approximately 16,500
ALS cases were diagnosed in the United States in 2015
(Mehta et al., 2018a). The onset of the disease typically
occurs in middle adulthood, with a mean survival time
hovering at 3-5 years post diagnosis (Chio et al., 2009).
Although the signs and symptoms of ALS vary due to the
difference in the region of neurons being affected, patients
usually experience painless progressive muscle weakness and
paralysis. ALS is an age-related disease, with the prevalence
expected to increase with population aging (Mehta et al.,
2018b). It is reported that aging induces damaged protein
accumulation, oxidative stress, disrupted energy homeostasis,
and DNA damage, reducing the viability of the affected neurons
(Hou et al., 2019).

ALS can be categorized based on its root causes - familial or
sporadic (Grad et al., 2017). Familial ALS (fALS) contributes
to 10% of the cases and involves mutations in specific genetic
loci that are inherited in an autosomal dominant manner
(Alsultan et al., 2016). Over 20 genetic risk factors are
identified for fALS (Souza et al., 2015). Notably, SOD1,
TARDBP, C9orf72, and FUS have been extensively characterized.
According to a pooled summary of mutation frequency in
111 studies, those four major ALS-associated genes explain
47.7% fALS and 5.2% sporadic ALS (sALS) cases (Zou
et al., 2017), leaving a substantial fraction of the genetic
basis of ALS undiscovered. Given the heterogeneous genetic
involvement in ALS, several pathophysiological mechanisms
have been proposed, including aberrant proteostasis, altered
RNA metabolism, nucleocytoplasmic transport defects,
mitochondrial dysfunction, DNA repair deficiency, axonal
transport defects, vesicle transport dysregulation, excitotoxicity,
oligodendrocyte dysfunction, and neuroinflammation
(Mejzini et al., 2019).

Presently, ALS remains an incurable disease due to an
inadequate understanding of disease mechanisms. The
United States Food and Drug Administration (FDA) has
approved four drugs for the treatment of ALS, including
Riluzole, Tiglutik, Edaravone, and Nuedexta. Riluzole - an
inhibitor of sodium channel α subunit - is the first FDA-
approved neuroprotective agent for ALS and the only drug
that prolongs the survival of ALS patients. Beside blocking
the glutamatergic transmission, riluzole has a wide range
of neural effects, including inhibition of persistent and fast
sodium currents, suppression of neurotransmitter release,
diminishment of voltage-gated calcium and potassium currents,
and potentiation of calcium-dependent potassium current
(Doble, 1996; Bellingham, 2011). These are possible explanations
for the modest efficacy of riluzole in extending patients’ survival

(Riviere et al., 1998). Tiglutik, the oral suspension formulation
of riluzole, was designed for ALS patients with difficulties in
swallowing. Edaravone is a free radical scavenger against reactive
oxygen species-driven MN death and inflammation (Jami et al.,
2015; Watanabe et al., 2018). It was approved for marketing and
manufacturing in Japan in 2015, and received FDA-approval as
an ALS treatment in 2017. Clinically, edaravone demonstrates
its potent antioxidant property by reducing peroxynitrite and
its association with neurotoxin in cerebrospinal fluid (Yoshino
and Kimura, 2006) and plasma (Nagase et al., 2016) of ALS
patients, respectively. Although significant improvement in
ALS Functional Rating Scale-Revised (ALSFRS-R) score is
reported in edaravone-treated ALS patients (Writing Group and
Edaravone (MCI-186) ALS 19 Study Group, 2017; Takahashi
et al., 2017), its long-term efficacy remains questionable and
requires additional trials for confirmation. Nuedexta is an oral
medication containing dextromethorphan and quinidine. Phase
3 studies have demonstrated its efficacy in reducing the frequency
and severity of pseudobulbar affect in ALS patients (Brooks et al.,
2004; Pioro et al., 2010).

Thanks to the advancements in genomic profiling techniques,
numerous genome-wide association studies have screened for
common genetic variants in ALS and have identified novel
candidates as either genetic risk factors or biomarkers (e.g.,
ACSL5, KIF5A, ATXN2, and MOBP) (van Rheenen et al., 2016;
Gibson et al., 2017; Nicolas et al., 2018; Nakamura et al., 2020).
Genomic profiling of central nervous system (CNS) tissues
and blood from ALS patients may also assist in uncovering
the differentially expressed genes that contribute to disease-
driving mechanisms (Dangond et al., 2004; Zhang et al., 2011;
Riva et al., 2016; Swindell et al., 2019). Furthermore, the
utility of both cellular and animal models with ALS-linked
gene variants helps to determine the potential interacting
partners of those ALS-linked genes, providing multiple lines
of evidence for uncovering disease pathology (Jeong et al.,
2011; Milanese et al., 2014; Fujisawa et al., 2016). Here, we
applied PandaOmics, an artificial intelligence (AI)-powered
target discovery platform, to explore dysregulated expression of
genes and altered pathways across various ALS-related datasets
with a goal to identify potential therapeutic targets. As illustrated
in Figure 1, we utilized post-mortem CNS tissues and direct iPSC
(induced pluripotent stem cell)-differentiated motor neurons
(diMN) derived from ALS patients to perform target discovery.
Using over 20 AI and bioinformatics models, PandaOmics
ranks targets based on their target-disease associations as
well as information on druggability, developmental state and
tissue specificity. By customizing different filter settings, 17
high-confidence and 11 novel candidates (28 in total) were
selected as potential ALS therapeutic targets. Proposed targets
will be released onto the platform ALS.AI1. To evaluate the
utility of this approach, proposed candidates were validated
in a Drosophila model mimicking C9orf72-mediated ALS
(c9ALS), the most common fALS case. The aim of this
study is to demonstrate the utilization of the AI-driven target

1http://als.ai/
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discovery platform – PandaOmics – to identify therapeutic
targets for ALS.

