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Abstract  14 

 15 

In graph theory, "multilayer networks" represent systems involving several interconnected 16 

topological levels. One example in neuroscience is the stratification of connections between 17 

different cortical depths or "laminae", which is becoming non-invasively accessible in humans 18 

using ultra-high-resolution functional MRI (fMRI). Here, we applied multilayer graph theory to 19 

examine functional connectivity across different cortical depths in humans, using 7T fMRI (1-20 

mm3 voxels; 30 participants). Blood oxygenation level dependent (BOLD) signals were derived 21 

from five depths between the white matter and pial surface. We compared networks where the 22 

inter-regional connections were limited to a single cortical depth only ("layer-by-layer matrices") 23 
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to those considering all possible connections between areas and cortical depths ("multilayer 24 

matrix"). We utilized global and local graph theory features that quantitatively characterize 25 

network attributes including network composition, nodal centrality, path-based measures, and 26 

hub segregation. Detecting functional differences between cortical depths was improved using 27 

multilayer connectomics compared to the layer-by-layer versions. Superficial depths of the 28 

cortex dominated information transfer and deeper depths drove clustering. These differences 29 

were largest in frontotemporal and limbic regions. fMRI functional connectivity across different 30 

cortical depths may contain neurophysiologically relevant information; thus, multilayer 31 

connectomics could provide a methodological framework for studies on how information flows 32 

across this stratification. 33 

 34 

Keywords (up to 6): fMRI, laminar, connectomics, graph theory, multilayer network 35 

 36 

Introduction 37 

 38 

Investigating brain activity and function through network analyses has become an integral 39 

methodological foundation of neuroscience. Connectomics has yielded significant advances in 40 

understanding brain structure and function (Farahani et al., 2019; Milano et al., 2019). Modeling 41 

the brain as a system of nodes (brain regions) connected by edges (mathematical relationships)—42 

often using graph theory—can be used to provide insight into brain characteristics and 43 

topological properties (Rubinov & Sporns, 2010). Brain networks can be derived from structural 44 

neuroimaging such as MRI or diffusion tensor imaging (DTI) (structural connectomics) (Griffa 45 

et al., 2013; Meoded et al., 2020; Yeh et al., 2021) or functional neuroimaging such as fMRI, 46 
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EEG, or magnetoencephalography (MEG) (functional connectomics) (De Vico Fallani et al., 47 

2014; Matthews & Hampshire, 2016; Sadaghiani et al., 2022; Smith et al., 2013; Xia & He, 48 

2017). Both structural and functional connectomics have been used to understand disease models 49 

(Benito-Leon et al., 2019; Fleischer et al., 2019; Jacob et al., 2020; Kotlarz et al., 2022), aid in 50 

surgical mapping (Ahsan et al., 2020; Dadario et al., 2021; Gleichgerrcht et al., 2020; Hart et al., 51 

2016), and characterize therapeutic effects of neuropsychiatric treatments (Caeyenberghs et al., 52 

2017; Chen et al., 2020; Filippi et al., 2023; Lei et al., 2021; Tavakol et al., 2019; Yun & Kim, 53 

2021).  54 

 55 

An emerging field within connectomics, and more broadly graph theory, is the exploration of 56 

multilayer networks (Boccaletti et al., 2014; Kivela et al., 2014). Multilayer networks are 57 

composed of individual layers of networks with interconnecting edges between different layers. 58 

Connections across layers can be solely between homologous nodes (multiplex) or between 59 

nodes regardless of layer or nodal position (multilayer). Multilayer connectomics enables the 60 

study of multifaceted and multimodal neuroimaging data, with the different groups of data 61 

divided into distinct layers of the connectivity matrix (Betzel & Bassett, 2017; De Domenico, 62 

2017; Vaiana & Muldoon, 2018). For example, multilayer networks can be derived using 63 

correlations between different frequency bands of MEG recordings to identify the interplay 64 

between frequencies (Buldu & Porter, 2018). Additionally, different modalities such as MEG, 65 

fMRI, and diffusion MRI can be combined to identify patterns in brain processing (Breedt et al., 66 

2023) or pathological dysfunction (Casas-Roma et al., 2022) that were not found in traditional 67 

single-layer analysis. Thus, multilayer connectomics allows for the incorporation of 68 
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multidimensional neuroimaging data and can identify relationships between distinct 69 

neuroimaging techniques and analyses. 70 

 71 

One potential application of multilayer connectomics is understanding the hierarchical 72 

organization of the cerebral cortex. Neuroanatomical (Felleman & Van Essen, 1991; Rockland & 73 

Pandya, 1979; Zeki, 2018) and electrophysiological (Schroeder & Foxe, 2002; Schroeder et al., 74 

2001) studies in animal models have identified that laminar input/output patterns can inform 75 

about bottom-up (feedforward) or top-down (feedback) processes between cortical regions. 76 

Despite its high resolution, a limitation of laminar electrophysiological recordings in 77 

comprehensive connectivity analyses is that the coverage area is typically very small. At the 78 

same time, mapping anatomical connections using fiber tracing has limited options for mapping 79 

of the post-synaptic targets (Rockland, 2019). Intracortical analyses of high resolution fMRI data 80 

have the benefit that the coverage can be extended to the entire cerebral cortex. Advancements in 81 

high-resolution fMRI (≤ 1�mm3 voxel size) have enabled sampling of functional signals from 82 

different depths of the cortical gray matter (Finn et al., 2019; L. Huber et al., 2021; Norris & 83 

