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Introduction

The fuzzy genome: From populations to single cells
The spatial organization of genomes has been investigated 

using different methodologies since studies into the cell’s com-
ponents began. Techniques using low (e.g., refs. 1 and 2) and 
high through-put microscopy (e.g., ref. 3) and proximity-based 
ligation have enabled the generation of large data sets that facili-
tate the investigation of specific and global chromosome interac-
tion patterns from an ever increasing number of organisms that 
includes bacteria,4,5 baker’s yeast,6,7 fission yeast,8 Drosophila,9 
mouse10 and human.11 Collectively these studies confirm that the 
positioning of loci varies within and between cells, even in identi-
cal conditions,11,12 reviewed in references 13 and 14.

Proximity ligation assays are probabilistic in nature and as 
such rely upon population analyses. The probabilistic nature 

of these assays is due to both biological and technical aspects 
of the methods. Biological variation arises from the facts that: 
(1) DNA is highly flexible with a persistence length of 50 nm 
(150 base pairs). Therefore, a chromosome or DNA segment 
of tens or hundreds of megabases may assume many different 
folding conformations with equal probability and (2) despite 
the (unintentionally misleading) tendency to present proximity 
ligation data as unique conformations or summary heat maps, 
there is no a priori biological, evolutionary or physical reason 
to assume a unique genome conformation in different individu-
als, or even within a population of cells in the same environ-
mental condition(s). Technical variation also contributes to 
the probabilistic nature of the data, in this case variation arises 
from the cross-linking, digestion and ligation reactions which 
are inherently probabilistic. Thus, identifying an interaction 
does not mean the interaction is always present—rather that it is 
present within an undetermined proportion of the population. 
Conversely, the failure to detect an interaction does not mean 
that it never occurs, rather that the method does not detect it 
under those experimental conditions because the sites may not 
be cut or ligated.

Results from proximity ligation based experiments confirm 
contacts between genomic loci separated by large genomic dis-
tances (or between different chromosomes).4-6,8-11,15-20 However, 
the existence of interactions does not automatically equate to bio-
logical significance, and interactions may simply originate from 
the very act of packing chromosomes into the nucleus or cell. Of 
course, this argument ignores the possibility that the restraints 
imposed by nuclear, or cell, shape have been integrated into 
chromosome organization over the course of evolution. Despite 
this, it is clear that some chromosomal interactions observed 
by modern techniques represent specific biologically relevant 
linkages4,5,15,21,22.

Could there be a single spatial solution to a genome’s 
structure?

What is the average structure of a sportsperson playing a game? 
For the purpose of this analogy, any game will do; however we 
will specify that the game is rugby union. Over the course of a 
game, any one player’s structure changes as the game ebbs and 
flows toward its ultimate conclusion (Fig. 1A–E). The changes 
that occur to the player’s structure are not to the extent that arms 
or legs are removed—albeit sometimes they are broken—but 
rather the spatial arrangement differs from minute to minute 
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Since Jacob and Monod’s characterization of the role of 
DNA elements in gene control, it has been recognized that the 
linear organization of genome structure is important for the 
regulation of gene transcription and hence the manifestation 
of phenotypes. Similarly, it has long been hypothesized that 
the spatial organization (in three dimensions evolving through 
time), as part of the epigenome, makes a significant contribu-
tion to the genotype-phenotype transition. Proximity liga-
tion assays commonly known as chromosome conformation 
capture (3C) and 3C based methodologies (e.g., GCC, HiC, and 
ChIA-Pet) are increasingly being incorporated into empirical 
studies to investigate the role that three-dimensional genome 
structure plays in the regulation of phenotype. The appar-
ent simplicity of these methodologies—crosslink chromatin, 
digest, dilute, ligate, detect interactions—belies the complex-
ity of the data and the considerations that should be taken into 
account to ensure the generation and accurate interpretation 
of reliable data. Here we discuss the probabilistic nature of 
these methodologies and how this contributes to their endog-
enous limitations.
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according to his or her role within the current play. For example at 
the moment captured in Figure 1A the player’s (i.e., Ma’a Nonu) 
right hand is positioned next to his head as he participates in a 
ritualized challenge (e.g., haka; http://www.allblacks.com/index.
cfm?layout=haka) performed at the beginning of the game. By 
contrast, at some point later in the game, the player’s right hand 
can be spatially adjacent to the left shoulder (Fig. 1B), in front of 
the right shoulder (Fig. 1C and D) or located at some distance 
(determined by the length of the arm) below the right shoulder 
(Fig.  1E). Could we determine the player’s structure by taking 
low resolution photographs of him or her at multiple time points 
across the game? Theoretically yes, the body parts would all be 
in similar relative positions (e.g., the head connected to the neck, 
arms to shoulders, etc.); however, even allowing for rotations that 

enable gross characteristics (e.g., the torso) to be aligned the aver-
age structure would be a dis-ordered amalgamation, the unifor-
mity of which depends on the number of images which were taken 
and the body parts that were resolvable in the images.

