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Cells communicate with other cells in their microenvironment by transferring lipids, pep-
tides, RNA, and sugars in extracellular vesicles (EVs), thereby also influencing recipient 
cell functions. Several studies indicate that these vesicles are involved in a variety of 
critical cellular processes including immune, metabolic, and coagulatory responses 
and are thereby associated with several inflammatory diseases. Furthermore, EVs also 
possess anti-inflammatory properties and contribute to immune regulation, thus encour-
aging an emerging interest in investigating and clarifying mechanistic links between EVs 
and innate immunity. Current studies indicate complex interactions of the complement 
system with EVs, with a dramatic influence on local and systemic inflammation. During 
inflammatory conditions with highly activated complement, including after severe tissue 
trauma and during sepsis, elevated numbers of EVs were found in the circulation of 
patients. There is increasing evidence that these shed vesicles contain key complement 
factors as well as complement regulators on their surface, affecting inflammation and the 
course of disease. Taken together, interaction of EVs regulates complement activity and 
contributes to the pro- and anti-inflammatory immune balance. However, the molecular 
mechanisms behind this interaction remain elusive and require further investigation. The 
aim of this review is to summarize the limited current knowledge on the crosstalk between 
complement and EVs. A further aspect is the clinical relevance of EVs with an emphasis 
on their capacity as potential therapeutic vehicles in the field of translational medicine.

Keywords: extracellular vesicles, exosomes, microvesicles, complement, complement activation, immune 
response, therapeutic vehicle

BACKGROUND

Extracellular vesicles (EVs) are likely to represent an efficient, robust, and economic manner for 
exchanging information between cells. Throughout evolution, communication via extracellular 
cargo carriers appears to be a highly conserved method. This form of cell-to-cell communication 
is found in lower eukaryotes, bacteria, and plants as well as in higher organisms (1). In addition 
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FiGURe 1 | A double-edged sword: schematic overview of EV functions. EVs, in particular exosomes and MVs contain different cargo types, highlighted in gray in 
the middle section in the figure. Depending on their cargo composition, EVs exert bi-directed functions (depicted by arrows) with important contribution to 
physiology and pathology. Abbreviations: EV, extracellular vesicles; MHC: major histocompatibility complex; MMP: matrix metalloproteinase; MV, microvesicle.
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to cellular communication, EVs are important for survival and 
adaption to (micro-) environmental changes. For example, 
bacteria are able to form EVs, termed bacterial outer membrane 
vesicles (OMV), which contain RNA, DNA, endotoxins, or 
virulent molecules (2, 3). By shedding OMV with specific car-
goes, bacteria influence the behavior and/or property of other 
bacteria (3). These vesicles play a crucial role in quorum sensing, 
a known strategy in bacterial colonies to adapt their social group 
activity to their environment by sending extracellular “pack-
ages” (4). Plants are also known to produce EVs, particularly 
in response to pathogen exposure (5). However, the role of EVs 
in mammals appears to be more complex. Depending on their 
content, these packages are capable of influencing a variety of 
cellular functions and contribute to physiological homeostasis, 
but also have profound roles in pathological conditions, as 
illustrated in Figure  1. For example, shedding of endothelial 
cell-derived vesicles with matrix metalloproteases (MMPs) has 
been described, which is important for matrix degradation and 
angiogenesis during wound healing and development, but also 
during tumor progression (6). Their association with tumors has 
been extensively investigated. Early studies revealed the involve-
ment of EVs in tumor malignancy by transferring metastatic 
capacity to other cancer cells (7). Addressing immunity, recent 
findings suggested that EVs have profound effects on the innate 
immune system, and consequently are also able to modulate 
adaptive immunity (8). In particular, the complement system 

as the first-line of innate immunity represents an important 
interaction partner for EVs and together they are associated 
with thrombotic and inflammatory conditions and appear to 
influence patient morbidity and mortality (9–11). This review 
focuses on the current state of knowledge on interactions 
between EVs and complement.

eXTRACeLLULAR veSiCLeS

Morphological Characterization
During programmed cell death, cells are known to release vesicles 
to the extracellular environment (12). However, the fact that 
healthy cells also release vesicles to the extracellular environment 
has only been recently discovered. These cell-derived particles, 
termed EVs, can be assigned to three main groups: apoptotic 
bodies, exosomes, and microvesicles (MVs). This classification 
is based on their characteristic features, including cellular origin 
and their size, function, composition, and molecular cargo (1).

Apoptotic bodies are released solely from cells undergoing 
apoptosis (12, 13). Cellular fragmentation occurs with the forma-
tion of 1,000–5,000 nm apoptotic blebs, which become packed 
with intact cellular organelles, DNA, and histones, and subse-
quently being phagocytized by neighboring live cells without 
activating an inflammatory or autoimmune response (13–15). By 
contrast, both exosomes and MVs are released from healthy cells 
during physiological and pathological conditions.
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Exosomes are small spherical vesicles of size 30–120  nm 
and are produced from late endocytic compartments, known 
as multivesicular bodies (MVBs) (14). They are produced by 
inward invagination of endosomal membranes to form MVBs, 
which subsequently fuse with the plasma membrane and release 
their intraluminal vesicles as exosomes to the extracellular 
milieu (16). Because of their endocytic origin, exosomes are 
commonly enriched in endosome-associated proteins, including 
Rab GTPases, SNAREs, annexins, and tetraspanins (CD9, CD63, 
and CD81). Some of these proteins (e.g., the endosome-specific 
proteins Alix and Tsg101) are normally used as exosome markers 
(17, 18). However, recent studies identified that exosome-specific 
markers are also present in MVs (19).

Microvesicles, also referred as ectosomes, microparticles and 
nanoparticles, directly derive from the cell surface and are larger 
than exosomes, with a size ranging from 100 to 1,000 nm (20). 
MVs expose high levels of integrins (21). Although common pro-
tein markers used to define these vesicles are selectins, integrins, 
and the CD40 ligand, less is known about the protein content of 
MVs (22).