Polimeni, 2019; Polimeni et al., 2018). However, there are multiple challenges and unanswered 84 

questions for the feasibility of using cortical depth profiles of fMRI signals (Norris & Polimeni, 85 

2019). Because deoxygenated blood also drains up to the cortical surface through the 86 

intracortical diving venules, fMRI voxels intersecting the superficial layers could also be 87 

affected by deeper neuronal activations (Markuerkiaga et al., 2016b). Despite this limitation, 88 

studies using this emerging methodology have attempted to identify feedback and feedforward 89 

relationships non-invasively in the human brain (Chai et al., 2021; De Martino et al., 2015; 90 

Fracasso et al., 2018; Gau et al., 2020; Klein et al., 2018; Kok et al., 2016; Lankinen et al., 2023; 91 
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Lawrence et al., 2019; Moerel et al., 2018; Moerel et al., 2019; Muckli et al., 2015; Wu et al., 92 

2018), akin to micro-scale recordings in animal models.  93 

 94 

Even with the advent of high-resolution functional neuroimaging, multilayer connectomics have 95 

mostly focused on anatomical networks derived from structural MRI and DTI (Shamir & Assaf, 96 

2021; Shamir & Assaf, 2023) due to their direct relationship to cortical architecture. For 97 

example, DTI and histological samples identified that cortical areas with similar laminar 98 

structure were more likely to be connected (Wei et al., 2019). Additionally, even in functional 99 

laminar studies, previous works have predominantly utilized task-based studies in pre-defined 100 

brain regions (Chai et al., 2021; De Martino et al., 2015; Finn et al., 2019; Fracasso et al., 2018; 101 

Gau et al., 2020; Klein et al., 2018; Kok et al., 2016; Lankinen et al., 2023; Lawrence et al., 102 

2019; Moerel et al., 2018; Moerel et al., 2019; Muckli et al., 2015; Polimeni et al., 2010; Wu et 103 

al., 2018). Consequently, the functional components of the whole-brain cortical depths continue 104 

to be underexplored.  105 

 106 

In contrast to task-based studies, which primarily focus on specific cortical areas (Finn et al., 107 

2021), resting-state analysis enables whole-brain investigation of laminar organization (L. Huber 108 

et al., 2021; L. R. Huber et al., 2021). These resting-state connections have been shown to reflect 109 

anatomical connectivity (Adachi et al., 2012; Honey et al., 2009; Turk et al., 2016; van den 110 

Heuvel et al., 2016) and task-based networks (Di et al., 2013; Hermundstad et al., 2013). Thus, 111 

network differences within laminar resting-state fMRI networks represent functional differences 112 

between cortical depths. This work explores the laminar structure of the cortex using high-113 

resolution resting-state fMRI and multilayer connectomics. We use a dual-pipeline approach in 114 
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comparing the information extracted from layer-by-layer vs. multilayer connectomics to test115 

whether there are connectivity differences between cortical depths. We demonstrate the validity116 

of multilayer functional laminar connectomics through showing that cortical depths have distinct117 

graph theory characteristics that are more clearly identifiable through multilayer connectomics118 

compared to the traditional single layer methodology. 119 

 120 

Methods 121 

 122 
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Figure 1. Multilayer connectomic pipeline to analyze functional connectivity across different 

cortical depths. Here, "layers" refer to the dimensions of the connectivity matrices which 

represent fMRI signals gathered from different "cortical depths." (A) The cortex was 

uniformly divided into five surfaces at different depths, as seen above projected on a 0.75-mm 

isotropic-resolution anatomical T1-weighted image. (B) The brain was parcellated into 148 

regions-of-interest (ROIs) (74 per hemisphere) based on the Destrieux atlas in FreeSurfer 

(Destrieux et al., 2010; Fischl et al., 2004). The ROIs are shown on an inflated left-hemisphere 

cortical surface. (C) Schematic showing the difference between a layer-by-layer network and a 

multilayer network. In the layer-by-layer approach, each layer (network) is independent of 

other layers while in the multilayer approach, the layers are inter-connected. A sparser 

multilayer network is shown for visualization purposes. (D) Example matrix construction from 

both the layer-by-layer and multilayer approaches. While both approaches use matrices 

derived from Pearson correlations from the different layers, the multilayer approach generates 

a supra-adjacency matrix that also has correlations between different layers (shown in 

grayscale). (E) Example matrix construction for within-layer and between-layer matrices. For 

within-layer matrices, each sub-matrix is extracted individually for analysis. White areas 

represent connections excluded from the analysis.  