This analogy represents the situation that would be predicted 
to occur for maps of genome organization that represent the dif-
ferent cell cycle stages (i.e., are unsynchronized) and even within 
cells that are synchronized to exactly the same moment of the 
cell cycle. Moreover, if we extrapolate the analogy to include the 
other players involved in the game, it demonstrates that averaging 
results across different cell types is also problematic.6,16

Variation is an inherent property of polymer structure
Precise positioning of entire chromosomes, which are in effect 

polymers consisting of several millions of monomers, would 

Figure 1. Proximity ligation assays are probabilistic and determine the average structure within a population of cells. (A–E) Schematics of the individual 
conformations that Ma’a Nonu (All Black center) assumes during a game of rugby. Examples of the conformations Ma’a Nonu assumes are illustrated for: 
(A) the traditional All Black haka which occurs at the beginning of the game; (B) the act of passing the ball to his left.; (C) running; (D) a side-step and 
fend to avoid an opponent who is attempting to tackle him from the right; and (E) the act of scoring a try by diving to place the ball on the ground over 
the try line. (F) The average structural conformation obtained from (A–E).�
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have too high an entropic cost to make it a feasible mechanism 
for controlling genomic processes in cells.23,24 In fact, it would 
imply holding the interphase chromatin together by some kind 
of rigid scaffold at support points not farther away from each 
other than the persistence length of chromatin—which has been 
estimated between 20 and 200 nm,25 a sizeable range but clearly 
much smaller than the extent of the typical eukaryotic nucleus. 
However, it is clear that the directed positioning of specific chro-
mosomal regions does occur to different degrees during the cell 
cycle and in different cell types.26-32

Current experimental methods (reviewed in refs. 33–35) are 
limited and are unable to empirically define the precise positions 
of all loci within the genome of a single cell at high resolution. 
Therefore, to define features within the chromosome confor-
mation ensemble, we are limited to modeling the ensembles of 
chromosome conformations using approaches developed for 
polymer physics coupled with data obtained from proximity 
ligation.11,16,21,22,27,36 Despite the fact that there is inter-conforma-
tion variability between the structures in the ensembles, recent 
results have identified conserved patterns and clusters within the 
genomes that have been modeled to date.4,21,22

Analyses of high resolution 3D structures of the S. cerevi-
siae genome that incorporated a proximity-ligation data set 
confirmed that yeast have preferred positions in the nucleus.21 
Moreover, interaction-dependent clustering of tRNAs, early 
firing origins of replication and Gal4 upstream activating 
sequences were identified. Similarly, Ben-Elazar et al.37 reported 
the co-localization of co-regulated genes within space follow-
ing analysis of statistically generated models that incorporated 
a global analysis of the S. cerevisise genome.7 These findings 
support the hypothesis that genome structure and function are 
interlinked.

Simulated three-dimensional (3D) structures of the 
Caulobacter crescentus genome, generated using 5C data and live-
cell imaging, have illustrated that the C. crescentus genome is 

ellipsoidal with periodically arranged arms.4 Further clustering 
analysis of the individual structures within this ensemble identi-
fied four structurally similar configurations.

While the application of high-throughput sequencing to 
proximity-ligation data has led to significant increases in data 
generation and a leap in our understanding of genome organi-
zation, the reconstruction of 3D genome conformations based 
on such data is in its infancy. Appropriate methods for analysis 
are still being developed. The main problems in the linking of 
data to models of genome organization are that: (1) the ligation 
probabilities are not exclusively a function of the proximity, but 
influenced by many other factors such as intrinsic reactivity, local 
coverage by proteins, crowding, etc.; (2) these methodologies 
have the intrinsic property that they only provide information 
on pairwise interactions—simultaneous interactions of several 
loci in a cluster can only be inferred, not be directly identified;  
(3) restriction enzyme choice affects the frequency of detection of 
restriction fragments and ligation products; (4) PCR biases affect 
the chances of detecting and identifying interactions; and (5) the 
copy number of genomic regions affects the chances of detecting 
interactions with and between these loci. Despite these meth-
odological limitations and the structural variability that exists 
within conformation ensembles, the results of 3D modeling have 
identified conserved patterns and clusters within those genomes 
that have been analyzed thus far. These models have the poten-
tial to generate new hypotheses about the relationship between 
nuclear structure and function.