A major and still ongoing challenge is to define methods that 
will allow discrimination between exosomes and MVs (23, 24). At 
present, a precise definition and terminology for the characteriza-
tion of exosomes and MVs remain to be resolved (25). It appears 
to be difficult to distinguish between these two subgroups when 
based on characteristics like structure, size, cargo, and protein 
composition (26). Therefore, there is a broad interest in novel 
methods of isolation and purification. To further understand 
the origin of the different vesicle populations and to unravel 
their (patho-) physiological and pathological relevance, a better 
mechanistic understanding on their biogenesis and secretion is 
also required (24).

Multiple Functions of evs
Cellular Homeostasis
Several studies have demonstrated that eukaryotic vesicles are 
used to remove obsolete, undesired, or even dangerous cellular 
molecules or protect the cells and organism from waste or drug, 
thus contributing to maintenance of cellular homeostasis (1, 26). 
Interestingly, aged erythrocytes release hemoglobin-containing 
EVs to enhance clearance of old erythrocytes from the circulation 
(27). Furthermore, cells are able to remove harmful cytoplasmic 
DNA in exosomes to maintain cellular homeostasis (28).

Transfer of Genetic Information
Recent studies indicated that EVs can contain genetic material 
such as RNA and noncoding RNAs, including miRNA, and are 
indispensable for cellular communication and mRNA homeosta-
sis (29). Further studies demonstrated that such EV cargoes could 
be successfully transferred to recipient cells in culture, leading to 
functional consequences for the recipient cell (30, 31). Specific 
miRNAs are enriched in EVs derived from immune cells and 
thereby mediate proper immune responses or represent important 
regulators during inflammation (1, 22). However, tumor-derived 
EVs containing specific miRNAs play profound roles in tumor 
progression, for example, by supporting immunosuppression or 
transferring oncogenic capacity (7, 22, 32).

Promotion of Coagulation
Although vesicle release has been proposed to be beneficial for 
the cell, the vesicles can also represent a danger to their environ-
ment, for example in blood, where vesicles can provide a surface 
as a focal point for coagulation activation, resulting finally in 
thrombus formation (33). Blood coagulation is also triggered by 
vesicle-mediated interaction between macrophages, neutrophils, 
and thrombocytes. Thrombocytes shed MVs bearing tissue factor 
(TF) on their surface, which interact with macrophages, endothe-
lial cells, or further thrombocytes (20, 34). Supporting this, 
MV-bound TF can be detected in a variety of diseases, including 
trauma, sepsis, and cancer (35, 36). This so-called “blood-borne” 
TF may contribute to the development of thrombosis that is 
associated with these diseases (36–39).

Immune Modulation
A sufficient immune response is characterized by a sufficient 
communication between the innate and the adaptive immune 
system (40). Immune cell populations from both the innate and 
adaptive immune systems shed EVs with specific cargo, thus an 
exchange of EVs appears to be crucially involved in regulation 
of the immune responses (41). Exosomes released by immune 
cells have a bi-directional function; they may act as antigen-
presenting vesicles, thereby for example stimulating anti-tumoral 
immune responses, or as inducers of tolerogenic effects suppress-
ing inflammation (8, 42, 43). Early studies showed that immune 
cell-derived EVs carry MHC class I, MHC class II, and T  cell 
co-stimulatory molecules (43, 44). In vitro as well as animal 
studies demonstrated that antigen-presenting cell (APC)-derived 
exosomes effectively stimulate T-cell responses, thus they are 
critical for proper immunological responses (45). Macrophages/
monocytes are known to release EVs enriched with the miRNA 
molecule miR-223, a key regulator of myeloid cell proliferation 
and differentiation (46). Polymorphonuclear leukocyte (PMN)-
derived MVs specifically bind to macrophages/monocytes, 
dendritic cells (DCs), and endothelial cells and thereby can alter 
the immune response. Interestingly, immature DCs alter their 
immunological function in the presence of PMN-derived MVs 
and consequently feature tolerogenic properties (1).

Specificity and Stability
In the human body, EVs can be released from many, if not all, 
cell types and are abundant in many body fluids, including blood, 
urine, saliva, cerebrospinal fluid (CSF), ascites, and breast milk 
(47–55). In this context, it remains unclear, whether shed EVs are 
addressed for a specific recipient cell, and if so, what causes tissue 
or organ specificity, their stability and their uptake. Proteomic 
profiling of EVs identified different types of glycan-binding pro-
teins or glycosylation patterns, which appear to determine the 
target cells or influence interactions with them (1). For example, 
B-cell-derived EVs contain α-2,3-linked sialic acid, which can be 
captured by sialoadhesin (CD169), an adhesion molecule found 
on macrophage surfaces (56). Because of their variable protein 
content and composition, EVs have different forms of functional-
ity. Surface-expressed receptors appear to play an essential role 
in bio-distribution, or binding of EVs to their target cells or to 
extracellular matrix components (1). Of note, by transferring 
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functionally active receptors, including CCR5, the target-cell 
phenotype can be modified or even intracellular signaling 
pathways can be influenced (57). Once released, EVs can bind 
to neighboring cells or to the extracellular matrix components, 
or traffic passively through the bloodstream or body fluids (8). 
The bio-distribution of EVs depends on several aspects, includ-
ing the parent cell source, availability of recipient cell types, and 
clearance from the circulation by retention, uptake, and inter-
nalization (1). Certain blood-borne EVs are rapidly captured by 
marginal zone phagocytes of the spleen, liver Kupffer cells, and 
DCs and macrophages in the lung, resulting in a short half-life 
in the circulation (44, 58). However, human platelet-derived EVs 
display a half-life of up to 6 h (59). Furthermore, some EVs express 
glycosylphosphatidylinositol (GPI)-anchored CD55 and CD59, 
thereby protecting them from complement-mediated lysis (60). 
EVs display different lipid compositions of the membrane bilayer 
in comparison to their parent cells, suggesting a sorting process 
during EV formation (48). Many studies confirmed a specific 
lipid sorting, with a predominant content of cholesterol, phos-
phatidylserine (PS) and sphingolipids present in EVs. Cholesterol 
appears to be an essential lipid for regulating EV formation and 
release (38, 61). It has been proposed that EVs enriched with 
cholesterol and long saturated fatty acids of sphingolipids display 
a tighter lipid packaging and improved physiochemical features 
by providing greater stability, structural rigidity, and resistance 
(1). Established uptake mechanisms include clathrin-mediated 
endocytosis (CME), phagocytosis, macropinocytosis, and plasma 
or endosomal membrane fusion, which are reviewed elsewhere 
(62). Noteworthy, pH appears to modulate uptake capacity by 
influencing electrostatic charges between EVs and the cell plasma 
membrane (63).