 123 

 124 

Participants 125 

 126 

Thirty healthy adults (mean age ± standard deviation = 32.4 ± 10 years, 15 women, all right-127 

handed) were recruited using an internal online recruiting platform. Participants were screened 128 
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for vision problems, hearing problems, cognition-altering medications, and exclusions for MRI 129 

(metal in the body). Twenty-eight of the participants were native English-speakers. Informed 130 

consent was obtained from all participants, and MRI safety screening forms were completed 131 

before each scan. The study design, protocol, and consent were approved by the Mass General 132 

Brigham Institutional Review Board. 133 

 134 

Image Acquisition 135 

 136 

Participants were measured in sets of 7.9-min resting-state fMRI scans occurring on different 137 

days (3 to 4 sessions per participant). Twenty-three participants were measured in twelve resting-138 

state scans. Seven participants had between ten to eighteen resting-state scans (10 scans: n = 1; 139 

11 scans: n = 1; 13 scans: n = 2; 14 scans: n = 2, 18 scans: n = 1) (Figure S1). The participants 140 

were instructed to avoid movement during the scans and keep their eyes open and fixated on a 141 

fixation cross projected on a screen viewed through a mirror. The average duration of the 142 

sessions was around two hours. Breathing and heart rate were recorded using the built-in 143 

Siemens system at a sampling rate of 400 Hz. Inhalation and exhalation were measured with the 144 

Siemens respiratory-effort transducer attached to a respiratory belt. The heart rate was recorded 145 

using Siemens photoplethysmogram transducers on the participant’s index finger. 146 

 147 

The functional and structural neuroimaging data was acquired using a 7T whole-body MRI 148 

scanner (MAGNETOM Terra, Siemens, Erlangen, Germany) with a home-built custom-built 64-149 

channel array coil (Mareyam et al., 2020). To reduce participant head motion inside the scanner, 150 

MRI-compatible paddings were placed around the head and neck. In each imaging session, T1-151 
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weighted anatomical images were measured using a 0.75-mm isotropic multi-echo MPRAGE 152 

pulse sequence (van der Kouwe et al., 2008; Zaretskaya et al., 2018) with repetition time (TR) = 153 

2530 ms, four echoes with echo time (TE) of 1.72, 3.53, 5.34, and 7.15 ms, 7° flip angle, 240 × 154 

240 mm2 field of view (FoV), and 224 sagittal slices. To help with pial surface placement by 155 

avoiding dura mater, T2-weighted anatomical images (voxel size = 0.83 x 0.83 x 0.80 mm, TR = 156 

9000 ms, TE = 269 ms, flip angle = 120°, FoV = 225 x 225 mm2, 270 sagittal slices) were 157 

acquired for twenty-eight out of thirty participants in one of the imaging sessions. Resting-state 158 

functional imaging was collected using a T2*-weighted blipped-CAIPI (Setsompop et al., 2012) 159 

simultaneous multi-slice (SMS) echo planar imaging (EPI) sequence using multi-band RF pulses 160 

(Setsompop et al., 2012) with 4× acceleration factor in phase-encoding direction, 3× acceleration 161 

factor in slice-encoding direction, TR = 2800 ms, TE = 27.0 ms, isotropic 1-mm3 voxels, 78° flip 162 

angle, 192 × 192 mm2 FoV, 132 axial slices, anterior-to-posterior phase encoding direction, 1446 163 

Hz/pixel bandwidth, 0.82 ms nominal echo spacing, and fat suppression. In addition, to de-warp 164 

the functional data, an EPI scan was collected with identical parameters but with an opposite 165 

phase-encoding polarity (posterior-to-anterior, PA-EPI) relative to the functional scans. For four 166 

participants with missing PA-EPI scans, the data were de-warped using a gradient-echo field 167 

map (TR = 1040 ms, TE = 4.71 ms and 5.73 ms, isotropic 1.3-mm3 voxels; flip angle = 75°, FoV 168 

= 240 × 240 mm2, 120 slices, bandwidth = 303 Hz/pixel). 169 

 170 

MRI Preprocessing 171 

 172 

First, SPM12 (http://www.fil.ion.ucl.ac.uk/spm/, [SPM12-spm_preproc_run.m]; bias field 173 

correction, full-width at half-maximum, FWHM: 18 mm, sampling distance: 2 mm, bias 174 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2024. ; https://doi.org/10.1101/2023.12.23.573208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.23.573208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

regularization: 1E−4) and customized MATLAB scripts were used to correct the bias field of the 175 

structural T1 and T2 images. Next, recon-all of FreeSurfer 6.0 (Fischl, 2012) with an extension 176 

for submillimeter 7 T data (Zaretskaya et al., 2018) was used to automatically create cortical 177 

reconstructions for each participant. An average of multiple T1-weighted anatomical volumes (3 178 

to 4 per participant) alongside a T2-weighted volume were used in the reconstruction to enhance 179 

the quality of the cortical surfaces. Nine intermediate surfaces were created between the white 180 

matter and pial surfaces with fixed relative distances, of which five were selected for the laminar 181 

analysis (described below). Lastly, the surfaces generated by recon-all were corrected manually 182 

for inaccuracies with Recon Edit of Freeview. 183 

 184 

For the functional data, slice-timing and motion corrections were first implemented in FreeSurfer 185 

7.1 (Fischl, 2012). De-warping was then used to correct for geometric distortions caused by 186 

susceptibility-induced off-resonance fields. In de-warping, the off-resonance distortion field  was 187 

estimated using the functional data and the PA-EPI scan collected with reversed a phase-encode 188 

blip; thus, the distortions are reversed in direction in respect to the scans [FreeSurfer: topup, 189 

applytopup] (Andersson et al., 2003; Smith et al., 2004). For four participants that were missing 190 

the PA-EPI scan used above, the distortion field was estimated using the B0 field map scan in 191 