MATERIALS AND METHODS

Data Sources and Availability
Microarray and RNA sequencing (RNA-seq) datasets for ALS
patients and control samples were retrieved from public
repositories and processed by PandaOmics for downstream
analysis and target identification. Over 60 ALS-related datasets
of various tissue sources were available in PandaOmics
(Supplementary Figure 1), including datasets of post-mortem
CNS tissues, iPSC-derived neurons, blood, etc. For each dataset,
samples could be divided into subgroups based on their
clinical subtypes or other phenotypic attributes. In addition,
transcriptomic and proteomic data of the diMNs, generated
from ALS patients and neurologically healthy subjects in Answer
ALS (Baxi et al., 2022) were uploaded to PandaOmics and
incorporated in our analyses.

The raw transcriptomic data of CNS comparisons were
available in public repositories, which could be retrieved by
their series identifiers. In addition, transcriptomic and proteomic
profiles of the diMN samples were available to investigators upon
request and approval from Answer ALS.

Answer ALS
At present, Answer ALS is the largest collaborative effort in
ALS bringing together multiple research organizations and key
opinion leaders (KOLs). Over eight hundred ALS patients
and one hundred healthy controls from eight neuromuscular
clinics distributed across the United States were enrolled in
this project. Blood sample was collected at the first visit of
each participant. The iPSC lines were generated from peripheral
blood mononuclear cells extracted from whole blood via an
episomal iPSC reprogramming system. The iPSCs underwent
three major stages of differentiation for 32 days to generate the
mixture of mature motor neuron populations. Detailed protocol
for the diMN generation and standards of quality assurance were
described by Baxi et al. (2022). The consortium generated multi-
omics data comprising genomic, epigenomic, transcriptomic,
proteomic, laboratory test, medical records and other data. A data
portal was established and open to both academia and industry.

Dataset and Comparison Selection
Given that the degeneration of motor neurons in the brain
and spinal cord underlay ALS pathogenesis, CNS tissue datasets
were selected for analysis in the present study. Since the family
history of ALS occurrence was not available for the CNS
datasets, patients were classified into different subtypes based
on their genotypes. Samples carrying one of the four major
fALS-linked gene variations (SOD1, TARDBP, FUS, and C9orf72)
were classified as the fALS group, and those with other or
unspecified gene variations as the sALS group, yielding five
independent fALS as well as seven independent sALS case-
control comparisons (Table 1).

The non-Hispanic and non-Latino whites represented the
largest ethnic group in the datasets from Answer ALS, amounting
to over 85% of the total samples. In this regard, diMN samples
belonging to this ethnic group with both transcriptomic and
proteomic data were selected for the current analysis. The
samples were further divided into 25 fALS and 110 sALS
based on the presence or absence of the family history of ALS
occurrence. As a result, two subtype-dependent comparisons
were built using the diMN transcriptomic and proteomic data,
respectively (Table 1).

Meta-Analysis
To identify potential targets for ALS, all case-control
comparisons belonging to the same comparison groups (two CNS
groups: five fALS and seven sALS transcriptomic comparisons;
four diMN groups: fALS transcriptomic, sALS transcriptomic,
fALS proteomic, and sALS proteomic comparisons) were pooled
into a single meta-analysis, yielding a total of six meta-analyses.
An illustration of the target identification process is available in
Supplementary Figure 2.

PandaOmics Scores
The advance of generative adversarial networks (GANs)
accelerated the process of target discovery using transcriptomic
data and de novo molecular design (Aliper et al., 2016; West et al.,
2018; Vanhaelen et al., 2020). PandaOmics was a cloud-based
target discovery platform that incorporated multiple scores
developed using transcriptomic and proteomic data, text data
including grants, scientific literature, publications, patents,
stock reports, molecular data, as well as multiple meta-data
repositories. It was accessible on a software-as-a-service (SaaS)
basis at https://pandaomics.com. PandaOmics utilized advanced
deep learning models and AI approaches to predict the target
genes associated with a given disease through a combination of
Omics AI scores, Text-based AI scores, Finance scores, and KOL
scores (Supplementary Table 1). In addition, Druggability filters,
Tissue specificity filters, Target family filters, and Development
filters could be applied to further refine the list to meet the
user’s research goals. The AI and bioinformatic models were
validated with our “time machine” approach, enabling unique
and flexible therapeutic target hunting workflows. During
the target identification process, our AI models dynamically
assessed disease targets based on a variety of measures, such as
novelty, accessibility by small molecules and biologics, safety and
tissue expression specificity, to collectively generate hypotheses
around their potential druggability profiles. Previous studies
demonstrated the effectiveness of PandaOmics to identify novel
and repurposing therapeutic targets (Insilico Medicine, 2022;
Pun et al., 2022; Vera et al., 2022).

Validation of the Scoring Approach
The “time machine” approach was applied for the validation
of the ability of a model to identify the truly novel targets
of the disease of interest. The data before a given year was
used as training data and the trained model was then evaluated
based on the targets entering the clinical trial after the given
year (Supplementary Figure 3A). Two validation metrics were
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FIGURE 1 | Flowchart for ALS target discovery and drug repurposing. Target identification was performed with the public CNS tissue-based datasets, and diMN
data from Answer ALS on PandaOmics. Targets were divided into two categories: novel targets for further investigation and targets for drug repurposing. The targets
will be released onto ALS.AI. Feedback on proposed targets will be collected from ALS KOLs to select the best candidates for further validation. The identified
targets will be further validated using in vivo and in vitro models. The combined usage of PandaOmics and ALS.AI significantly reduces the time required for novel
target discovery and drug investigation for ALS treatment, which points to a potential direction to search for the treatment of other human diseases.

used to validate the scoring approach. Log fold change of
enrichment (ELFC) referred to the log-transformed fold change
of enrichment showing how much the top of the list was enriched
by known targets, and was calculated by formula (I):

ELFC(score) = log2(
targetsk · N
k · targetsN

) (I)

where targetsk was the number of known targets for this disease
in top-k (or 0.1 if there were none), and targetsN was the
total number of known targets for this disease among the
genes that were available for a particular PandaOmics score.
And hypergeometric p-value (HGPV) stood for the statistical
significance of the effect and showed how likely the same level
of enrichment could be achieved from the random distribution
and was calculated by formula (II):

HGPV(score) = −log10(1− hgcdf (targetsk, k, targetsN, N))
(II)

where hgcdf was a hypergeometric cumulative distribution
function. A score with higher values of ELFC and HGPV
corresponded to the higher predictive power of the target-disease
association (Supplementary Figure 3B).