ev–COMPLeMeNT SYSTeM 
iNTeRACTiON

The Complement System
The complement system represents an important arm of innate 
immunity and is frequently referred to as the first barrier against 
pathogens (64). It is well known that the complement cascade 
consists of more than 30 proteins, which function in a well-
orchestrated order of activation and regulation (65). Beyond 
opsonization and pathogen elimination, this biological system 
is involved in the regulation of the cytokine/chemokine release, 
stays in close interaction with the coagulation cascade, and has a 
crucial impact in tissue inflammation and repair (66). Generally, 
three pathways for complement activation have been described: 
the classical pathway (CP), the lectin pathway, and the alterna-
tive pathway. All three pathways lead to the generation of a C3 
convertase which subsequently cleaves the central molecule C3 
and leads to the release of anaphylatoxins C3a and C5a, and 
activation of the terminal cascade of complement, resulting in the 
membrane attack complex (MAC) formation with cell lysis (67). 
The anaphylatoxins can also bind to their respective receptors 
(C3aR, C5aR1, C5aR2), and mainly exert inflammatory effects, 
including leukocyte attraction (65, 68). Recently, the serine pro-
tease thrombins have been identified to activate the complement 

system by direct cleavage of C3 and C5 (65). A simplified overview 
of the complement system is presented in Figure 2.

evs and Complement As interaction 
Partners
Higher numbers of circulating vesicles are found in local and 
systemic inflammation, which is also characterized by the 
appearance of complement activation products (10, 36). Their 
co-presence suggests a link between the complement system and 
EVs, which may influence innate as well as adaptive immune 
responses. To date, literature in this research field is limited and 
warrants further experimental investigation. Nevertheless, sev-
eral studies provide increasing evidence supporting an important 
crosstalk between these biological systems. On the cellular level, 
endothelial cells, PMNs, monocytes, erythrocytes, and platelets 
appear to be mainly involved (9, 11, 42, 69). For both systems, 
it has been shown that activation and interaction of the comple-
ment system with other cascades such as coagulation and MVs 
lead to both pro-inflammatory and anti-inflammatory directions 
and can also affect morbidity and mortality in diseases, including 
the setting of trauma and sepsis (10, 36).

Complement Evasion Through EV Shedding
The first description of vesicle–complement interaction focused 
on the release of vesicles directly from the cell membrane (ecto-
cytosis) upon stimulation of neutrophils with sublytic amounts of 
the MAC (70). After complement attack, a large number of mem-
brane protrusions appear on the cellular surface following vesicle 
shedding from the cells (10, 71). In accordance with this, PMNs 
activated with either N-formyl-methionyl-leucyl-phenylalanine 
(fMLP) or C5a release vesicles from their membrane within min-
utes, which overall exhibit features corresponding to MVs (72).

Strikingly, various cells are able to evade complement attack 
by allowing the removal of the MAC from the cell surface by a 
calcium-dependent elimination process (73–75). Several stud-
ies demonstrated that MAC clearance occurred actively and 
rapidly from the plasma membrane, assuring cell survival and 
recovery from complement attack. Such complement-induced 
MV shedding was reported in erythrocytes, PMNs, glomerular 
epithelial cells, and tumor cell lines, including U937 and K562 
(73, 74, 76, 77).

Moreover, cytotoxic effects were found on oligodendro-
cytes after complement activation with resultant C9 forma-
tion, which in turn release MAC-enriched vesicles from their 
surface (78, 79). In support of this, identical MAC-containing 
vesicles were detected in the CSF of multiple sclerosis patients, 
indicating that complement-mediated injury contributes to 
myelin damage in vivo, where vesicle shedding appears as an 
important regulatory process (79).