FreeSurfer 6.0 [FreeSurfer-epidewarp]. The respiratory and heart rate artifacts were corrected 192 

using the RETROspective Image CORrection (RETROICOR) algorithm (3rd order heart rate, 193 

respiratory, and multiplicative terms) (Glover et al., 2000). Three participants were missing heart 194 

rate data and, therefore, only respiratory recordings were used in RETROICOR. In addition, 195 

RETROICOR was not applied to five participants with missing respiratory and heart rate data. 196 

Functional data were then co-registered with the structural images using Boundary-Based 197 
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Registration in FreeSurfer 6.0 (Greve & Fischl, 2009). By projecting each intersecting voxel onto 198 

the corresponding surface vertex using trilinear interpolation, the fMRI timeseries were then 199 

resampled onto the pial and white matter surfaces, and nine cortical depths between them. 200 

 201 

From the nine intracortical surfaces, five alternating depths were selected starting closest to pial 202 

surface (depths 1 to 5, superficial to deep) (Figure 1A). The outside surfaces (pial and white 203 

matter) were excluded to avoid partial volume effects from the cerebrospinal fluid and white 204 

matter, respectively. Additionally, depths included were alternated to minimize potential for 205 

partial volume overlap between surfaces that would bias the correlation matrix generation. To 206 

measure this overlap, the distance from each voxel centroid (within cortical volume) to the 207 

cortical surface (white matter/pial surface) was calculated. The relative distance was defined so 208 

that the depth at pial surface was zero, and one at the white matter border. Next, voxels 209 

intersecting each layer were picked and plotted with respect to their relative distances in a 210 

histogram. Figure S2 illustrates that taking every other layer limits the overlap between the 211 

layers, and thus leaking of information to adjacent layers. Additionally, to explore if tSNR 212 

impacted connectivity matrix generation, the average tSNR per each cortical depth was 213 

calculated for each layer (Figure S3).  214 

 215 

Matrix Generation and Processing 216 

 217 

Two parallel matrix processing pipelines were used to generate individual independent adjacency 218 

matrices for the layer-by-layer approach while creating one supra-adjacency matrix for the 219 

multilayer approach (Figures 1C and 1D). The layer-by-layer approach creates an independent 220 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2024. ; https://doi.org/10.1101/2023.12.23.573208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.23.573208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

network for each cortical depth while the multilayer approach results in five interconnected 221 

networks that combines all cortical depths. 222 

 223 

One important distinction is between the terminology “depth” and “layer.” Here, depth refers to 224 

the anatomical depth in the cortex while layer refers to a specific network derived from a cortical 225 

depth. This distinction is critical to avoid equating a network layer with an associated cerebral 226 

cortical layer. 227 

 228 

The brain was parcellated into 148 regions-of-interest (ROIs) (74 per hemisphere) based on the 229 

Destrieux atlas in FreeSurfer (Destrieux et al., 2010; Fischl et al., 2004) (Figure 1B). A detailed 230 

list of parcellations can be found in the Table S1.  231 

 232 

Resting-state time series for each participant were concatenated across runs, leading to the 233 

following number of time points: 2028 for n = 23 participants; 1690 time points: n = 1; 1859 234 

time points: n = 1; 2197 time points: n = 2; 2366 time points: n = 2, and 3042 time points: n = 1. 235 

Concatenated time series were detrended and filtered using a second-order Butterworth filter 236 

[high-pass: 0.01 Hz, low-pass: 0.1 Hz, MATLAB-filtfilt].  237 

 238 

For the layer-by-layer approach, Pearson correlations were derived between ROIs within the 239 

same depth, resulting in 10878 pairwise correlations from 148 nodes (ROIs) after removing 148 240 

self-correlations (number of correlations = (nodes2 – diagonal nodes) / 2). Pearson correlation 241 

coefficients were normalized using Fisher’s z-transformation resulting in five 148-by-148 242 

symmetric weighted connectivity matrices for each participant, i.e., one matrix for each cortical 243 
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depth (Figure 1D). Pearson correlation was used as opposed to partial correlations since partial 244 

correlations have been shown to perform poorly in networks with a large number of ROIs (Smith 245 

et al., 2011), the larger impact of noise and time series length on partial correlations (Liegeois et 246 

al., 2020; Matkovic et al., 2023), and the popularity of Pearson correlations in previous studies 247 

(Casas-Roma et al., 2022; Wang et al., 2014). 248 

 249 

For the multilayer approach, Pearson correlations were derived between ROIs between and 250 

within all depths, resulting in 273430 pairwise correlations from 740 nodes (140 ROIs times 5 251 

depths) after removing 740 self-correlations. Pearson correlation coefficients were then 252 

normalized using Fisher’s z-transformation with the final product being a 740 by 740 symmetric 253 

weighted connectivity matrix for each participant (Figure 1D). 254 

 255 

For both approaches, individual matrices were normalized and thresholded at 2% intervals 256 

ranging from 2 to 40% graph density (ratio of edges present to total number of possible edges) to 257 

understand measure differences over a wide range of thresholds. Thresholding is required to 258 

minimize the effect spurious correlations and consider only positive correlations. 259 

