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The Integral QualityMonitoring (IQM) System is a real-time beam output verifying system that validates the integrity and accuracy
of patient treatment plan (TP) data during radiation treatment.The purpose of this study was to evaluate the sensitivity of the IQM
to errors in segment using EGSnrc/BEAMnrc Monte Carlo (MC) codes. Sensitivity analysis (SA) techniques were applied to study
the significance of small alterations of field sizes (segments) on the IQMsignal response.One hundred and eightymultileaf segments
were analyzed with methods that include scatter plots (SP), brute force, variance-based (VAR), and standard regression coefficient
SA. The segments were altered randomly within ±1, ±2, and ±3mm leaf steps for 10MV photon beams. SP analysis gradient and
VAR maximum index are 1.045 and 0.556 for the smallest segment while the largest segment has the value of 0.018 and 0.504,
respectively. The brute force and standard regression displayed maximum sensitivity indices around the unaltered segments.These
tests conclusively indicated that the IQM was more sensitive to alterations of small segments compared to larger segments. This is
important since small segment variation will cause a higher dose output variation that should be picked up during online beam
monitoring.

1. Introduction

The goal of radiotherapy is to improve the quality of treat-
ment: minimizing the normal tissue exposure and maxi-
mizing the therapeutic ratio. In the quest for an optimum
treatment, Paliwal introduced the concept of an online beam
delivery check for noncomputerized Linacs [1]. It consisted of
a transmission chamber to detect possible errors in treatment
delivery and to serve as a pretreatment quality assurance
(QA) tool.This concept adds an additional record-and-verify
system to the Linac head. Since then, vendors have devel-
oped and suggested some dose monitors for offline/online
dose verification of external photon beam radiotherapy. The
suggested online monitors are the electronic portal imaging
device (EPID), DAVID�, and the Dolphin� system [2–4].

The Integral Quality Monitoring (IQM) System is a
prototype online dose verification system that was released by
iRT Systems, Germany. The IQM system is a double wedge-
shaped ionization chamber that is attached below the Linac
treatment head. It is a dose measuring system that validates

the TP data in real time [5].The IQM is capable ofmonitoring
a 40 × 40 cm2 field defined at the isocenter. The double
wedge shapes of the IQM device are defined by the outer
polarizing electrodeswhich are kept at a potential of 500 volts.
The inner electrode plate is grounded to zero volts and is
designated as a collecting electrode (Figure 1). The electrodes
aremade of 1.5mmaluminum.The output signal is a function
of the photon beamfluence that irradiates the double-wedged
chamber.

Themajor interest of utilizing the prototype IQMdevice is
its ability to function as a beam delivery check system during
real-time treatment [6, 7].

Sensitivity analysis is the process of undertaking a system-
atic review of models; it studies the significance of each of
the model inputs on the model output [8, 9]. It identifies and
determines the impact of inputs on its outputs [10–15]. This
builds a theory that relates the input variables with the output
variables. There are several sensitivity analysis techniques
stated in various articles such as scatter plots, one-at-a-time,
partial derivatives, brute force, partial correlation coefficient,
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Figure 1: IQM double wedge ionization chamber model (permission granted) [27].

standard regression coefficient, variance-based SA, Sobol
sensitivity indices, fast first-order index, Spearman rank
correlation coefficient, Fourier amplitude sensitivity test, and
Morris one-at-a-time screening [10, 16–23]. The sensitivity
ranking of the input for several techniques may vary slightly,
but the focus is based on the consistent parameter that
influences the output [13, 19, 24]. The choice of method of
sensitivity analysis is guided by the problem constraints. The
constraint can be correlated inputs, nonlinearity, multiple
outputs, given data, or random variables (e.g., simple random
sampling, Monte Carlo, Latin Hypercube, Morris method,
and quasi-random sequence). Random sampling, which is
the focus of this research, requires the application of scatter
plots, brute force, variance-based, and standard regression
coefficient sensitivity analysis techniqueswhich are efficiently
independent of one another [14, 16, 18, 21, 25, 26]. These
four sensitivity analysis techniques were used for an in-depth
study of the consistent input parameters that influenced the
output value.