EVs Modulate Immune Responses via Interaction 
With Complement Regulators
In addition to protection from complement attack, EVs are key 
players in the regulation of immunological responses. APCs inter-
act with immune cells, particularly T-cells, by shedding exosomes 
with T-cell stimulatory properties (8). However, exosomes, derived  
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FiGURe 2 | Simplified scheme of established complement activation pathways. To date, three activation pathways for complement have been described. 
Antibody–antigen complexes or the acute phase protein CRP initiate the classical pathway by allowing C1q binding. The lectin pathway is initiated by MBL binding 
to pathogen surfaces and to pathogen-specific proteins. The alternative pathway is characterized by spontaneous hydrolysis of C3 to C3(H2O), which can in turn 
bind the plasma proteins FB and FD. All three pathways result in a C3 convertase, which cleaves C3 and subsequently generates C5 convertases and initiates MAC 
formation. Activation of the coagulation cascade generates thrombin, which can cleave C3 and C5 in a C3-/C5-convertase independent manner. Complement 
regulatory proteins are represented in green. CR1 facilitates the decay of C3 and C5 convertases and is a cofactor of FI. CD55 accelerates the decay of the C3 
convertase. CD59 inhibits the MAC formation. Factor I regulates the processing of C3b to iC3b, where FHL-1, FH, and CR1 show cofactor activities. FH also 
regulates the formation of the alternative pathway C3 convertase. FHL-1 supports the decay of C3 and C5 convertases. Abbreviations: Ag–Ab, antigen–antibody; 
CR1, complement receptor 1; CRP, c-reactive protein; FB, factor B; FD, factor D; FH, factor H; FHL-1, factor H-like protein 1; FI, factor I; MAC, membrane attack 
complex; MBL, mannan-binding lectin.
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from antigen-processing compartments, are likely to be associ-
ated with antigenic proteins, and thereby are particularly prone 
to bind immunoglobulins (60, 80). These in turn activate the 
classical pathway (CP) resulting in rapid opsonization and lysis. 
Remarkably, even non-antigen harboring exosomes are described 
to activate the complement cascade, where C1q plays an important 
role by simply binding to lipid membranes through electrostatic 
interactions rather than in an antibody-dependent manner (81, 
82). However, exosomes derived from APCs also appear capable 
of escaping from complement-mediated lysis. Interestingly, these 
exosomes express the GPI-anchored complement regulators 
CD55 and CD59 (60). CD55 regulates the C3 and C5 convertases, 
whereas CD59 inhibits the formation of MAC (83). These find-
ings strongly indicate that exosomes equipped with complement 
regulators like CD55 and CD59 are able to escape complement 

attack, which contributes to their stability and longer circulatory 
availability (84). These vesicle-bound complement regulators 
may be important for regulation of the immune response by 
stimulating/inhibiting T-cell responses as well as cross-priming 
with other immune cells (60).

A further member of the complement regulators, complement 
receptor 1 (CR1) also interacts with EVs. PMN-derived MVs are 
described to express clusters of CR1, which allow them to bind 
efficiently to opsonized bacteria. Interestingly, of the other com-
plement regulatory proteins expressed by the PMN, only CD59 
co-localized with CR1, whereas CD55 was almost absent (72). Of 
note, in the absence of complement molecules, PMN-derived MVs 
preferentially bind to endothelial cells, whereas in the presence 
of complement, adhesive features of PMN-derived MVs change: 
PMN-derived MVs can bind C1q, and subsequently C3, and are 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


6

Karasu et al. EVs and Complement

Frontiers in Immunology | www.frontiersin.org April 2018 | Volume 9 | Article 721

thereby capable of binding to erythrocytes via CR1 (85). By bind-
ing to erythrocytes, these opsonized MVs may resemble circulat-
ing immune complexes, which are transported to the liver and 
spleen and are cleared rapidly from the circulation. Consequently, 
their adherence to erythrocytes may prevent binding to endothe-
lial cells, thus leading to reduced bio-availability for interactions 
with other immune cells and avoiding harmful fixation in tissues 
(86, 87). Although speculative, binding of MVs to erythrocytes 
may also result in altered erythrocyte function. Aged erythro-
cytes shed MVs enriched with CR1 and CD59 (88). Therefore, 
old erythrocytes may no longer be protected from opsonization 
and complement attack, which enhances their removal from 
the circulation by phagocytosis. Overall, the release of cellular 
complement regulators via MVs appears to be important during 
physiological but also pathological conditions. The presence of 
complement regulators on EVs was also described in the context 
of age-related macular degeneration (AMD). AMD is character-
ized by a complement-mediated inflammation in the macula 
leading to cellular damage and vision loss. Retinal pigmented 
epithelium (RPE) cells possess immunosuppressive features and 
modulate monocyte activity through EVs. Furthermore, RPE-
derived EVs appear to regulate complement activity by interacting 
with complement regulators. Under inflammatory conditions, 
membrane complement regulators including CD55, CD59 and 
CD46 are present on RPE-derived EVs. As a consequence, cells 
are vulnerable to a complement attack, which can lead to cellular 
death (89). Additionally, mutations in complement regulator 
genes, including the CFH gene encoding for FH and FHL-1 are 
involved in the pathology of AMD (90–92). Besides C3 binding, 
RPE-derived EVs are able to bind FH, suggesting a regulatory 
function (93). Mutations in the CFH gene may impair the binding 
of FH and FHL-1 to EVs. Theoretically, in the absence of FH/
FHL-1, C3-coated EVs may be recognized as immunological 
complexes by invading immune cells, and thus may support the 
inflammatory process in AMD.

EV-Mediated Immunosuppression via C5aR1 
Shedding
Frequently, immunosuppression is a consequence of multiple 
trauma, hemorrhagic shock, or progressive sepsis, leading to 
impaired immune function by development of complemen-
topathy and coagulopathy with a fatal clinical outcome (94–96). 
Rapid complement activation and exhaustion after severe tissue 
trauma lead to complement dysregulation (94). In clinical sepsis, 
an enhanced presence of the complement C5a receptor C5aR1 on 
MVs in patients with septic shock has been demonstrated, suggest-
ing an important role in the outcome. In addition, MV shedding 
with C5aR1 negatively correlated with survival in sepsis patients 
(10). In a cohort of sepsis patients, neutrophils exhibit decreased 
C5aR1 expression, but enhanced numbers of circulating C5aR1 
(C5aR1 on MVs), resulting in an impairment of neutrophil func-
tion. Sera from non-survivors after septic shock contained much 
more circulating C5aR1 than in sera from survivors. However, it 
cannot be excluded that the circulating C5aR1 was also bound 
to membrane fragments other than MVs. Nevertheless, in vitro 
experiments with human neutrophils demonstrated that treat-
ment with C5a or the acute phase-protein C-reactive-protein 

(CRP)—both of which are significantly enhanced in plasma dur-
ing septic shock—resulted in an almost complete loss of C5aR1 
on neutrophils, and significantly increased numbers of MVs 
carrying C5aR1 on their surface leading to an acquired dysfunc-
tion of neutrophils (10). Furthermore, in a rodent sepsis model, 
circulating C5aR1 was co-expressed with a granulocyte-specific 
MV marker CD66e, confirming microvesicle-mediated shedding 
of C5aR1 (10). In support of this, a further study identified a 
20-fold higher gene expression of C5aR1 in blood leukocytes of 
26 patients with severe sepsis compared to healthy volunteers 
(97). This finding may be explained by a cellular compensatory 
mechanism, by upregulating de novo synthesis of C5aR1 due to 
enhanced C5aR1 shedding on microvesicles.