Filter Setting for Target Identification
To find high-confidence targets, all Omics and Text-based scores
were employed, along with the Grant Funding score which
was the most representative in the Financial category, and two
KOL scores (credible attention index and impact factor) that
prioritized the targets based on literature evidence in high-quality
journals. To make sure the identified targets were actionable,
the Druggable Class filter was switched on. Simultaneously, we
customized the Druggability filters to screen targets already
associated with small molecules and not considered as essential
genes in the Online GEne Essentiality database (Supplementary
Figure 4). A list of high-confidence druggable targets was ranked
in descending order based on their metascores, and the top-50
targets were selected for further investigation.
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TABLE 1 | ALS case-control comparisons using CNS and diMN samples.

Subtype Data series Platform Technology Source Mutant gene # Case # Control Year References

CNS comparisons
fALS E-MTAB-1925 A-MEXP-2246 Microarray Motor Cortex C9orf72 3 3 2013 Donnelly et al., 2013
fALS GSE67196 GPL11154 RNA-seq Cerebellum C9orf72 8 8 2015 Prudencio et al., 2015
fALS GSE67196 GPL11154 RNA-seq Frontal Cortex C9orf72 8 9 2015 Prudencio et al., 2015
fALS GSE68605 GPL570 Microarray Motor Neurons C9orf72 8 3 2015 Cooper-Knock et al., 2015
fALS GSE20589 GPL570 Microarray Motor Neurons SOD1 3 7 2010 Kirby et al., 2011
sALS GSE122649 GPL18573 RNA-seq Motor Cortex – 26 12 2018 Tam et al., 2019
sALS GSE124439 GPL16791 RNA-seq Frontal Cortex – 65 9 2018 Tam et al., 2019
sALS GSE124439 GPL16791 RNA-seq Motor Cortex – 80 8 2018 Tam et al., 2019
sALS GSE19332 GPL570 Microarray Motor Neurons – 3 7 2009 Cox et al., 2010

sALS GSE76220 GPL9115 RNA-seq Spinal Motor Neurons – 13 8 2015 Krach et al., 2018

sALS GSE67196 GPL11154 RNA-seq Cerebellum – 10 8 2015 Prudencio et al., 2015

sALS GSE67196 GPL11154 RNA-seq Frontal Cortex – 10 9 2015 Prudencio et al., 2015

diMN transcriptomic comparisons

fALS Answer ALS Novaseq 6000 RNA-seq diMN – 25 31 2022 Baxi et al., 2022

sALS Answer ALS Novaseq 6000 RNA-seq diMN – 110 31 2022 Baxi et al., 2022

diMN proteomic comparisons

fALS Answer ALS SCIEX 6600 SWATH-MS diMN – 25 31 2022 Baxi et al., 2022

sALS Answer ALS SCIEX 6600 SWATH-MS diMN – 110 31 2022 Baxi et al., 2022

Similarly, novel ALS targets were identified without prior
knowledge by restricting the Druggability filter to a higher
novelty level, selecting only the Omics scores, and disabling
the Text-based, Financial, and KOL scores (Supplementary
Figure 5). After recalculating the metascores with the new
criteria, the top-50 ranked genes were selected as novel targets
for further analysis.

Pathway Analysis
The schematic representation of pathway analyses conducted
in the present study is shown in Supplementary Figure 6.
The degree of pathway dysregulation was determined by the
PandaOmics proprietary iPANDA algorithm accounting for the
differential gene expression and the topological decomposition of
pathways (Ozerov et al., 2016), which was adopted in pathway
activation scoring (Makarev et al., 2014; Zhu et al., 2015). We
analyzed all the CNS and diMN comparison groups for pathway
dysregulation based on Version 73 of the Reactome database
(Jassal et al., 2020). For each group, a pathway was considered as
dysregulated when 1) its alteration was unidirectional in greater
than or equal to 80% of all the comparisons of the ALS subtype,
and 2) the absolute iPANDA value reached the threshold of 0.01
in at least one comparison of a subtype. Networks of dysregulated
pathways were constructed using EnrichmentMap (Merico et al.,
2010) in Cytoscape (Shannon et al., 2003). The hierarchical
level of pathways retrieved from the Reactome database was
employed as the basis for the annotation of pathway clusters in
the networks. The dysregulated pathways of each group were
further evaluated for their enrichment in each of the top-level
biological processes of Reactome hierarchy using hypergeometric
tests by formula (III):

p = 1−
r−1∑

i = 0

(K
i
) (N−K

n−i

)
(N

n
) (III)

where N stood for the total number of pathways defined in
Reactome database, K represented the number of dysregulated
pathways in the interested biological process, n was the total
number of dysregulated pathways in a comparison group, and r
represented the number of pathways belonging to the interested
biological process. The p-values were adjusted by Bonferroni
correction for multiple testing.

Drosophila Genetics and Eye
Degeneration Scoring
All flies were raised at 25◦C on the regular yeast-cornmeal-
molasses diet. Flies expressing expanded G4C2 repeats were
generated by injecting pUAST plasmids with 30 G4C2 repeats
in a w1118 strain. Details were discussed in Xu et al. (2013).
For genetic screens, GMR-GAL4, UAS-(G4C2)30/CyO, twi-GAL4,
UAS-GFP was crossed to UAS-RNAi against genes of interest.
Non-CyO offspring were collected and aged for 15 days. Eye
degeneration was scored using a method described in Zhang
et al. (2015) based on the disruption in the external morphology
of the eye with positive or negative scores corresponding to an
increase or decrease in severity. A modification score ranging
from −4 to 2 was used to describe the relative severity of the
morphology defect based on the following phenotypes: amount
and orientation of supernumerary interommatidial bristles,
necrotic patches, retinal collapse, size, ommatidial structure, and
degree of depigmentation.

RESULTS

Potential Therapeutic Targets
In the present study, 12 CNS-based comparisons and
4 diMN-based comparisons (Table 1) of ALS patients
and healthy controls were subjected to 6 corresponding
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TABLE 2 | List of potential therapeutic targets.