The aim of this study was to investigate the sensitivity
of the double wedge-shaped ionization chamber (IQM) to
errors in segment using the BEAMnrc/EGSnrc Monte Carlo
(MC) simulation. The input value in this case is the accelera-
tor beam segment and the output is the corresponding dose
scored in the double wedge ionization chamber of the IQM
system.

2. Materials and Methods

2.1. Simulation Setup. BEAMnrcMCwas used to simulate an
accurate source model of an Elekta Synergy linear accelerator
equippedwith anAgility 160-Leafmultileaf collimator (MLC)
alongside the IQM.The IQMmodel was located 4.5 cm below
the lowest diaphragm of the Linac model (Figure 2). The
gradient of the IQM model is positioned perpendicularly
to the MLC movement. During each simulation, the spatial
integral dosewas scored in the air region of thewedge-shaped
ionization chamber of the IQMmodel.

To start the sensitivity study, regular fields of 3 × 3, 5 ×
5, and 7 × 7 cm2 were simulated at 10MV photon beams and
moved along the gradient of the IQM model. Figure 3 shows
how a single segment was moved along the slope of the IQM.
Dose responses were recorded along the gradient at positions
of interest. The MLC defined field size remains unchanged
along the IQM gradient, but the spot of the radiation beams
on the IQMmodel was changed at every interval.
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Figure 2: Setup of the IQM geometry located 4.5 cm below the 𝑌-
diaphragm for 10 × 10 cm2 field.

Figure 3: Movement of segment along the gradient of the IQM
model.

The sensitivity of the IQMwas also studied by simulating
six segments (regular and irregular) which were randomly
altered within ±1, ±2, and ±3mm of their original leaf
positions to simulate leaf positional errors. The leaf positions
were defined at the isocenter (100 cm SSD) and the beam
energy studiedwas 10MV.The regular and irregular segments
(shown in Table 1) were chosen to include a wide range of
MLC shaped aperture conditions. Each of the open leaves
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Table 1: List of segments altered randomly within ±1, ±2, and±3mm.

Segments Segment area (cm2)
Segment 1 (3 × 3 cm2) 9.00
Segment 2 (irregular) 25.83
Segment 3 (irregular) 70.82
Segment 4 (irregular) 47.49
Segment 5 (1 × 1 cm2) 1.00
Segment 6 (irregular) 19.99

of the segments was randomly altered. The ±1mm alteration
means that any randomly generated value between −1mm
and +1mm can be chosen to simulate a shift from the original
leaf position. Note that there is a probability of having a
zero value from the random generator, which means that
the particular leaf will not be altered. For a segment, each
positional error (±1, ±2, and ±3mm) was altered 10 times to
have a total of 30 altered models per segment.This procedure
was repeated for each of the segments used in this study
(Table 1). MC simulations were done for 180 altered and
6 unaltered segments, and the corresponding IQM signal
responses were collected from each simulation for analysis.

The number of histories was large enough to reduce
uncertainties in the scored IQM dose to less than 1%. The
following simulation parameters were set: the global electron
cut-off energy (ECUT) was set to 0.7MeV and the global
photon cut-off energy (PCUT) was set to 0.01MeV for
efficiency [28]. The maximum step size (SMAX) was set to
default because EXACT was used in the boundary algorithm
and PRESTA II was used in the electron-step algorithm.
The maximum fraction energy loss/step (ESTEPE) was set to
0.25 (25%) and the maximum first elastic scattering moment
per step (Xlmax) was set to 0.5. The skin depth for the
boundary crossing algorithm (skindepth for bca) was set to
0 cm. Spin effects for electron elastic scattering (spin effects)
were turned on for appropriate backscattering simulation
and electron impact ionization (eii flag) was turned off.
Bremsstrahlung angular sampling (IBRDST) was set to the
default method and its cross sections were derived from the
Bethe-Heitler method. Bound Compton scattering (IBCMP)
was turned on and its cross section data were obtained from
its default method. Pair angular sampling (IPRDST) was set
to the Bethe-Heitler method (default). Photoelectron angular
sampling (IPHTER) and Rayleigh scattering (IRAYLR) were
turned off, and atomic relaxations (IEDGFL) were turned on.
The photon cross-section data bases (photon xsections) were
set to the PEG4 dataset. All EGSnrc simulation parameters
were conventionally set for a better reflection of realistic
radiation transport [29].