Proximity ligation assays5,15,17,21 have demonstrated that, in 
addition to the directly adjacent neighbors, loci interact with 
up to 38 partners depending on the organism or data set under 
study (Table 1). The variation in observed numbers of interact-
ing partners for loci within an organism reflect the: (1) physi-
cal characteristics of the chromosomes; (2) depth of interaction 
coverage: e.g., the depth of sequencing, the choice of restriction 
enzyme and resulting fragment lengths affect if an interaction is 

Table 1. Loci that interact within a genome tend to do so with more than one locus. No. of interactions per fragment, the number of interactions that 
were empirically determined for fragments that interact with at least one other fragment within the data sets

No. of interactions per fragment

Organism Condition/cell line Method Mean Max Reference

Saccharomyces cerevisiae Glucose GCC 11a 30 17 and 21

Glycerol lactate GCC 6a 20 17

Galactose GCC 3a 21 17

Escherichia coli exponential GCC 7.83 38 5

serine hydroxamate GCC 6.67 25 5

Homo sapiens GM12878 5C
3.88b

3.25c 20 15

K562 5C
4.07b

3.84c

> 9
15

Hela-S3 5C
5.35b

4.62c

> 9
15

aMode number of interacting fragments for restriction fragments that interacted with more than just adjacent fragments within the S. cerevisiae genome. 
bMean number of interacting fragments for transcription start sites (TSS), throughout the ENCODE pilot regions representing 1% of the human genome, 
with at least one non-adjacent interaction for expressed genes in GM12878. cMean number of interacting fragments for TSS sites for non-expressed genes 
in GM12878. GCC, genome conformation capture6; 5C, 3C carbon-copy.72
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detected and hence the coverage; (3) relative complexity of the 
functional restraints that result in the formation of an interac-
tion; and (4) the environment within which the genome was ana-
lyzed. From a functional perspective, it is tempting to speculate 
that an association with large numbers of partners indicates that 
loci are clustered at hubs38,39 for repair,40 replication or transcrip-
tion.41-43 However, the validity of this interpretation is debatable 
as it ignores biological issues including the fact that cell volumes, 
and hence global chromatin compaction levels, vary and this 
variation can alter our ability to detect interactions by unblock-
ing restriction sites. Moreover, the interpretation also ignores 
the technical issue that proximity ligation assays determine the 
population average and do not identify the combination of inter-
actions that occur within a single cell.

At present, most of the existing proximity-ligation data are a 
population average of both large numbers of cells and and cell 
cycle stages. It could be argued that proximity ligation assays per-
formed on single cells would enable the direct determination and 
identification of clusters within each cell that was being tested. 
However, this approach would still fail to clarify the problem 
completely for the following reasons: (1) restriction digestion is 

incomplete; (2) ligation is a probabilistic event that covalently 
joins only two free DNA ends; and (3) there is PCR and copy 
number bias.

Restriction digestion is a source of variation
The choice of enzyme affects the patterns that are observed 

and the interpretations that are made (e.g., ref. 5 vs. ref. 44). 
This is particularly important given the recent trends to map 
transcriptional activity back onto interaction networks, which 
requires small fragment sizes to allow the accurate overlapping 
of interactions with transcriptional or mediating factors (e.g., ref. 
5 vs. ref. 44).