 260 

We also examined the account of within- and between-layer connections only in the context of 261 

the complete multilayer matrix. To this end, we draw two additional types of sub-matrices from 262 

the multilayer matrix, selectively concentrating on either their within-layer aspect (here, termed 263 

multilayer within-layer) or the between-layer aspects (termed multilayer between-layer) only. 264 

The multilayer within-layer matrices were derived by normalizing the supra-adjacency matrix, 265 

thresholding the matrix, and then extracting the nodes included in each individual layer (i.e. 266 
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nodes 1 to 148 for layer 1), creating a 148-by-148 weighted connectivity matrix. The multilayer 267 

between-layer matrices were, in turn, derived by normalizing the supra-adjacency matrix, 268 

thresholding the matrix, and then zeroing the five diagonal matrices (from each cortical depth) 269 

composing within-layer connections, thus resulting in only between-layer connections. (It is 270 

worth noting that since the within-layer and between-layer connectivity matrices were extracted 271 

after thresholding, analysis that requires normalization, i.e., non-thresholded matrices, could not 272 

be conducted in the context of this analysis; Figure 1E.)  273 

 274 

Edge Consistency and Variability 275 

 276 

Connections (edges) within and between layers were explored to understand edge consistency 277 

and variability between participants. Edge consistency (Finn et al., 2015) was calculated by 278 

selecting the top five percent of edges with the lowest standard deviation in un-thresholded 279 

multilayer networks. In contrast, edge variability (Menon & Krishnamurthy, 2019) was 280 

calculated by selected the top five percent of edges with the highest standard deviation across 281 

participants. In both cases, edges in each layer were then summed and divided by the total 282 

number of significant edges (edges in the top five percent) to identify the percentage of 283 

significant edges in each layer. 284 

 285 

Matrix Similarity 286 

 287 

Matrix similarity was used to understand how matrices differed across layers. Thresholded (2–288 

40%) and normalized matrices were compared using cosine similarity, 289 
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 291 

where Xi and Xj are vectors of the upper triangular elements of two adjacency matrices 292 

[MATLAB-pdist2], with values ranging from −1 (maximal dissimilarity) to +1 (maximal 293 

similarity). Cosine similarity was shown to distinguish between matrices better than traditionally 294 

used Pearson correlation (Cabral et al., 2017; Menon & Krishnamurthy, 2019). Using both the 295 

layer-by-layer approach and within-layer matrices, each layer was compared to the other layers. 296 

Additionally, to understand how matrix generation differs between methods, the same layer was 297 

compared across layer-by-layer and within-layer approaches.  298 

 299 

Connectomic Analysis 300 

 301 

Global and nodal measures were calculated in MATLAB using the Brain Connectivity Toolbox 302 

(MATLAB Version R2022b) (Rubinov & Sporns, 2010) on the Massachusetts Life Sciences 303 

Center Compute Cluster (DELL R440 servers with two Intel Xeon Silver 4214R twelve core 304 

CPUs). Global measures characterize the entire network while nodal measures characterize 305 

attributes of specific node (ROI). Nodal measures can also be averaged to create a global 306 

measure. Measures can be grouped into four general categories to describe their overall network 307 

characterization: composition, centrality, integration, and segregation. Composition measures 308 

describe the topology of the network while centrality measures detail specific nodal importance 309 

for network function. Integration measures examine how information flows through the network 310 

and segregation measures explore how the network is divided into functional components. 311 
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Therefore, different measures can be used to understand different characteristics of the network. 312 

For example, decreased nodal and global average strength was found in maltreated children 313 

indicating decreased overall brain connectivity (Puetz et al., 2017) while decreased clustering 314 

coefficient and global efficiency in patients with Parkinson’s disease can signify deficits in brain 315 

network integration and segregation (Schill et al., 2023). Table 1 denotes the measures used in 316 

this work, and detailed explanation of each measure can be found in Rubinov and Sporns 317 

(Rubinov & Sporns, 2010). Additionally, small-worldness, a global quantifier that examines how 318 

“random” a network is organized, was also calculated on layer-by-layer networks since noisier 319 

data will appear more “random” (Humphries & Gurney, 2008). Small-worldness was not 320 

calculated on within-layer and between-layer connectivity matrices since the calculation requires 321 

normalization. 322 

 323 

Table 1. List of network measures used in this work organized by functional category. (n) 

denotes a nodal measures. 

Composition Centrality Integration Segregation 

- Largest Cluster Size 

- Graph Density 

- Degree (n) 

- Strength (n) 

 

 

- Betweenness 

Centrality (n) 

- Eigenvector 

Centrality (n) 

- Participation 

Coefficient (n) 

- Characteristic Path 

Length 

- Radius 

- Diameter 

- Global Efficiency 

- Assortativity 

- Maximized 

Modularity Q 

- Transitivity 

- Clustering 

Coefficient (n) 

- Local Efficiency (n) 

 324 

Statistical Analysis 325 
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 326 

To avoid the bias of selecting a single threshold, area-under-the-curve (AUC) analysis was 327 

conducted to create a threshold-independent measure. The measures in Table 1 were calculated 328 

at each threshold (from 2 to 40% graph density in 2% intervals). The measure values at each 329 

threshold were then plotted against their threshold, and the area underneath the generated curve 330 

was calculated using a trapezoidal integration method [MATLAB-trapz].  331 

 332 

For each global measure (and averaged nodal measure), the AUC value for each layer for all 333 

participants was compared using a one-way analysis of variance (ANOVA) [MATLAB-anova1]. 334 