2.2. Scatter Plots Sensitivity Analysis. Scatter plots (SP) can be
used for qualitative analysis to determine the most sensitive
parameter if more than one input variable is used that can
alter the output result. It is achieved by plotting the graph
of the input values against the corresponding output values.
The linearity of the scatter plots determines the sensitivity
of the model. An increase in the gradient of the linear

equation indicates that the model is more sensitive to the
input parameter under consideration [30, 31]. SP can be
utilized to determine the IQM sensitivity by correlating the
effect of segment area (SA) input on its output signal (𝑆).
2.3. Brute Force Sensitivity Analysis. The brute force sensitiv-
ity analysis method is based on noninteractive input variables
whereby the input variable is altered to study its effect on
the output value. It generates the sensitivity of a model due
to perturbation of the input variables [32]. Quantification of
the input variables is necessary. As mentioned above, this
study quantifies SA as the input parameter. A sensitivity index
(SI) was calculated based on the change in 𝑆 (Δ𝑆) over the
corresponding change in SA (ΔSA) [33–35]:

SI =  Δ (𝑆)Δ (SA)
𝑖 , (1)

where Δ(𝑆) = 𝑑(𝑆 − 𝑆
𝑖
) 𝑆 is the signal for the unaltered seg-

ment (SA) and 𝑆
𝑖
is the signal after segment alteration (SA

𝑖
).

Large SI indicates that the change in SA has a significant
impact on 𝑆.
2.4. Variance-Based Sensitivity Analysis. The variance-based
sensitivity analysis (VAR) method is a global sensitivity
analysis; it is based on the idea that one can deduce the
sensitivity of a model through its variance (𝑉). It is a
probability distribution of the output uncertainties (in this
case, the output uncertainty is the uncertainty in 𝑆). It focuses
on interactions between the input variables and the effect
of each of the input variables on the output value. It is a
measure of the importance of input variables on the outputs
[22, 36, 37]. In our application, the sensitivity of the output
to the input variable is therefore measured by the amount of
variance in 𝑆 caused by alterations in SA:

𝑌 = 𝑓 (𝑋
𝑖
) . (2)

In (2), 𝑌 represents 𝑆 and 𝑋
𝑖
is the change in segment size

generated at random for a given segment. It should be noted
that only SA plays a role in the variation of 𝑆 and thus index 𝑖
= 1 in (2). If some other input variable also played a role, then
index 𝑖 = 1, 2.

The sensitivity measure of conditional variance 𝑉
𝑖
for a

single input variable is given by

𝑉
𝑖
= 𝑉 (𝐸 [𝑌 | 𝑋

𝑖
]) . (3)

The sensitivity measure of sensitivity index SI
𝑖
is given by

SI
𝑖
= 𝑉𝑖𝑉 (𝑌) , (4)

where 𝑉(𝑌) is the unconditional variance.
SI
𝑖
is themain effect index (first-order sensitivity index or

correlation ratio) and it describes the main effect of the given
data𝑋

𝑖
on the value 𝑌 [17, 31, 38].

In this study, the effects of other input variables on the
IQMoutput value are not present.Therefore, an extension for
the total effect index is not applicable since the focus is on
only one input variable.
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Figure 4: Sensitivity factor along the IQM CM gradient for 3 × 3, 5 × 5, and 7 × 7 cm2 fields (trend gradients are 0.005, 0.009, and 0.010).

2.5. Standard Regression Coefficient Sensitivity Analysis. This
is a regression analysis that tests the significance of an inde-
pendent variable (input) on its dependent variable (output)
by using both the mean and the variance of the independent
and dependent variables across the observable model. It is
generally used for linear regression [22, 23].