Recent experiments have shown that the choice of the restric-
tion enzyme alters the amount of chromatin that is solubilized, 
thus affecting the frequency with which interactions are detected 
and refining the interaction pattern.45 For example, the ability of 
a fragment to circularize46 and be solubilized45,47 is dependent on 
the length of the DNA fragment48 and hence the choice of the 
restriction enzyme. Moreover, restriction enzyme choice affects 
ligation rates with blunt end ligation is less efficient than sticky 
end ligation.49-52

The specificity of the enzyme and any star-activity needs to 
be taken into account, particularly given the large quantities of 
enzyme used in the standard protocols. Non-specific cleavage 
and subsequent ligation can complicate analyses.48 Finally, the 
efficiency of chromatin cleavage is important, as too low an effi-
ciency will result in the detection of only adjacent interactions 
due to failure to separate the restriction fragments. Significant 
locus specific differences do exist, for example cleavage efficien-
cies52 of 85% and >70% can be achieved with HindIII and MboI 
within the β-globin locus.47 Similarly, cleavage efficiencies of 
between 65–89% are achieved using AseI at the mouse immuno-
globulin kappa locus.53,54

Variable ligation is a significant cause of methodological 
variation in proximity ligation assays

Intra-molecular ligation is the critical step in all proxim-
ity ligation assays. As such, it is important to incorporate the 
physico-chemical consequences of this step into the interpre-
tation of results from such assays. The process of ligation is an 
inherently probabilistic event. The probabilistic nature of this 
process results from the fact that ligation events mediated by 
enzymes, for example the T4 ligase, depend upon two compat-
ible free ends simultaneously associating with the active site of 
the ligase.50 The association of all three components (i.e., two 
free ends and a ligase molecule) is the limiting event, hence the 
improvement in ligation frequencies achieved in reactions con-
taining a 3:1 molar excess of insert to vector DNA during clon-
ing50,55 and enzymes that can bind and not release the free ends.56

In the case of the intra-molecular ligations detected by prox-
imity ligation, the local concentration of ligation competent free 
ends is artificially increased through the formation of intermo-
lecular cross-links that hold the interacting restriction fragments 
together. However, the efficiency of the resulting ligation reac-
tions is also affected by the relative flexibility of the DNA frag-
ments. The flexibility of DNA for fragment lengths above 200 
bp, is well known and given by the persistence length of 50 nm.57 
However, the fact that the restriction fragments are (1) different 

Figure  2. Restriction fragments lengths and protein binding can limit 
the ability of free ends present on cross-linked fragments to ligate. (A) 
The circularization of linear DNA fragments is length dependent with 
fragments below ~70 bp classically regarded as not being able to circu-
larize. (B–D) Cartoons illustrate how nucleosome (gray disc) binding at 
or near the end of restriction fragments can prevent the ligation of free 
ends and limit the potential ligation products from two restriction frag-
ments (red and black lines).

Table 2. The number of ligation configurations that are possible when 2–10 
ligation competent fragments are held within one cross-linked complex

Number of interacting fragments
Number of different  

ligation configurations

2 10

3 76

4 764

5 9496

6 140 152

7 2 390 480

8 46 206 736

9 997 313 824

10 23 758 664 096
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lengths (Fig. 2), (2) bound by different proteins or protein com-
plexes (e.g., nucleosomes or nucleoid associated proteins) that 
constrain their flexibility and ability to interact and (3) that the 
positions of the bound complexes or inter-linking are unlikely to 
be evenly distributed along or on the restriction fragments mean-
ing that the length of DNA which is free to bend at the end can 
be limiting (Fig. 2B–D). There is ongoing debate as to the mini-
mum length that can circularize.46,58,59

Arguably the single most important limitation of the prox-
imity ligation step is that any one restriction fragment can only 
ligate to two other restriction fragments—one at each free end. 
The chances of this occurring are very low, for example Sexton 
et al. only identified 2 products in 167 as consisting of three 
ligated restriction fragments that definitely originated from a 
tripartite complex.9 Moreover, even if only two ligation-com-
petent fragments are cross-linked, ten different products can 
form during the ligation reaction (Fig. 3A). In fact the number 
of individual products that can form through ligation events 
within clusters containing incrementing numbers of restriction 
fragments (n) increases super exponentially such that com-
plexes containing 10 ligation competent partners can produce 
23 758 664 096 products (Table  2; Supplemental Material). 
Critically, not all of the products that form are able to be distin-
guished from each other, particularly when they are fragmented 
for sequencing (Fig. 3B).