Gene1 fALS2 sALS2 Protein family Tissue enrichment3 Proposed ALS mechanism

High-confidence (CNS)

ADRA2B 80% 50% GPCR Low tissue specificity Protein degradation

CYBB 80% 86% Ion channel Blood, lung, lymphoid tissue Oxidative stress

FLT1* 80% 57% Receptor kinase Placenta Inflammation

MAP3K5* 80% 71% Protein kinase Adrenal gland Apoptosis

MAPK1 80% 71% CMGC kinase Brain Apoptosis

NOS1 80% 86% Oxidoreductase Brain and skeletal muscle Oxidative stress

NR3C1* 80% 86% Nuclear receptor Low tissue specificity Inflammation, excitotoxicity

PTK2* 40% 86% Tyrosine kinase Low tissue specificity Protein aggregation

PTPRC 80% 86% Receptor phosphatase Blood, lymphoid tissue Inflammation

RARA 50% 14% Nuclear receptor Low tissue specificity Neurogenesis

Novel (CNS)

AHCYL1 100% 71% Enzyme Low tissue specificity Apoptosis

KCNB2 60% 83% Ion channel Brain, lymphoid tissue, pituitary gland Excitotoxicity

P2RY14 40% 14% GPCR Granulocytes, dendritic cells, placenta Inflammation

SCYL1 40% 14% Protein kinase Low tissue specificity Apoptosis

SLC25A10 20% 29% Transporter Liver Oxidative stress

STUB1* 20% 14% Acyltransferase Low tissue specificity Protein degradation

High-confidence (diMN)

DNMT3A 0.1324 (0.0346) 0.0773 (0.1172) Methyltransferase Low tissue specificity Apoptosis

ERN1 0.2058 (0.003) 0.0699 (0.1644) Protein kinase Low tissue specificity Protein aggregation, apoptosis

G6PD# −0.1416 (0.0487) −0.0847 (0.1337) Oxidoreductase Testis Oxidative stress

HSPD1*# 0.1363 (0.1365) 0.1916 (0.0083) Isomerase Vagina FUS pathology, inflammation

PPIA*# 0.1728 (0.0338) 0.2361 (0.0003) Isomerase Low tissue specificity TDP-43 pathology, inflammation

RPS6KB1 0.1558 (0.0297) 0.1426 (0.0052) AGC kinase Low tissue specificity Protein aggregation

VCP*# 0.0212 (0.637) 0.0776 (0.0411) Hydrolase Low tissue specificity Mitochondrial dysfunction

Novel (diMN)

KCNS3 0.3886 (0.0995) 0.3338 (0.0282) Ion channel Skeletal muscle Excitotoxicity

PPP3CB# −0.3048 (0.0115) −0.1371 (0.1725) Esterase Skeletal muscle Protein aggregate degradation

PSMC6# −0.2636 (0.0402) −0.1502 (0.0926) Hydrolase Low tissue specificity Proteostasis

METTL21A 0.196 (0.0012) 0.0827 (0.0432) Methyltransferase Low tissue specificity Protein aggregation

TOPORS 0.2161 (0.0135) 0.1385 (0.0184) Acyltransferase Low tissue specificity Apoptosis

1Manually curated aging-associated genes (marked with *) based on clinical trials (https://clinicalTrials.gov/), publication, geroprotectors (http://geroprotectors.org) and
GenAge database (https://genomics.senescence.info/genes/index.html); for the diMN targets, targets identified using proteomic data are marked with #;
2Shown for CNS targets are percentages of comparisons with up-regulated target (LFC > 0) out of five fALS or seven sALS comparisons; Shown for diMN targets are
LFC and p-value in parenthesis;
3Tissue enrichment (RNA) retrieved from Human Protein Atlas (https://www.proteinatlas.org/) on November 15, 2021.

meta-analyses, generating 12 target lists with two levels of
novelty for detailed target evaluation. Potential therapeutic
targets for ALS were selected based on their ranking
calculated by PandaOmics, consistency of the dysregulated
expression across different comparisons, druggability, safety
assessment, and clinical trial status, yielding a list of 28
potential candidates (Table 2). Seventeen high-confidence
and eleven novel therapeutic targets were identified from
post-mortem CNS tissue- and diMN-derived data. All
selected targets belonged to the druggable classes defined
by PandaOmics, with supportive evidence on either ALS
or neurodegeneration, and ranked as the top-50 targets in
at least one of the meta-analyses. For CNS targets, they
were consistently upregulated or downregulated in at least
80% of all comparisons for fALS, sALS or both. Selected
promising targets whose suppression led to the most notable

rescue of degenerations in the c9ALS Drosophila model are
discussed below.

ADRA2B
ADRA2B was upregulated in 80% of CNS transcriptomic fALS
comparisons. Our c9ALS fly model showed that RNAi against
Octα2R (fly ortholog of ADRA2B) ameliorated eye degeneration
(Score = −3, Figure 2C and Table 3) indicating that suppressing
the expression of ADRA2B may offer beneficial effects to fALS
patients. Our findings were in line with the study reporting
that treatment with ADRA2B agonist (rilmenidine) worsened
motor neuron degeneration in SOD1G93A mice (Perera et al.,
2018). ADRA2B was connected with several available drugs.
Both agonists and antagonists targeting ADRA2B were tested
for multiple neurological diseases, such as bipolar disease,
brain injury, and Parkinson’s disease (PD), but not ALS. As
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FIGURE 2 | Loss of seven unreported fly orthologs, corresponding to eight genes, strongly rescued (G4C2)30-mediated neurodegeneration in a c9ALS Drosophila
model. (A) A scale of magnitude of degeneration in fly eyes expressing (G4C2)30 scored from –4 to 2. The control flies (score 0), whose eyes expressing (G4C2)30,
exhibited eye degeneration, as indicated by necrotic patches, loss of ommatidia, depigmentation, and retinal collapse. The degree of eye degeneration rescue by
RNAi of the gene of interest (goi) ranged from –4 to 2, where score –4 represented the strongest degree of rescue and score 2 stood for the highest degree of
enhancement. (B) Number of genes whose loss gave rise to different degrees of modifications. Strong rescue stood for a score ≤ –3, moderate (mod.) rescue or
enhance for a score ≤ –2 or ≥ 2, mild rescue or enhance for a score ≤ –1 or ≥ 1, and no effect for a score > –1 and < 1. For a gene with multiple fly orthologs, the
score corresponding to the strongest modification of eye degeneration was used to represent the effect of suppressing the gene. (C) Fly eyes expressing (G4C2)30

with RNAi against (from left to right) Shab (fly ortholog of KCNB2 and KCNS3), Octα2R (fly ortholog of ADRA2B), ERR (fly ortholog of NR3C1), AstC-R1 (fly ortholog
of P2RY14), Pp2B-14D (fly ortholog of PPP3CB), Ptp69D (fly ortholog of PTPRC), and Eip78C (fly ortholog of RARA).

such, our findings suggested ADRA2B as a potential drug
repurposing target for ALS.