EVs As a Platform for Complement Activation
In addition to regulatory functions, EV interactions with 
complement may aggravate the complement response. Several 
studies revealed increased numbers of circulating MVs in both 
thrombotic and inflammatory diseases, where complement acti-
vation is also present (98). In synovial fluid of rheumatoid arthri-
tis patients, significantly increased levels of leukocyte-derived 
MVs were detected with complement components bound on 
their surface, including C1q, C4, and C3 (11). In vitro studies 
provided further evidence by demonstrating that leukocyte-
derived MVs can bind C1q and activate the CP, subsequently 
leading to deposition of C4 and C3 (70, 75, 76). In accordance, 
Gasser and Schifferli demonstrated that PMN-derived MVs 
could activate complement. This activation was mediated by the 
CP, and only after C1q deposition on MVs, C4 and C3 fragment 
fixation did occur (85). Further downstream, activation of MAC 
formation occurred on the surface of MVs (70). In agreement 
with this, human erythrocyte-derived MVs were reported to fix 
C1q, which was followed by activation of the CP with binding 
of C3 fragments (99). As mentioned above, elevated numbers 
of circulating EVs (particularly MVs) are present during 
inflammatory conditions, which are generally associated with 
enhanced complement activation (100). In conclusion, cells may 
primarily compensate overwhelming complement activation by 
releasing more MVs. These MVs may act as scavengers by fixing 
complement molecules and allowing MAC formation on the MV 
surfaces, thereby protecting the parent cells and tissues from 
complement attack.

C-reactive protein (CRP) was also described as an important 
mediator for complement binding on MV surfaces. CRP is 
synthesized in the liver in a complement-dependent manner in 
its native pentameric form (pCRP) (101). According to the cur-
rent findings, pCRP localizes to injured tissues and undergoes 
conformational changes, leading to the formation of pCRP*, 
which still maintains the symmetry of pCRP, but is detected by 
a neoepitope-specific antibody, and/or can even dissociate into 
neoepitope-expressing monomeric CRP (mCRP) (102). Studies 
indicate that both pCRP* and mCRP aggravate the inflamma-
tory response by complement activation, but currently, it is 
impossible to distinguish between pCRP* and mCRP (102–104). 
Interestingly, it was also demonstrated that binding pCRP on 
MV surfaces induced the generation of pCRP*/mCRP, which 
in turn can activate the complement system (102). The authors 
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demonstrated that MVs with bound CRP could fix C1q, thus acti-
vating the CP. This study could detect significantly higher levels 
of CRP bound on MVs in patients after myocardial infarction 
compared to healthy controls. Additionally, Braig et al. analyzed 
the presence of native CRP (pCRP) and neo-epitope-expressing 
CRP (pCRP*/mCRP) on MVs of different cellular origins (leuko-
cytes, platelets, and activated platelets), which confirmed findings 
of Habersberger et al. and suggests a diagnostic use in this clinical 
setting (102, 105). In all cellular populations, a significantly higher 
deposition of both pCRP and pCRP*/mCRP was detectable on 
the respective MVs (102). In vitro studies revealed a significantly 
elevated deposition of the C3 cleavage product C3b and iC3b on 
MVs in the presence of pCRP*, suggesting a much more complex 
interaction mechanism with the AP. In contrast to C3b, iC3b is 
not able to form an AP C3 convertase and thus functions rather 
anti-inflammatory or tolerogenic (106–108). Furthermore, sur-
face bound iC3b is a potent oposonin, interacts with receptors, 
and stimulates phagocytosis and antigen presentation to cells of 
the adaptive immune system (109). Factor I and the cofactors FH, 
FHL-1, and CR1 are known to process C3b into its inactive form 
iC3b (Figure  2). So far, the mechanisms behind the observed 
C3b and iC3b presence on MVs remain elusive. Furthermore, 
it is not clear how CRP is involved in this process. On the one 
hand, the presence of pCRP* on MVs may enhance the extent 
of complement activity by recruiting factor B and factor D, 
resulting in C3b formation. On the other hand, MVs bound with 
pCRP*/mCRP may recruit FI, FH, and/or FHL-1, which in turn 
processes the bound or circulating C3b to iC3b. Interestingly, 
a current study revealed that the complement regulator FHL-1 
is able to bind pCRP as well as mCRP, and FH is able to bind 
mCRP (110). Since pCRP* also expresses a neoepitope, it can be 
speculated, that pCRP/pCRP* and/or mCRP, which are bound on 
MVs support FH and FHL-1 recruitment, which in turn enhances 
the processing of C3b to iC3b. However, even in the absence of 
CRP, C3 and iC3b are bound on MVs, assuming a further and 
CRP-independent mechanism (102, 111). It may be possible that 
C3-coated MVs resemble opsonized pathogen surfaces, resulting 
in recruitment of FB and FD and in forming an AP C3 convertase. 
Another explanation include that hydrolyzed C3, C3(H2O), is 
generated and/or bound on MV surfaces, where it may also form 
an AP C3 convertase. The formed AP C3 convertase may cleave 
other circulating C3 into C3b and causes its deposition on MVs. 
Subsequently, EVs may recruit or bind FH, FHL-1, and FI to 
process C3b to iC3b. However, it is still probable that C3b and 
iC3b may be generated through the AP without MV involvement, 
thus MVs only provide a surface for the cleaved products C3b and 
iC3b. Therefore, further investigations are necessary to clarify the 
presence of C3, C3b, and iC3b on MVs.