Recent experiments have shown that those fragments which 
do interact typically do so with more than just their adjacent frag-
ments and up to ~30 partners have been identified within studies 
in populations of yeast cells (Table 1). As stated earlier, proximity 
ligation assays do not allow the identification of clusters within 
a single cell. However, measurements based on transcriptional 
activity and numbers of active polymerases have led to estimates 
that transcription factories contain eight polymerases engaged on 
different loci in Hela nuclei.42 Moreover, the formation of cen-
tromeric and telomere clusters indicates that biologically relevant 
clusters do exist. This complicates attempts to calculate actual 
ligation frequencies, and hence inferences about the percentage 
of the population in which an interaction occurs.47

Repetitive elements also pose a potential bias in analyses of 
proximity ligation data as they are difficult to position on the 
genome with any certainty.34 Therefore, it is difficult to deter-
mine which particular repeat(s) are involved in a specific inter-
action. For example, telomeres and sub-telomeric regions are 
repetitive, have strand specific base compositions and are known 
to cluster in a wide a variety of organisms and at specific cell cycle 
stages (reviewed in ref. 60). This raises issues around the model-
ing of regions that are effectively invisible to the proximity liga-
tion methodology. However, the junctions of specific repetitive 
regions can be mapped and, assuming they interact with other 
regions, can be used to localize the beginnings and ends of the 

Figure 3. Ligation of restriction fragments within a cross-linked complex results in super exponentially incrementing numbers of ligation products. 
(A) Ligation events between two restriction fragments, held together within a cross-linked complex (gray oval), results in 10 possible combinations of 
products. (B) Ligation events between three or more restriction fragments result in overlapping sequences following fragmentation for sequencing.�
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repetitive domain. The structure of the remainder of the repeti-
tive domain can be approximated using the biophysical charac-
teristics of the DNA. However, the failure to be able to uniquely 
position interactions with repetitive regions is a limitation that 
needs to be borne in mind when analyzing and interpreting prox-
imity ligation data.

Interactions with repetitive elements that are arranged in tan-
dem (e.g., the Saccharomyces cerevisiae rDNA repeats) or episomes 
(e.g., mitochondrial genomes or high copy number plasmids) can 
be collapsed to one particular region or DNA element. This is a 
common approach, as current analyses of diploid and replicated 
genomes are unable to discern which copy of a particular chromo-
some is involved in an interaction—yet there is no a priori reason 
to assume that both copies are involved in the same interactions.

Current proximity ligation methods are practically and tech-
nically incapable of identifying all of the products that form 
from the complexes that are present within the individual cells. 
Therefore, the full complement of interactions that are occurring 
within a single cell cannot be identified even if all of the cells 
within a set population are individually assayed because the liga-
tion products that represent some of these interactions cannot 
form—physically or statistically.

Bias due to PCR amplification
The amplification of sequences prior to sequencing, either as 

part of the proximity ligation methodology itself or as part of the 
library preparation for sequencing, can introduce bias into the 
results. This is particularly true for samples that have high nucle-
otide base biases (e.g., skewed AT or GC compositions61,62) and 
is dependent upon the enzymes, processes and equipment that 
are used to prepare the samples for sequencing.61 For example, 
bias can be introduced at any step during Illumina sequencing, 
including: (1) library preparation which can introduce intermo-
lecular ligation events, (2) cluster amplification which can affect 
GC bias, (3) synthesis, and (4) post-sequencing data processing.

PCR bias affects both the chances of seeing a sequence, the 
sequencing error probability and thus the chances of mapping 
it back to the reference genome.62,63 Protocols are constantly 
being modified to reduce these biases (e.g., ref. 61 and “PCR-
Free” sample preparation kits [TrueSeq DNA PCR-Free Sample 
preparation kit; FC-121–3001; Illumina]). These alterations to 
sequencing protocols introduce differences that affect cross-study 
comparisons between existing and new data sets, or for data that 
is generated on different platforms at different centers. Such 
biases are obvious in run-specific frequencies for the identifica-
tion of intermolecular ligation rates such that different numbers 
of intermolecular ligation events are observed in different prepa-
rations of the same sample.5

It could be argued that the AT or GC biases we are discuss-
ing are not important when looking at genome spatial organi-
zation. However, not only do different genomes have different 
GC biases,64 but repetitive elements and regions with skewed AT 
or GC compositions exist within prokaryotic64,65 and eukaryotic 
genomes, are biologically important61 and may play significant 
roles in genome organization. Centromeres are a classic exam-
ple, however long nucleosome-free regions (LNFRs) in resting 

human T cells have skewed AT (average 73% AT) or GC (aver-
age 76% GC) contents, and these regions have been suggested to 
be involved in global remodeling.66