A one-way ANOVA was also used to compare each nodal measure to find differences at each 335 

specific ROI (node). For the multilayer network and between-layer measures, only nodal values 336 

(both averaged and individual) were compared since global measures for the multilayer network 337 

(and thus between-layer measures) contain effects from every layer. For global values, a False 338 

Discovery Rate (FDR, Benjamini-Hochberg) correction (alpha = 0.05) was applied to account for 339 

multiple comparisons (Benjamini & Hochberg, 1995; Groppe, 2024). Additionally, for nodal 340 

values (non-averaged), a FRD (Bonferroni-Holm method) correction (alpha = 0.01) was applied 341 

to account for multiple comparisons (Groppe, 2023; Holm, 1979).  342 

 343 

Cortical Thickness Validation 344 

 345 

One potential confounding factor using whole-brain laminar analysis is that different brain 346 

regions have different cortical thicknesses (Barbas, 2015; Ding et al., 2009; Zachlod et al., 2020). 347 

Thus, comparing cortical thickness values of significant brain regions (defined above) can help 348 
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evaluate whether our findings may be influenced by cortical thickness. Subsequently, cortical349 

thickness values for each ROI for each participant were extracted using FreeSurfer and averaged350 

across all subjects (Fischl, 2012). The distribution of significant nodes versus non-significant351 

nodes for each nodal measure and pipeline with greater than ten significant nodes were compared352 

using a t-test [MATLAB-ttest2].  353 

 354 

 355 

 

Figure 2. (A) Edge consistency between each participant (multilayer matrix). The edges of 

each layer of the multilayer matrix were compared to find the edge strengths that had the 

lowest 5% standard deviation between participants. Higher values indicate a higher percentage 
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of consistent edges, indicating consistent features between participants for those connections. 

(B) Edge variability between each participant (multilayer matrix). The edges of each layer of 

the multilayer matrix were compared to find the edge strengths that had the highest 5% 

standard deviation between participants. Higher values indicate a higher percentage of variable 

edges, indicating variable features between participants for those connections. (C) Cosine 

similarity between layer-by-layer and within-layer matrices (multilayer approach). Within 

participant, the matrix generation methods were compared using cosine similarity across a 

range of thresholds at each layer. Cosine similarity values range from −1 (maximal 

dissimilarity) to +1 (maximal similarity). The mean value at each threshold is plotted while the 

shaded region indicates the standard error. (D) Area-under-the-curve (AUC) measure in 

comparing layer-by-layer and within-layer matrix generation methods. Linear interpolation 

was used for visualization. The AUC from (C) is calculated using trapezoidal approximation. 

Higher values indicate higher similarity between methods while lower values indicate lower 

similarity between methods. The mean AUC value at each layer is plotted while the shaded 

region indicates the standard error. 

 356 

Results 357 

 358 

Matrix Similarity and Edge Comparison 359 

 360 

Edges from the multilayer matrix were compared to understand differences and similarities 361 

between participants and to see if the laminar connectomic methodology can distinguish different 362 

participants. High edge consistency indicates a similar connectivity pattern between participants 363 
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while a high edge variability increases the ability to distinguish been participants. Figure 2A and 364 

Table 2 shows the percentage of consistent edge strengths between participants that each layer 365 

contains from the multilayer matrix. Layer 1 (derived from the depth closest to pial surface) has 366 

the largest number of consistent edges (29.52%) with connections between layer 1 and layer 5 367 

(7.06%) being the most consistent between participants. In contrast, Figure 2B shows the edge 368 

variability between participants with the highest variability found in layer 5 (closest to white 369 

matter) overall (33.65%) and in within layer connections (11.86%). It is important to clarify that 370 

edge consistency and variability are not mutually related, even though they provide 371 

complementary results above.  372 

 373 

After edge analysis, connectivity matrices were compared within participants to understand the 374 

two competing matrix generation methodologies: layer-by-layer vs. within-layer (multilayer) 375 

approach. Cosine similarity was used to examine similarities between different connectivity 376 

matrices. In comparing within participant matrices across layers (Figure S4), layers were found 377 

to be similar with the most distant layers (layer 1 to layer 5) having the lowest similarity in both 378 

layer-by-layer matrices and within-layer matrices. Matrices within the same layer and within 379 

participant were also compared across the matrix generation methods (Figure 2C and 2D). Layer 380 

3 was the most consistent across the two methodologies while the peripheral layers (layer 1 and 381 

layer 5) differed the most between methods.  382 

 383 

Table 2. Edge consistency and variability percentages for each layer derived from the 

multilayer matrix. Bolded values show the highest percentage for each measure.  