The generalized linear regression model is

𝑌 = 𝑏
0
+ 𝑛∑
𝑖=1

𝑏
𝑖
𝑋
𝑖
. (5)

The normalized regression model for an input variable is

𝑌
𝑖
− 𝑌𝑠 = (𝑏𝑖𝑠𝑖𝑠 ) 𝑋𝑖 − 𝑋𝑠

𝑖

. (6)

The standard regression coefficient (SRC) SRC = 𝑏
𝑖
𝑠
𝑖
/𝑠 and 𝑏

𝑖

is the regression coefficient for the 𝑖th sample of the 𝑋 input
(segment area), where

𝑠 = √ 1𝑁 − 1
𝑁∑
𝑖=1

(𝑌
𝑖
− 𝑌)2,

𝑠
𝑖
= √ 1𝑁 − 1

𝑁∑
𝑖=1

(𝑋
𝑖
− 𝑋)2

(7)

are the standard deviation of output signal (𝑌) of the IQMand
segment area (𝑋), respectively.The sensitivity of the model is
determined by the SRC value. The higher the SRC value, the
more sensitive the variation in the input value on the variation
of the output value.

3. Results and Discussion

Figure 4 shows the sensitivity gradient profiles for 3 × 3, 5× 5, and 7 × 7 cm2 fields at 10MV photon beams. This is to
compare the gradient response between different segments.
The sensitivity profile increases along the gradient of the IQM
model. There is a noticeable plateau region in the sensitivity
profile. This is the region of the higher separation distance
between the collecting plate and the polarizing plate. It should
also be noted that the photon beam of a field that is incident
on the IQM model is not the same along the gradient of
the IQM. The incident aperture changes along the gradient.
The combined effect of nonuniform incident aperture and the
separation distance between the plates gives the sensitivity
profile. In Figure 4, the gradient of the trend line increases
with an increase in field sizes.

In Figure 4, the largest air volume region has the highest
signal response. Around the region of the largest air volume
of the IQMchamber, there is a noticeable plateau.This plateau
is caused by loss in lateral electron equilibrium (Farrokhkish’s
presentation also stated this idea at theWorldMedical Physics
Conference (IUPESM 2015) [27]). Loss of lateral equilibrium
could be a result of the photon beam being unable to
completely cover the air volume of the IQM chamber at this
region [39].

Figures 5–10 depict five segments that were altered ran-
domly within the limits stated above and their sensitivity
analysis results.

In Figure 5(a), a regular 3 × 3 cm2 field is presented.
In Figure 5(b), SP data are shown; for each maximum
alteration level such as ±1mm, there are 10 data points which
correspond to the 10 trials that were measured as outlined
above. Data for the ±2mm and ±3mm cases are also plotted
in Figure 5(b). There exists a correlation between 𝑆 and SA,
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Figure 5: Sensitivity analysis results for the 3 × 3 cm2 segment. Panel (a) shows the unaltered segment; panel (b) shows the scatter plot; panels
(c), (d), and (e) show the brute force, variance-based, and standard regression coefficient results, respectively.

indicating a definite response to the IQM signal when the
segment area is altered.The SA range depends on the allowed
segment alteration limit. For the ±3mm randomly altered
case, SA ranged between 8.38 cm2 and 9.36 cm2. Originally,
SA was 9.00 cm2. For the ±2mm case, this range shrank to
between 8.66 and 9.29 cm2. For the ±1mm case, there is an
even spread around the unaltered SA. The linear trend line
of SP has a gradient of 0.13 cm−2. In Figure 5(c), the brute
force analysis tool shows the rate of change of 𝑆 with respect
to SA. Thirty SI values are shown indicating 30 trials. High

SI values are noted around the unaltered SA. In Figure 5(d),
SI values were analyzed for 30 trials using the VAR method.
SI increased with increasing SA values. In Figure 5(e), the
30 normalized SRC values are depicted. High SRC values are
seen around the unaltered SA.