NR3C1
NR3C1 was found to be generally upregulated in both CNS
fALS (80%) and sALS (86%) comparisons. NR3C1 encodes a
glucocorticoid receptor with a dual role as a modulator of
transcription factors and a transcription factor itself. Over 60
drugs are associated with NR3C1, including both agonists and
antagonists. NR3C1 agonist and its ligand, glucocorticoids, were
widely adopted as the standard treatment for inflammatory
diseases (Escoter-Torres et al., 2019). However, none of the
ALS patients reached the pre-defined responder criteria with
the immunosuppression therapy involving two NR3C1 agonists,
viz. methylprednisolone and prednisone (Fournier et al., 2018).
In contrast, an NR3C1 antagonist (CORT113176) reduced the
expression and origin of pro-inflammatory factors (Meyer et al.,
2020), as well as suppressed glial reactivity (Meyer et al.,
2018) in the ALS-mimic mouse model. Our RNAi experiment
in the fly model also demonstrated that inhibition of ERR
(fly ortholog of NR3C1) strongly abolished eye degeneration
(Score = −3, Figure 2C and Table 3), suggesting NR3C1 as an
actionable target for ALS.

MAP3K5
Upregulation of MAP3K5 was observed in 80% of fALS
comparisons and 71% of sALS comparisons in CNS tissue.

Current drugs targeting MAP3K5 were not tested in neurological
disease. RNAi against Ask1 (fly ortholog of MAP3K5) moderately
rescued eye degeneration (Score = −2, Table 3) in the c9ALS fly
model, indicating MAP3K5 was a potential therapeutic target for
ALS. Notably, our findings aligned with previous study reporting
that MAP3K5 inhibitors prolonged the survival of SOD1mut mice
(Fujisawa et al., 2016), and were supported by accumulating
evidence indicating that activation of MAP3K5 may contribute to
neurodegeneration (Nishitoh et al., 2002; Kadowaki et al., 2005;
Hu et al., 2011; Lee et al., 2012). Elevated levels of MAP3K5 were
also reported in lymphocytes from ALS patients (Mougeot et al.,
2011) and motor neurons of SOD1 transgenic mice (Holasek
et al., 2005). Additionally, other studies revealed the linkage
between SOD1 mutant and MAP3K5 activation in neuronal cell
death (Nishitoh et al., 2008; Lee et al., 2014), further supporting
our observations.

ERN1
ERN1, encoding IRE1, was upregulated in diMN transcriptomic
fALS samples (LFC = 0.2058, p = 0.003). The suppression of
Ire1 in flies impeded eye degeneration (Score = −2, Table 3),
supporting ERN1 as another potential target for ALS. IRE1
is one of the primary sensors for unfolded protein response
(UPR), which serves as a critical stress response that copes
with endoplasmic reticulum (ER) stress and maintains cell
viability. IRE1 signaling was considered to be pathogenic in
ALS (Montibeller and de Belleroche, 2018), Alzheimer’s disease
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TABLE 3 | Screen results using a c9ALS Drosophila model.

Human symbol Fly symbol Availability of fly model Score Interpretation References

KCNB2 Shab Yes −3.5 Strong rescue –
KCNS3 Shab Yes −3.5 Strong rescue –
VCP TER94 Yes −3.5 Strong rescue Zhang et al., 2015
ADRA2B Octα2R Yes −3 Strong rescue –
NR3C1 ERR Yes −3 Strong rescue –
P2RY14 AstC-R1 Yes −3 Strong rescue –

AstC-R2 Yes −2 Moderate rescue –
PPP3CB Pp2B-14D Yes −3 Strong rescue –

CanA-14F Yes −2 Moderate rescue –
PTPRC Ptp69D Yes −3 Strong rescue –
RARA Eip78C Yes −3 Strong rescue –

EcR Yes −2.5 Moderate rescue –
Hr96 Yes −2 Moderate rescue –

Eip75B Yes Lethal – –
PTK2 Fak Yes −2.5 Moderate rescue –
AHCYL1 AhcyL1 Yes −2 Moderate rescue –
DNMT3A ADD1 Yes −2 Moderate rescue –

sba Yes 0 No modification –
ERN1 Ire1 Yes −2 Moderate rescue –
MAP3K5 Ask1 Yes −2 Moderate rescue –
MAPK1 rl Yes −2 Moderate rescue –
SCYL1 yata Yes −2 Moderate rescue –
STUB1 STUB1 Yes −2 Moderate rescue –
TOPORS Topors Yes −2 Moderate rescue –
G6PD Zw Yes −1 Mild rescue –
NOS1 Nos Yes −1 Mild rescue –
HSPD1 Hsp60A Yes −0.5 No modification –
CYBB Duox Yes 0 No modification –
PSMC6 Rpt4 Yes 0 No modification Zhang et al., 2015
PPIA CG7768 Yes 0.5 No modification Neuro et al., 2021

Cyp1 Yes 0.5 No modification Neuro et al., 2021
FLT1 Pvr Yes 1 Mild enhancement Neuro et al., 2021
RPS6KB1 S6k Yes 2 Moderate enhancement –

METTL21A CG5013 No – – –

SLC25A10 Dic1 No – – –

Both KCNB2 and KCNS3 correspond to Shab in Drosophila. A score of −3.5 stood for the situation that some offspring flies were scored −4 and some were −3. The
same applies to the scores of −2.5, −0.5 and 0.5.

(AD) (Duran-Aniotz et al., 2017) and PD (Yan et al., 2019). In
SOD1G93A mice, IRE1 protein level was elevated with disease
progression (Chen et al., 2015). Moreover, administration of
PPAR agonist exerted its protective effect on neurodegeneration
through suppression of IRE1-mediated ER stress response (Tong
et al., 2016), further backing our results.