EV-Interaction With the Coagulation System 
Activates Complement
Blood coagulation is known to exhibit extensive crosstalk with the 
complement system. In particular, activation complement system 
includes the involvement of the coagulation molecule and serine 
protease thrombin, which is able to directly cleave both C3 and 
C5 (Figure 2). Independent of their cellular origin, MVs harbor 
PS on their surface. In vitro studies revealed that these vesicles 

have pro-coagulant properties and PS represents a platform for 
thrombin generation thereby also activating complement (112). 
Furthermore, erythrocyte-derived MVs are described to activate 
complement via a thrombin-dependent mechanism (69).

Additionally, endothelial cell-derived MVs appear to play an 
important role in coagulation-mediated complement activation. 
It is known that endothelial cells express complement factors and 
regulators as well as receptors on their surface (113). Particularly 
during infectious or inflammatory conditions, endothelial cells 
revealed a deposition of complement molecules on their surface 
(114). Consequently, the endothelium is able to mediate MV 
shedding after complement activation (9). MAC formation on 
endothelial cells was reported to be followed by the shedding 
of MVs with MAC on their surface and of note, additionally 
expressing binding sites for the clotting factor Va and thus 
support prothrombinase activity (115). The prothrombinase 
complex includes Va, Xa, and prothrombin; activation of the 
complex can lead to thrombin formation, which mediates clotting 
as well as complement activation (116, 117). Furthermore, blood 
coagulation can be activated by the release of TF-coated MVs 
(20). TF is a known key molecule for coagulation and thrombosis 
initiation (118). TF-coated vesicles have been described to inter-
act with macrophages, endothelial cells, and thrombocytes (20). 
Therefore, it can be speculated that in addition to blood coagula-
tion, TF-coated MVs are able to initiate complement activation. 
Although TF alone is unable to directly interact with C3 or C5, 
formation of thrombin is triggered when membrane-localized TF 
is exposed to blood (119, 120). These blood-borne TF-MVs may 
be involved in thrombin formation (38). In this context, thrombin 
as a potent serine protease can directly cleave C3 and C5 (117).

Taken together, current studies provide evidence that comple-
ment can promote EV shedding and activation and vice versa. 
Their crosstalk appears to exert crucial effects on regulating the 
extent of complement activity and thus modulating both the 
innate and adaptive immune responses (Figure 3).

CLiNiCAL ReLevANCe

evs in Diseases
Oncologic Diseases
Early studies indicate a strong contribution of EVs in tumor 
outgrowth and progression (7). One major known mechanism 
of EV contribution in this process is mediated by transferring 
oncogenic activity to other cancer cells. Glioma cells expressing 
epidermal growth factor receptor variant III (EGFRvIII) secrete 
MVs harboring EGFRvIII and transfer this receptor to EGFRvIII-
negative cancer cells within the same primary tumor, resulting in 
tumor growth (121). Furthermore, pH is an important factor for 
EV uptake into recipient cells (63). An increased fusion efficiency 
of tumor-derived exosomes was identified in cells of metastatic 
origin in comparison to those derived from primary tumors 
or normal cells (63). Strikingly, the responsible mechanism for 
enhanced fusion efficacy was mediated by an acid pH in the 
tumor microenvironment, which influences rigidity, fluidity, and 
lipid composition resulting in direct plasma membrane fusion of 
EVs with enhanced EV trafficking between tumor cells (63). In 
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the view of the tumor, EVs can also function as packages “ingrata”, 
where they expel therapeutics out of the cancer cell by MV shed-
ding mechanisms (122).

Established mechanisms for tumor progression include deg-
radation of extracellular matrix components, resulting in barrier 
dysfunction, tumor invasion, and tumor cell migration (123, 124). 
In this regard, tumor-derived EVs harbor matrix-degradation 
proteases including matrix metalloproteinase-2 (MMP-2) and 
MMP-9, which correlated with tumor progression (125, 126). 
Furthermore, tumor cells have been shown to exploit EVs to 
contribute to their progression by inactivating T lymphocytes or 
natural killer cells as well as promoting differentiation of regula-
tory T lymphocytes to suppress immune reactions (127).

In summary, the main known mechanisms of EVs provide 
degradation of extracellular matrix components, transfer of 
oncogenic activity to other cancer cells, and drug resistance 
(7, 121, 122).

Inflammatory Diseases
In the context of inflammation, EVs have been shown to exert 
both pro- and anti-inflammatory effects and can influence the 
course of disease. In particular, MVs can not only modulate 
inflammation but also coagulation. MV production dramati-
cally increases after severe trauma, including traumatic brain 
injury (TBI), major burn injury, and during sepsis (128–130). 

In regard of severe sepsis, complement is known to negatively 
influence the immune response, which can even lead to multi-
organ failure (131). Non-survivors of septic shock for example, 
exhibit increased numbers of MVs bearing C5aR in comparison 
with sepsis survivors (10). Simultaneously, C5aR expression on 
neutrophils completely mirrored the expression pattern on MVs, 
displaying a loss of C5aR on neutrophils in patients who did not 
survive the lethal consequences of sepsis (10).

Noteworthy, EVs also play critical roles in TBI (132). Similar to 
other injuries, cell–cell communication is critical for regulating the 
immune response in TBI (133). TBI features a post-inflammatory 
immune response, which results in the activation and migration 
of resident glia and of recruited peripheral immune cells to the 
injury site (134). Kumar et  al. recently found that microglial-
derived MVs are responsible for neuroinflammation after TBI 
(135). In a rodent TBI model, EVs were isolated after injury and 
revealed an altered expression pattern of miRNA. Expression of 
miR-212 in EVs decreased, while miR-21, miR-146, miR-7a, and 
miR-7b were significantly increased after injury, indicating an 
enhancement loop of neuroinflammation caused by EVs (136).