The irregular segment in Figure 6(a) was altered within±1, ±2, and ±3mm. SP (Figure 6(b)) have a trend-line
gradient of 0.048 cm−2 for the SA alterations that span the
range of 25.10–26.46 cm2. In Figures 6(c) and 6(e), the brute
force analysis and SRC values are displayed.The twomethods
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Figure 6: Sensitivity analysis results for an irregular segment (SA = 25.83 cm2). Panel (a) shows the unaltered segment; panel (b) shows the
scatter plots; panels (c), (d), and (e) show the brute force, variance-based, and standard regression coefficient results, respectively.

show that the most sensitive altered segment is around the
unaltered segment (SA = 25.80 cm2). In Figure 6(d), the VAR
indices correspond to SA values for the 30 trials.

Figure 7(a) shows an irregular segment (SA = 70.86 cm2),
the largest SA considered in this study. In Figure 7(b), IQM𝑆 shows a sensitivity to SA indicated with a gradient of
0.018 cm−2. In Figure 7(c), the brute force sensitivity indices
show that higher sensitivity indices are noted around the
unaltered segment. One of the alterations within ±1mm has
the highest sensitivity index of 0.52. In Figure 7(d), the

variance of the IQM signal output determines the sensitivity
of the IQM model by correlating the VAR sensitivity indices
with 30 trials. An increase in SA causes an increase in VAR
sensitivity index. In Figure 7(e), SRCwere plotted against SA.
The highest SRC value was observed in one of the alterations
within ±2mm.This is the most sensitive altered segment out
of the 30 trials.

In Figure 8(a), the model of an irregular segment of
47.49 cm2 is presented. In Figure 8(b), SP values for 30 trials
are shown. An increase in SA causes a gradual increase in
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Figure 7: The same data as in Figure 6, but for the irregular segment with an area of 70.82 cm2. Panel (a) shows the unaltered segment;
panel (b) shows the scatter plots; panels (c), (d), and (e) show the brute force, variance-based, and standard regression coefficient results,
respectively.

𝑆. The 𝑆 values are narrowly scattered around the trend line
with a gradient of 0.030 cm−2. In Figure 8(c), the brute force
sensitivity indices are displayed for the trials considered.
It is observed that the most sensitive indices are for small
alterations of the original SA. In Figure 8(d), the VAR SI
correlate with SA; an increase in SA causes an increase in
SI. In Figure 8(e), the normalized SRC values were plotted
against the 30 SAs considered. The maximum SRC value is
observed around the region of the original SA.

In Figure 9(a), a regular segment of SA = 1 × 1 cm2 is
shown. This is the smallest SA considered in this study. In
Figure 9(b), the data points align with the linear trend line
with a gradient of 1.045 cm−2. In Figures 9(c) and 9(e), the
brute force analyses and SRC values show high sensitivities
for all the trials considered with the highest SI around the
original segment area. In Figure 7(d), the VAR SI shows a
linear progression with an increase in segment areas of the
30 trials.
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Figure 8: The same data as in Figure 4, but for the irregular segment with SA of 47.49 cm2. Panel (a) shows the unaltered segment; panel (b)
shows the scatter plots; panels (c), (d), and (e) show the brute force, variance-based, and standard regression coefficient results, respectively.

Figure 10(a) is an irregular segment that was altered
within ±1, ±2, and ±3mm. SP (Figure 10(b)) have a trend-
line gradient of 0.06 cm−2 for the SA alterations that span the
range of 19.21–20.79 cm2. In Figures 10(c) and 10(e), the brute
force analysis and SRC values are displayed.The twomethods
show that the most sensitive altered segment is around the

unaltered segment (SA = 19.99 cm2). In Figure 10(d), the VAR
indices correspond to SA values for the 30 trials.

The highest degree of linearity in SP is found in the
smallest SA of 1 × 1 cm2 (Figure 9(b)). For this SA, the SP
values were almost on the trend line and it has the smallest
gradient of 0.018 cm−2 (Figure 7(b)).
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Figure 9:The same data as in Figure 4, but for the irregular segment with an area of 1.0 cm2. Panel (a) shows the unaltered segment; panel (b)
shows the scatter plots; panels (c), (d), and (e) show the brute force, variance-based, and standard regression coefficient results, respectively.