KCNB2 and KCNS3
KCNB2 and KCNS3, two members of the voltage-gated
potassium channel (Kv) family, were upregulated in CNS sALS
(83%) comparisons and diMN transcriptomic sALS samples
(LFC = 0.3338, p = 0.0282), respectively. In agreement with
our results, the inhibition of Shab (fly ortholog of KCNB2 and
KCNS3) substantially hampered eye degeneration in the fly model
(Score = −3.5, Figure 2C and Table 3). Apart from playing
a key role in modulating neuronal excitability, Kv channels
are also involved in cell cycle progression, proliferation, and
apoptosis (Bachmann et al., 2020). It was suggested that KCNB2
was one of the genes with the most significant copy number

gains in ALS (Morello et al., 2018). KCNS3 was reported
to be upregulated in early pathological stages of AD (Saura
et al., 2015), and as a risk gene in PD (Perrone et al., 2021).
Administration of 4-Aminopyridine, a non-selective blocker of
Kv channels, restored ion channel dynamics, rescued neuronal
activity, and relieved ER stress in ALS MNs (Naujock et al., 2016),
reinforcing our hypothesis.

P2RY14
P2RY14 was downregulated in 86% (14% upregulated) of CNS
sALS comparisons. It encodes a purinergic receptor responding
to UDP-glucose and other UDP-sugars coupled to G-proteins,
and provides a novel candidate for drug development. The
role of P2RY14 in neurodegeneration remains unclear, as both
neuroprotective and neurotoxic roles were reported. While it may
execute its neuroprotective function by inhibiting the expression
of MMP9 in AD (Erb et al., 2015), increased P2RY14 expression
was observed in rat primary LPS-mediated microglial activation
(Bianco et al., 2005), correlating with neuroinflammation. Our
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FIGURE 3 | Network of dysregulated pathways in CNS comparisons. Each node represented a dysregulated pathway consisting of a set of genes. Nodes with
similar gene contents (similarity coefficient > 0.35) were connected by edges, and the thickness of node-linking edges was proportional to the similarity between a
pair of gene sets. Clusters of pathways were annotated based on the hierarchical level of pathways retrieved from the Reactome database. The constituent
pathways of a cluster were colored in red or blue for activation or inactivation. Only clusters containing more than three pathways were shown.

results showed that suppressions of the two fly orthologs
of P2RY14 (AstC-R1 and AstC-R2) by RNAis reduced eye
degeneration in the c9ALS Drosophila model (Score = −3 for
AstC-R1, Score = −2 for AstC-R2, Figure 2C and Table 3),
suggesting that further investigation of P2RY14 function in
neurodegeneration is warranted to confirm its relevance as
potential target in ALS.

PPP3CB
PPP3CB, encoding the β-isoform of the catalytic subunit of
Calcineurin (Cn), was selected as a potential target for ALS.
Reduction of PPP3CB protein level was detected in diMN
fALS samples (LFC = −0.3048, p = 0.0115). Cn stability
depended on its interaction with SOD1 (Neurath et al.,
1992). Weakening of SOD1G93A-Cn interaction in SOD1G93A

mice decreased Cn stability, leading to the defect in TDP-43
dephosphorylation and TDP-43 aggregation (Kim et al., 2019).
Activation of PPP3CB/Cn stimulated the activity of transcription
factor EB, and eventually promoted autophagy to ameliorate
neurodegeneration (Rusmini et al., 2019). RNAis against Pp2B-
14D and CanA-14F (two fly orthologs of PPP3CB) exerted
suppressive effects (Score = −3 for Pp2B-14D, Score = −2 for

CanA-14F; Figure 2C and Table 3) on fly eye degeneration,
which indicated that perturbation of PPP3CB had functional
correlations with neurodegeneration in ALS.

Validation of AI-Based Target Discovery
in a c9ALS Drosophila Model
To validate whether the targets we have identified were relevant to
the disease, we used the c9ALS Drosophila model of ALS (Zhang
et al., 2015). This model is based on the over-expression of a
GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in
C9orf72, the most common driver of ALS (DeJesus-Hernandez
et al., 2011; Renton et al., 2011). Previously, we showed
that expression of 30 repeats of G4C2 [(G4C2)30] using the
UAS/GAL4 system, under the control of GMR-GAL4 (Brand
and Perrimon, 1993), induced progressive neurodegeneration
in Drosophila eyes, as indicated by defects in the external
eye morphology (Zhang et al., 2015). Using this model, we
have previously performed several RNAi screens (Zhang et al.,
2015; Neuro et al., 2021), which identified many genes whose
loss modifies (G4C2)30-mediated eye degeneration. To validate
our findings, we compared the candidates identified by the
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PandaOmics analysis and our fly screening results. The severity
of eye degeneration was assessed using the scoring scale shown in
Figure 2A. As summarized in Table 3, the 28 candidate human
genes correlated to 34 orthologs in the fly. No fly models were
available for SLC25A10 and METTL21A. Suppression of 18 of
these 26 targets using RNAi strongly or moderately rescued eye
degeneration (Table 3 and Figure 2B), suggesting that these
genes may contribute to (G4C2)30-mediated neurotoxicity. On
the other hand, depletion of S6k (fly ortholog of RPS6KB1)
moderately enhanced eye degeneration. Representative images of
fly eyes whose degenerations were strongly rescued by RNAi are
shown in Figure 2C.

Clustering of Dysregulated Pathways
The Reactome database provides the hierarchical organization
of signaling pathways grouped into broader domains of
biological functions (Sidiropoulos et al., 2017). Therefore, all
the pathways in our analysis here were classified into 27
biological processes, each of which corresponded to one top-level
pathway according to the Reactome hierarchy. In CNS groups,
dysregulated pathways in ALS patients were overrepresented
in the immune system process (fALS, adjusted p = 3.26E-7),
signal transduction process (sALS, adjusted p = 9.20E-5), and
hemostasis (fALS, adjusted p = 0.0054). The diMN transcriptomic
groups were enriched for dysregulated pathways belonging to
the protein metabolism process (sALS, adjusted p = 0.0093).
The dysregulated pathways in the diMN proteomic groups were
overrepresented in the processes of disease (sALS, adjusted
p = 3.38E-8), DNA repair (fALS, adjusted p = 0.0233), and
developmental biology (fALS, adjusted p = 0.0255). The details of
dysregulated pathways in different biological processes are shown
in Supplementary Table 2.