Layer Edge Consistency (%) Edge Variability (%) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2024. ; https://doi.org/10.1101/2023.12.23.573208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.23.573208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

1 (Superficial) 29.52 8.25 

2 20.73 12.36 

3 15.82 19.11 

4 16.03 26.60 

5 (Deep) 17.89 33.65 

 384 

 

Figure 3. Area-under-the-curve (AUC) values across different layers for significant global 

measures (p ≤ 0.05) for layer-by-layer analysis. Significance was calculated using a one-way 

ANOVA with an FDR correction (alpha = 0.05).  Linear interpolation was used for 

visualization. The mean value across participants at each layer is plotted while the shaded 

region indicates the standard error. P values shown are FDR corrected (Benjamini-Hochberg 

method, alpha = 0.05). 

 385 

21
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Single Layer Results 386 

 387 

Global 388 

 389 

Global network measures were calculated for layer-by-layer matrices. AUC values for each 390 

global measure can be found summarized in Table S2. Network diameter (p = 0.049) 391 

significantly increased from the most superficial layer 1 to the deepest layer 5 (Figure 3A). 392 

Largest cluster size (p = 0.0024), average betweenness centrality (p = 0.028), average local 393 

efficiency (p = 0.046), and eigenvector centrality (p = 0.028) significantly decreased from layer 1 394 

to layer 5 (Figure 3B–E), with a peak in layer 2 for average betweenness centrality and average 395 

local efficiency. There were no significant differences in modularity, transitivity, characteristic 396 

path length, global efficiency, radius, assortativity, average degree centrality, average strength, 397 

average clustering coefficient, and average participation coefficient (Figure S5–6). Graph 398 

density and average degree centrality were constant across layers due to both measures being a 399 

direct function of thresholding (Figure S5–6). Additionally, small-worldness showed a general 400 

trend of decreasing with depth; however, there was no significant differences between layers (p = 401 

0.2651) and small-worldness was greater than one (indicating a small-world network) for all 402 

thresholds except 40% graph density (Figure S7). 403 

 404 

Nodal 405 

 406 

Table 3 shows the number of nodes in brain regions in layer-by-layer matrices with significant 407 

differences between layers (FDR correction with alpha = 0.01) (See Table S3 for specific values 408 
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and regions). Degree centrality, strength, and eigenvector centrality had the greatest number of 409 

significant nodes (4/148) (Table 3). The limbic region had more significant nodes than all other 410 

regions for each measure, except for clustering coefficient which was tied with the temporal 411 

region (one significant node for each region). In all measures, the right hemisphere had more 412 

significant nodes than the left hemisphere (Table 3). In general, the most superficial layers (1 413 

and 2) had the highest value for significant nodes (Table 3, TableS3, Figure S8–S9). Significant 414 

nodes were distributed across node thickness levels (Figure S10–S11). 415 

 416 

Table 3. Number of significant nodes within each brain region for layer-by-layer analysis. 

Significance was calculated from the area-under-the curve (AUC) values using a one-way 

ANOVA with an FDR correction (alpha = 0.01) to account for multiple comparisons (Groppe, 

2023; Holm, 1979). Details of nodal mapping to each region can be found in Table S1. Orange: 

hemisphere with the highest number of nodes; Yellow: measure with the highest number of 

nodes; Green: region within each measure with the highest number of nodes. 

Network 

Measure 

Hemisphere All 

Regions 

Frontal Limbic Occipital Parietal Temporal 

Degree 

Centrality 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 3/74 0/24 2/14 0/10 0/10 1/16 

Both: 4/148 0/48 3/28 0/20 0/20 1/32 

Strength Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 3/74 0/24 2/14 0/10 0/10 1/16 

Both: 4/148 0/48 3/28 0/20 0/20 1/32 

Eigenvector 

Centrality 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 3/74 0/24 2/14 0/10 0/10 1/16 

Both: 4/148 0/48 3/28 0/20 0/20 1/32 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2024. ; https://doi.org/10.1101/2023.12.23.573208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.23.573208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

Betweenness 

Centrality 

Left: 0/74 0/24 0/14 0/10 0/10 0/16 

Right: 3/74 1/24 2/14 0/10 0/10 0/16 

Both: 3/148 1/48 2/28 0/20 0/20 0/32 

Clustering 

Coefficient 

Left: 0/74 0/24 0/14 0/10 0/10 0/16 

Right: 2/74 0/24 1/14 0/10 0/10 1/16 

Both: 2/148 0/48 1/28 0/20 0/20 1/32 

Local 

Efficiency 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 3/74 0/24 2/14 0/10 0/10 1/16 

Both: 4/148 0/48 3/28 0/20 0/20 1/32 

Participation 

Coefficient 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 2/74 0/24 2/14 0/10 0/10 0/16 

Both: 3/148 0/48 3/28 0/20 0/20 0/32 

 417 

 418 

 419 

 

Figure 4. Area-under-the-curve (AUC) values across different layers for significant global 

measures (p ≤ 0.05) for within-layer analysis. Significance was calculated using a one-way 

24
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ANOVA with an FDR correction (alpha = 0.05). Linear interpolation was used for 

visualization. The mean value across participants at each layer is plotted while the shaded 

region indicates the standard error. P values shown are FDR corrected (Benjamini-Hochberg 

method, alpha = 0.05). 