Extracellular vesicles also modulate ocular immune functions 
in health and in disease, and they are associated with inflam-
matory conditions in AMD (137). Additionally, dysregulation 
of the alternative pathway with consequent over-activation of 
complement critically influences the pathophysiology of AMD 
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(90, 138). RPE-derived exosomes appear as contributors of 
inflammation by interacting with complement. Aged mouse 
RPE cells and human RPE cell lines shed exosomes containing 
C3 and FH on their surfaces (93). Additionally, the complement 
regulators CD55 and CD59 were detected on RPE-derived EVs, 
enhancing complement attack of the parent cells (89). However, 
it is still unclear how RPE-derived EVs modulate AMD-related 
complement responses. Overall, EVs represent a highly prom-
ising research area not only for the field of ocular diseases. In 
future approaches, EVs from other ocular cell populations should 
be analyzed for their contribution to inflammation. For example, 
corneal fibroblasts are already described to release exosomes, 
which contain components of the extracellular matrix, which are 
important for corneal wound healing (139).

Neurodegenerative Disorders
Extracellular vesicles inhere multiple and crucial functions in the 
central nervous system (CNS), including intercellular communi-
cation, maintenance of myelination, synaptic plasticity, antigen 
presentation, and trophic support of neurons, which are reviewed 
in detail elsewhere (140). It is unsurprising that EVs are associ-
ated with amyotrophic lateral sclerosis (ALS), Alzheimer’s disease 
or Parkinson’s disease, where they can act as carriers of misfolded 
and neurodegenerative-specific proteins. For example, TAR DNA 
binding protein (TDP-43) is one of the main pathogenic proteins 
contributing to ALS (141). Ubiquitinated and hyperphosphoryl-
ated abnormal TDP-43 fragments are described to accumulate 
as vesicle inclusions within neurons and glia, causing cellular 
death (141, 142). Interestingly, TDP-43-enriched EVs could be 
extracted from ALS patients, suggesting a crucial impact on the 
course of disease (143). A detailed account of these findings as 
well as others, considering the role of EVs in neurodegeneration, 
is highlighted in a comprehensive review (144). Regarding the 
role of complement, investigations so far are lacking that link EVs 
with complement in neurodegenerative disorders.

evs As Potential Biomarkers
Extracellular vesicles represent multifunctional entities that appear 
to play an active role in many biological processes, including the 
transfer of bioactive molecules between cells and tissues, and the 
transfer of viruses and prions (145, 146).

Extracellular vesicles, including exosomes and MVs, have 
promising properties as minimally invasive and novel source of 
biomaterial in molecular diagnostics (147). Furthermore, EVs 
can be readily identified and collected from various biological 
fluids. EVs carry a variety of macromolecules, including DNA, 
RNA, mRNA, miRNA, and other non-coding RNAs, as well as 
complement, providing promising targets for disease detection, 
characterization, monitoring, and therapy. Clinically, circulating 
exosomes and MVs isolated from cancer patients have been 
associated with metastasis or relapse, and thus could serve as 
important diagnostic and prognostic markers as well as thera-
peutic targets (148). Furthermore, tumor-derived MVs have been 
described to contain tumor-gene transcripts, which could be used 
as “liquid biopsies” in the field of clinical diagnostic (149).

In the context of neurodegenerative diseases, there remains 
a lack of biomarkers, particularly neurodegenerative-specific 

biomarkers are difficult to detect in CSF (150). Because CNS-
derived EVs are described, the fact that they protect their cargo 
from degradation makes them promising candidates as biomar-
kers (1). As an additional advantage, the cellular origin can be 
identified according to surface marker expression profiles (151). 
Thereby, EVs may help to deliver more knowledge about the 
cellular and pathogenic processes in specific CNS cell popula-
tions. MVs spiked with complement may represent attractive 
biomar kers to analyze the inflammatory state in patients, 
including C5aR, which on MVs correlates with the severity 
of sepsis outcome (10). However, no standardized method for 
EV isolation and characterization is established in the clinical 
application (152).

evs As Therapeutic vehicles
In the field of translational medicine, EVs represent promising 
candidates for therapeutic applications, for example, as vehicles 
for horizontal molecule transfer. Additionally, they inhere a 
myriad of potential clinical applications, ranging from oncologi-
cal destruction to tissue repair and regeneration (42, 153).

Because vesicles can pass the blood-brain barrier (BBB), they 
could even be considered as naturally occurring liposomes (154). 
This aspect is of immense importance for pathologies concerning 
the CNS, including TBI, neurodegeneration and brain cancer, 
where the BBB dramatically limits drug delivery (155).

As the natural carrier of signal molecules, EVs possess many 
other favorable properties including stability, biocompatibility, 
biological barrier penetration, low toxicity, which make them 
an attractive vehicle for therapeutic delivery (156). Moreover, 
exosomes may be less immunogenic, less cytotoxic, and non-
mutagenic compared to other existing viral-based or liposome-
based gene delivery vehicles (157). These characteristics suggest 
that exosomes can be developed as an ideal vehicle for therapeutic 
delivery. Because EVs use native mechanisms for cellular entry, 
internalization and trafficking, therapeutics in the form of small 
RNA could benefit from EV delivery, including miRNAs, anti-
inflammatory agents, and anti-cancer drugs. Tumor acidity is a 
key contributor to chemo-resistance by protonation and subse-
quent neutralization in the acidic microenvironment (63). Drug 
transfer by EVs may overcome this situation and could facilitate 
an efficient transport of the drug into the tumor cells. To date, the 
feasibility of EV-based therapies has not been evaluated in clinical 
trials because there are some major limitations for therapeutic 
application.