Furthermore, pathways with similar gene contents were
connected to form clusters. As shown in Figure 3, the
most prominent cluster of the dysregulated pathways in
CNS ALS groups (relative to healthy cohort) was associated
with the activated innate immune system, which consisted
of activated pathways of the Toll-like receptor cascades,
cytokine signaling, and regulation of complement cascade.
Several clusters of pathways known to be associated with ALS
pathogenesis were also identified, including activated pathways
of programmed cell death, unfolded protein response, and
ERBB4 signaling. Other activated clusters included pathways
of the extracellular matrix organization, MET signaling,
hemostasis, oncogenic MAPK signaling, ABC transporter
disorders, interferon signaling, carbohydrate metabolism,
and cell cycle pathways associated with G1-S DNA damage
checkpoint. Whereas pathways related to FGFR signaling,
RNA metabolism, and RNA polymerase III transcription
were inhibited. In addition, pathways of RNA polymerase
I and II transcription, mitochondrial protein import, and
NCAM signaling for neurite out-growth were also suppressed
(Supplementary Table 3). Notably, there were only a few
dysregulated pathways overlapping between fALS and sALS
groups (i.e., upregulated pathways of erythropoietin activated
PI3-kinase annotated as squares in Figure 3), and most clusters
were specific to a sole ALS subtype. For example, clusters of

innate immune system, hemostasis, carbohydrates metabolism,
and ERBB4 signaling mainly contained activated pathways
identified in fALS but not the sALS; while the clusters of
FGFR signaling, RNA metabolism, and RNA polymerase III
transcription mainly contained inhibited pathways identified
in the sALS only.

The dysregulated pathways in the diMN ALS groups
belonged to different biological processes when compared to
the CNS groups. For the diMN transcriptomic comparisons,
pathways of the cap-dependent translation, and diseases of
the neuronal system were found to be activated in ALS case
groups (Figure 4A). For the diMN proteomic comparisons, the
RNA polymerase III transcription, GABA receptor, and GPCR
signaling pathways were found to be inhibited (Figure 4B). On
the other hand, pathways of DNA homologous recombination
repair were activated. The pathways related to signal transduction
and its related diseases, transmembrane transporter disorders,
and transcriptional regulation by RUNX3 formed the largest
cluster due to their shared genes of the ubiquitin-proteasome
system, such as the ubiquitin genes (UBC, UBB and UBA52),
the proteasome genes (SEM1, RPS27A, and PSM subunits), and
the ER-associated degradation genes (VCP, SEL1L, OS9, ERLEC1,
and DERL2).

DISCUSSION

After decades of research, the genetic and environmental
factors contributing to the etiology of ALS remain inadequately
defined. Integrative multi-omics approaches have been employed
to dissect the disease pathophysiology (Ruffini et al., 2020;
Volonte et al., 2020; Straub et al., 2021). PandaOmics is a
fully integrated AI-based platform with a wide range of omics
and text data sources (Vera et al., 2022). Compared to other
existing tools for target discovery, PandaOmics has several
unique advantages with respect to user experience, algorithms,
the comprehensive database, and the time machine validation
approach (Zhavoronkov et al., 2019). In an easy to use manner,
this platform is able to define druggable targets using multiple
advanced bioinformatics and AI models, accelerating the drug
discovery process (Insilico Medicine, 2022; Pun et al., 2022).
Therefore, PandaOmics represents a unique and user-friendly
AI-driven target discovery platform for therapeutic target
exploration based on multi-omics data analysis, that requires no
prior knowledge of computational biology.

With the advance of medical care and improved lifestyles,
human life expectancy has been significantly lengthened, which
in turn poses significant health-associated challenges, due to the
shift in demographic structure toward the aged. Despite multiple
risk factors being proposed to contribute to ALS, aging remains
one of the most prevalent risk factors and driving forces for
developing the disease (Pandya and Patani, 2020). Identifying
dual-purpose targets implicated in both aging and ALS is an
intriguing geroscience approach for extending healthspan and
delaying age-associated health issues (Melov, 2016). Among
the 28 shortlisted therapeutic targets identified in this study, 8
(28.6%, marked with asterisks in Table 2) were suggested to
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FIGURE 4 | Network of dysregulated pathways in diMN comparisons. Dysregulated pathways based on diMN (A) transcriptomic and (B) proteomic comparisons.
Notations refer to Figure 3. Only clusters containing more than three pathways were shown.

be aging-associated based on the evidence from clinical trials2,
publications, geroprotectors3 and GenAge database, indicating
the association between aging and ALS.

As summarized in Figure 5, therapeutic targets identified
in our work were mainly associated with the two fundamental
cellular processes in the pathogenesis of ALS – proteostasis
dysfunction and neuronal death. Twenty-six targets
were validated in the c9ALS Drosophila model, of which
eighteen demonstrated that their depletion has rescued
neurodegeneration, while the loss of RPS6KB1 resulted in
an opposite effect. This validation confirmed the power of
PandaOmics in identifying therapeutic targets with potential
roles in ALS neurodegeneration. Although some of the proposed
targets were not directly associated with neurodegeneration,
all of them have been reported to participate in pathways
that may contribute to ALS development. Some well-known
ALS-associated genes, such as TARDBP, C9orf72 and FUS,
were not included in our target list, as they did not belong
to any druggable classes and thus were filtered out. SOD1,
ranked among top 10 in the high-confidence genes of diMN
proteomic meta-analyses, was also not proposed in the present
study, as its role in ALS pathology is well-established. Overall,
we demonstrated our AI-enabled target discovery approach
in accelerating the novel ALS target discovery process for new
therapeutic regimen development.