With the exception of the terminal fragments on linear chro-
mosomes, all loci interact with two linearly adjacent restriction 
fragments when assayed by proximity ligation. These linearly 
adjacent interactions complicate interpretations as they may rep-
resent: (1) real interactions mediated by some protein complex; 
(2) protection of the restriction site; or (3) incomplete digestion. 
As such, they are typically removed from subsequent analyses. 
While effective, the question remains whether the bioinformatic 
removal of these interactions from data sets overcomes all of the 
complications associated with their presence. Empirical methods, 
in particular the use of modified blocker primers,67 can be imple-
mented to prevent or reduce the amplification of the adjacent 
restriction fragments in 4C assays and other few against many 
targeted proximity ligation assays. These methods result in the 
relative amplification of the signal from the less common long-
range or non-adjacent interactions.

Bias due to copy number variation
Copy number of fragments or ploidy within the genome is not 

just a complicating factor for repetitive regions, rDNA repeats, 
plasmids or organelle genomes. Rather it is an issue for interac-
tions involving any loci or chromosomes that exhibit copy num-
ber variation: (1) as result of genome replication; and (2) due to 
specific variation in response to environmental cues (reviewed in 
ref. 68). Variation due to replication can complicate analyses of 
populations with altered proportions in the different cell cycle 
stages. Alternatively, replication complicates bacterial analyses 
due to the fact that these cells show varying states of aneuploidy 
due to the existence of multiple instances of initiation from their 
origin of replication (e.g., Escherichia coli).5 As a result of these 
issues, copy number variation should not simply be considered as 
an artifact to be removed because it complicates the mapping of 
the connected loci. Rather, it remains possible that connections 
between loci that show copy number variation are in fact biologi-
cally significant and informative.

The ability to distinguish or not effects that are correlated 
with alterations to copy number is an acute issue for proximity 
ligation studies which do not incorporate some aspect of copy 
number variation analysis. The GCC technique6 enables copy 
number across the entire genome to be accurately determined 
and accounted for in studies of genome organization.5 While this 
is useful, the corollary is that the amount of sequencing required 
is currently prohibitive for studies of large genomes (>300 Mb). 
It may be possible to account for copy number in other global 
proximity ligation techniques using external standards that are 
applied at known concentrations prior to the steps that are used 
to enrich for ligated fragments prior to sequencing.

It is possible to determine the number of different configu-
rations of interactions using an advanced inductive combina-
torial argument (Supplemental Material). The outcome is an 
algorithm which gives the number of configurations a(n) as a 
function of the number of candidate fragments n, which can join 
from either end.
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Conclusion

Given the intrinsic weaknesses within proximity-ligation 
assays, it is clear that the amount of information that can be 
obtained by direct analyses of identified interactions is limited. 
Moreover, while some of the biases can be compensated or cor-
rected48 the direct interpretations of the crosslinking data directly 
will only inform on those elements which are physically con-
nected and thus cross-linkable. It remains debatable how to pro-
ceed to overcome this limitation. Is it simply a question of depth 
of sequencing of the ligation products, or does the answer lie in 
the incorporation and analysis of in silico reconstructions or for-
ward predictive models. Reconstructions of varying complexity 
have already been generated,7,11,16,21,37 and the analyses of these 
models is complex. Predictive models can be used to ask different 
questions and could be generated beginning with ensembles of 
polymer models that recapitulate the random unpacking of DNA 
within the nucleus.21,69 The integration of predicted chromo-
somal contacts generated using transcriptional, replication and 
repair networks would morph these random models into “accu-
rate” testable representations of in vivo genome organization. 
Early attempts at this approach have been made.70,71 However, 
the combinations of paramaters that need to be used to generate 
“accurate” predictive models remain unknown.

Ambiguity comes not just from the visual representations of 
genomic organization; rather, it is a fundamental aspect of the 
proximity based ligation methodologies that are being used to 

study structure and the spatial organization of genomes them-
selves. Without methodological improvements that include the 
continued integration of alternative data, we will remain unable 
to accurately identify the pattern of structural spatial associations 
within single cells. Statistical limitations mean that the required 
improvements are unlikely to be based on the proximity-based 
ligation methodologies as they are currently employed. However, 
it remains undeniable that the potential advances in our under-
standing of the structure:function relationships within the 
nucleus are key to understanding not only nuclear processes but 
also the processes of development and how cells respond to their 
environment.
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