Extracellular vesicles, particularly MVs, contain PS on their 
surfaces, initiating complement activation and subsequent 
rapid clearance. Thus, introducing modification of vesicles 
appear to be inevitable but also therapeutically promising 
(69). In this context, the design of EVs harboring complement 
regulators, including CR1 or CD55 as well as CD59, might 
protect them against complement activation and attack, and 
thereby prolong their half-life in the circulation and ensure a 
wide-range systemic distribution, all of which may be of advan-
tage in the treatment of systemic inflammatory conditions. 
However, PS is also known to induce thrombosis by activat-
ing the coagulation cascade, resulting in adverse thrombotic 
events after clinical application (94). In this case, myristoylated 
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alanine-rich C-kinase substrate (MARCKS) appears to be a 
promising option, because in vitro studies have demonstrated 
that MARCKS can sense PS and inhibit its functions, and thus 
may act as an anticoagulant agent (158). Therefore, it would be 
promising to investigate whether MARCKS is able to inhibit 
complement activation and/or thrombosis. In addition to 
cargo delivery, this finding is also of importance for targeting 
PS-containing MVs, which are for example present in circulat-
ing cancer-derived EVs from various cancers and can induce 
thrombotic events (159).

Unmodified EVs are prone to accumulation, which prefer-
entially occurs in solid organs, including the liver, kidney, and 
spleen, and consequently results in rapid clearance by bile excre-
tion, renal filtration, or phagocytosis. Therefore, the therapeutic 
cargoes within EVs might reveal a minimal accumulation in 
the intended tissue or organs and may instead be enriched in 
un-intended tissues (160, 161). This bio-distribution profile 
and off-target effects also disqualify unmodified exosomes from 
clinically acceptable therapeutics. Though, EVs need modifica-
tions to improve their physiochemical properties and thera-
peutic efficiency. PEGylation of EVs has been analyzed in mice, 
where they displayed improved cell specificity and prolonged 
circulation times (162). Nevertheless, PEGylated EVs are still 
subject to rapid clearance as a result of systemic immunogenic-
ity (163). How EVs target recipient cells in vivo remains largely 
unknown. However, exosomes are selectively enriched in some 
transmembrane proteins that can be genetically engineered to 
display ligands/homing peptides on their surface, which confers 
exosome binding specificity to cells bearing the related recep-
tors (164). Innovative technologies, including phage display and 
in vivo biopanning helped to discover many peptides homing to 
diseased tissues or organs, providing a potential use for targeted 
EV-therapy (164). Furthermore, lipid composition also plays 
an important role for favorable physiochemical properties, 
influencing vesicle uptake, bio-distribution, and half-life in the 
organism (1, 23). Therefore, this aspect should be considered for 
vehicle engineering and may be important for the improvement 
of liposomal drug delivery systems (161). However, therapeutic 
application of liposomal drug delivery systems are known to 
be able to induce a complement activation related pseudoal-
lergy (CARPA), hampering their clinical use (165). The extent 
of CARPA by liposomes depends on several characteristics, 
including charge, size, and cholesterol content (166). In contrast 
to liposomes, EVs have conserved membranous structures, 
including natural corona, lipid composition, (trans-) membrane 
proteins, receptors as well as uptake and fusion modalities, 
which are comparable to those in cells (165). Thus, EVs seem 
to overcome the CARPA limitations caused by liposomes or 
nanoparticle-based delivery systems and represent highly prom-
ising therapeutic carriers (167).

In the context of inflammation, a noninvasive application 
of EVs containing anti-inflammatory drugs resulted in a 
significant inhibition of lipopolysaccharide (LPS)-induced 
brain inflammation in rodents (168). In a pioneering study, 
the use of nitrogen cavitation effectively generated a large 
number of EVs from neutrophils. Strikingly, this artificially 
generated EVs displayed more favorable properties compared 

to normal neutrophil-derived EVs, for example could also 
deliver an anti-inflammatory drug, which successfully showed 
beneficial effects in acute lung inflammation/injury and in 
LPS-induced sepsis (169). Hypothetically, such EVs could be 
used for therapeutic targeting of complement, by engineering 
EVs with specific binding sites for complement molecules to 
scavenge excessive soluble complement factors from the blood 
circulation and protect the host from overwhelming comple-
ment activation, for example in the clinical setting of severe 
trauma or sepsis. Furthermore, RPE-derived EVs also represent 
therapeutic vesicles for the treatment of inflammatory condi-
tions including eye diseases. They are able to induce monocyte 
death or reprogram monocytes toward an anti-inflammatory 
phenotype (170).

CONCLUSiON

During recent decades, EVs have gained an emerging interest 
for both scientists and clinicians. Several studies have been 
conducted to obtain greater knowledge about the content of 
EVs, mechanisms of their biogenesis, functions, and involve-
ment in diseases. As key players in pro- and anti-inflammatory 
events, EVs are of importance for the immune response and 
regulation (8, 42, 45). EV levels are enhanced in inflammatory 
diseases, particularly where complement activation occurs in 
a dysregulated manner, including polytrauma, TBI, hemor-
rhage, and septic shock (10, 36). The co-occurrence of EVs 
and complement indicate an important link in the context of 
innate immune responses. Current data gained from cellular 
experiments and clinical observations have confirmed that 
released EVs carry and modulate complement, and vice versa 
complement is also able to influence the number of circulat-
ing vesicles (Figure  3). Nevertheless, studies addressing 
this area of research are rare and thus, further scientific and 
clinical investigations are necessary for a deeper insight into 
the precise mechanistic interactions between complement and 
vesicles. In conclusion, EVs exhibit the potential as biomarkers 
and targets as well as therapeutic agents for complement and 
immunomodulatory strategies in the field of translational and 
personalized medicine, which are relevant in a broad scope of 
inflammatory diseases.
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