2https://clinicaltrials.gov/
3http://geroprotectors.org

We showed that several enriched pathway clusters were
closely linked with ALS-driven mechanisms. For example,
RNA metabolism was commonly dysregulated in our analysis
regardless of tissue type. Altered RNA metabolism was indicated
as a key concern in ALS (Zaepfel and Rothstein, 2021). Several
research groups have evaluated the relevance of ALS genes to
RNA metabolism, revealing that mutations in TDP-43 (Tollervey
et al., 2011; Barmada et al., 2015; Russo et al., 2017; Donde
et al., 2019; Coyne et al., 2021), FUS (Barmada et al., 2015) and
C9orf72 (Donnelly et al., 2013; Lee et al., 2013) induce pathogenic
RNA metabolic changes in ALS. It is noteworthy that there were
many discrepancies between CNS and diMN pathway networks.
Pathways controlling innate immune response and programmed
cell death were found to be upregulated in our CNS comparisons.
The hemostasis and erythropoietin signaling pathways were also
upregulated, suggesting an activated neuro-immune hemostasis
network in response to the CNS tissue damages (De Luca et al.,
2018). These results are in agreement with the properties of post-
mortem CNS tissues, consisting of miscellaneous cell types, such
as neurons, glial cells, as well as CNS-resident and infiltrated
immune cells upon neuronal injury. Such that the observed
inflammatory disturbance in the ALS CNS tissues reflected the
late-stage phenotype in ALS or a general phenomenon in the
dying brain. Conversely, diMN ALS samples were solely derived
from motor neurons, without the influence of non-neuron cells
and the aging process. Such comparisons clearly reflected the
disease pathology in motor neurons. We also showed that
GABAergic signaling pathways were downregulated. This may
lead to an increase in glutamate toxicity (Foerster et al., 2012;
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FIGURE 5 | Proposed targets in ALS-associated pathways. Several proposed targets, labeled in green, were presented in pathways related to ALS pathogenesis,
including neuronal cell death, oxidative stress, neuroinflammation, and proteostasis dysfunction. Information of associated networks was retrieved from KEGG ALS
pathway (map05014), Protein processing in endoplasmic reticulum (map04141), T cell receptor signaling pathway (map04660), Ubiquitin mediated proteolysis
(map04120), and Pentose phosphate pathway (map00030).

Romano et al., 2021). Excitotoxicity, a pathophysiological
condition caused by excessive glutamate stimulation, is suspected
as a mediator driving ALS development (Van Den Bosch
et al., 2006; Armada-Moreira et al., 2020). GABAergic signaling
may function to counteract excessive neuronal excitability,
inducing a calming effect. Furthermore, pathways in homologous
recombination, a DNA damage response, and cap-dependent
translation initialization, a component in the RNA metabolism,
were dysregulated in diMN comparisons but not CNS. These
processes are likely to contribute to ALS initiation (Sun et al.,
2020), indicating that the diMN comparisons revealed early-stage
signatures of disease development. A recent study investigating
Alzheimer’s progression in the human brain highlighted the
importance of integrating human data with data generated using
cell lines and animal models, in order to better understand
various stages of disease evolution (Penney et al., 2020). As such,
our usage of post-mortem CNS tissue as well as diMN samples
provides a more detailed view of ALS pathogenesis.

It is not surprising that fewer pathways were uniformly
altered in sALS relative to fALS comparisons given the complex
genetic bases and the large variability among sALS individuals
(Figure 3). However, there were some pathway clusters that are
specific to sALS, such as the FGFR signaling axis. Fibroblast
growth factors and their receptors play essential roles in the

development, maintenance and repair of the nervous system
(Reuss and von Bohlen und Halbach, 2003; Maddaluno et al.,
2017; Klimaschewski and Claus, 2021). The inhibition of
FGFR signaling indicates the reduction of neurogenetic effects
underlying ALS etiology, which was confirmed in the CNS sALS
groups (Figure 3). However, it was not observed in the CNS
fALS groups, which might stem from the lack of association
between FGF signaling and C9orf72 mutations that represent the
dominant genotype in the fALS comparisons (Table 1).

The current study has a limited number of fALS samples
in both post-mortem and diMN comparisons due to the rarity
of fALS incidence. Another limitation of our analysis is the
under-representation of racial groups other than the Caucasians.
Future studies should include samples from more ethnically
heterogeneous populations. ALS is a progressive disorder, driven
by numerous interconnected mechanisms. While future studies
are warranted to assess the pathogenic mechanisms underlying
every stage of disease development, data generated in the current
analysis is likely representing two stages in ALS development -
the late-stage in post-mortem CNS tissue, and the early-stage
reflected in diMN samples, harvested on Day 32. This time frame
is generally adopted as the maturation time point of diMNs
(Du et al., 2015; Guo et al., 2017; Solomon et al., 2021); therefore,
this study model might not well represent the aging effect
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on ALS disease progression. Including additional diMN time
points throughout the developmental stages of the disease might
enhance the comprehensiveness of the analysis and provide a
more detailed insight on ALS progression.

In conclusion, this study demonstrates the application of
PandaOmics target discovery system to identify and prioritize
high-confidence and novel targets for ALS with our latest AI
models based on comprehensive omics data analysis. Several
well-characterized mechanisms in ALS pathology were found to
be dysregulated, including the immune system, RNA metabolism,
excitotoxicity, as well as programmed cell death. Seventeen
high-confidence and eleven novel therapeutic targets were
identified from CNS and diMN samples. CNS data mainly
reflects the late-stage signatures of ALS, while results from diMN
comparisons are more likely to be attributed to the early-stage
signatures. Combining the usage of diMN and post-mortem CNS
samples could provide a comprehensive understanding of ALS
disease progression. The employment of the Drosophila model
exemplified a fast screen of AI-identified targets. Among the
26 proposed targets screened in the c9ALS Drosophila model,
we were able to verify 8 unreported genes (KCNB2, KCNS3,
ADRA2B, NR3C1, P2RY14, PPP3CB, PTPRC, and RARA) whose
suppression strongly rescued eye neurodegeneration. Future
studies are warranted to further define their pathogenic role and
potential as therapeutic targets for c9- and other types of ALS
using diMNs or mammalian models. To accelerate novel target
discovery and drug investigation for ALS, targets identified in this
study will be disclosed on ALS.AI. Altogether, the present study
offers new insights on how AI speeds up the target discovery
process from years to months.
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