In Figure 11, the gradient of scatter plots (SP) and vari-
ance-based (VAR) sensitivity analysis in Figures 5–10 were
plotted. A power function was fitted to the SP trend-line gra-
dient data as a function of original SA (SP = 1.0493SA−0.955).
It shows that an increase in SA causes a decrease in the SP
trend-line gradient that is at first strongly dependent on SA
but becomes less sensitive for SA ≥ 26 cm2. This indicated
that the IQMdetects small shifts in the smallest segment with

the largest differential signal which is to be expected since
the allowed random shifts between ±1, ±2, and ±3mm of
the MLC leaves would make up a larger percentage change
in SA compared to the largest segment; larger segments will
cause smaller differential signals. SP data are a quick means
of investigating the SI of data but do not compare the rate of
change in IQM signals to the rate of change in SA like the
brute force sensitivity analysis.
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Figure 10: Sensitivity analysis results for an irregular segment (SA = 19.99 cm2). Panel (a) shows the unaltered segment; panel (b) shows the
scatter plots; panels (c), (d), and (e) show the brute force, variance-based, and standard regression coefficient results, respectively.

In Figure 11, the SP and VAR sensitivity analysis meth-
ods show power function relationships with respect to SA
although the VAR is virtually constant over SA.

VAR indices for the five segments considered decrease
weakly with an increase in SA and can be considered for
practical purposes to be constant with an average value of
0.525. The fitted power function

VAR = 0.555SA−0.024 (8)

has the derivative of 𝑑 (VAR)𝑑 (SA) = 0.013SA1.014
. (9)

From (9), it is seen that the rate of change in VARwith change
in SA is approximately inversely proportional to SA for the
segment sizes studied. It has a maximum at the smallest
segment and decreases as SA increases starting off at an initial
value of 0.013.
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Figure 11: Analysis for scatter plots and variance-based sensitivity
analysis for Segments 1–6.

Brute force sensitivity analysis for the segments in Figures
5(c), 6(c), 7(c), 8(c), and 10(c) shows that the highest SI
is within the region of the unaltered (original) segments,
while in the small field (Figure 9(c)) it is high for all
trials considered. This again indicates that the IQM signal is
sensitive to alterations of small segments and less sensitive
to alterations of large ones. The brute force technique means
that if a segment is altered, the magnitude of alteration
(perturbation) which is the difference between the unaltered
and altered SA must be evaluated based on the difference in
the magnitude of 𝑆. If the minimal difference in SA gives a
significant difference in 𝑆, then the model is very sensitive
to such input parameter. This technique, unlike scatter plots,
considers the rate of change of the altered parameters. If
the SP is highly linear (Figure 9(b)), the brute force SI
(Figure 9(b)) will display a noticeable deviation from zero
across all altered segments.

SRC values for the five segments displayed maximum
(normalized) values around the region of the unaltered
segments. For the smallest SA (Figure 9(e)), higher SRC
values were calculated across all 30 altered SA trials. SP data
give a reasonable indication of this outcome. For a perfectly
linear graph, the rate of change of the output value per the
input variable will be uniform, which makes the SRC values
seem uniform across the altered segments around original SA
= 1 × 1 cm2. This means that the IQM is most sensitive to
alterations of small SA.

In total, 6 original segments were each altered 30 times
randomly within ±1, ±2, and ±3mm positional errors. For
each segment, a Monte Carlo simulation was done to deter-
mine the IQM signal. Sensitivity analysis results indicated
that the IQM is sensitive to detect these alterations in SA.The
sensitivity is more pronounced in small SA.

4. Conclusion

The sensitivity of the IQM in this study shows its potential
to detect small alterations in SA. The SP and VAR relation to
SA is approximately constant at large SA but displays power
function relationships at smaller SA values. All sensitivity
analysis methods employed in this study indicated that the

IQM signal (𝑆) will indicate small segments alterations even
for the larger segments.
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