 420 

Multilayer Results 421 

 422 

Within-layer Global 423 

 424 

Figure 4 shows global network measures calculated for within-layer matrices. AUC values for 425 

each global measure can be found summarized in Table S4. Characteristic path length (p = 426 

0.014) and diameter (p < 0.001) all increased from layer 1 to layer 5 (Figure 4A–B). Largest 427 

cluster size (p < 0.001), graph density (p < 0.001), average degree centrality (p < 0.001), average 428 

strength (p < 0.001), average eigenvector centrality (p < 0.001), and average participation 429 

coefficient (p = 0.0011) significantly decreased with cortical depth (layer 1 to 5) (Figure 4C–H). 430 

There were no significant differences for modularity, transitivity, global efficiency, radius, 431 

assortativity, average betweenness centrality, average clustering coefficient, and average local 432 

efficiency (Figure S12–13). In contrast to layer-by-layer results, graph density and average 433 

degree centrality were different across layers due to the within-layer matrix generation 434 

methodology allowing each individual layer to have a different graph density. 435 

 436 

Within-layer Local 437 

 438 
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The number of nodes in brain regions with significant differences using within-layer matrices 439 

can be found in Table 4 (FDR correction with alpha = 0.01, see Table S5 for specific values and 440 

regions). Degree centrality had the largest number of significant nodes (15/148) followed by 441 

strength (9/148), participation coefficient (9/148), and local efficiency (8/148) (Table 4). In all 442 

measures except participation coefficient, the limbic region had the most significant nodes; in 443 

participation coefficient, the temporal region had the most significant nodes (4/32). In all 444 

measures, the right hemisphere had more significant nodes than the left hemisphere (Table 4). 445 

For significant nodes, either layers 1 or 2 had the highest value (Table 4, Table S5, Figure S14–446 

15). Significant nodes were spread across different node thicknesses (Figure S16–S17). 447 

 448 

 449 

Table 4. Number of significant nodes within each brain region for within-layer analysis. 

Significance was calculated from the area-under-the curve (AUC) values using a one-way 

ANOVA with an FDR correction (alpha = 0.01) to account for multiple comparisons (Groppe, 

2023; Holm, 1979). Details of nodal mapping to each region can be found in Table S1. Orange: 

hemisphere with the highest number of nodes; Yellow: measure with the highest number of 

nodes; Green: region within each measure with the highest number of nodes. 

Network 

Measure 

Hemisphere All 

Regions 

Frontal Limbic Occipital Parietal Temporal 

Degree 

Centrality 

Left: 4/74 0/24 4/14 0/10 0/10 0/16 

Right: 11/74 1/24 5/14 0/10 0/10 5/16 

Both: 15/148 1/48 9/28 0/20 0/20 5/32 

Strength Left: 2/74 0/24 2/14 0/10 0/10 0/16 

Right: 7/74 0/24 3/14 0/10 0/10 4/16 
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Both: 9/148 0/48 5/28 0/20 0/20 4/32 

Eigenvector 

Centrality 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 3/74 0/24 2/14 0/10 0/10 1/16 

Both: 4/148 0/48 3/28 0/20 0/20 1/32 

Betweenness 

Centrality 

Left: 0/74 0/24 0/14 0/10 0/10 0/16 

Right: 3/74 1/24 2/14 0/10 0/10 0/16 

Both: 3/148 1/48 2/28 0/20 0/20 0/32 

Clustering 

Coefficient 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 5/74 0/24 3/14 0/10 0/10 2/16 

Both: 6/148 0/48 4/28 0/20 0/20 2/32 

Local 

Efficiency 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 7/74 0/24 4/14 0/10 0/10 3/16 

Both: 8/148 0/48 5/28 0/20 0/20 3/32 

Participation 

Coefficient 

Left: 2/74 0/24 1/14 0/10 0/10 1/16 

Right: 7/74 1/24 2/14 1/10 0/10 3/16 

Both: 9/148 1/48 3/28 1/20 0/20 4/32 

 450 

 451 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2024. ; https://doi.org/10.1101/2023.12.23.573208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.23.573208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28

Figure 5. Area-under-the-curve (AUC) values across different layers for significant global

measures (p ≤ 0.05) for multilayer analysis. Significance was calculated using a one-way

ANOVA with an FDR correction (alpha = 0.05). Linear interpolation was used for visualization.

The mean value across participants at each layer is plotted while the shaded region indicates the

standard error. P values shown are FDR corrected (Benjamini-Hochberg method, alpha = 0.05). 

 452 

Multilayer Global 453 

 454 

Alongside measures for individual layers, global measures were calculated for the supra-455 

adjacency matrix created using the multilayer approach. While only global values derived from456 

nodal averages were statistically compared between layers, AUC values for all global measures457 

are summarized in Table S6. Average degree centrality (p < 0.001), average strength (p =458 

28
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0.0019), and average eigenvector centrality (p < 0.001) decreased from layer 1 to layer 5 with a 459 

slight peak at layer 2 (Figure 5A–C). Average betweenness centrality (p < 0.001) and average 460 

participation coefficient (p = 0.019) also decreased from layer 1 to layer 5 (Figure 5D–E). In 461 

contrast, average clustering coefficient tended to increase from layer 1 to layer 5 (p = 0.080) 462 

(Figure S18–19, Table S6). Average local efficiency showed no significant difference between 463 

layers (Figure S18–19, Table S6). Additionally, layer-wise graph density, graph density derived 464 

from each individual layer within the multilayer network, decreased from layer 1 to layer 5 with 465 

a slight peak at layer 2 (Figure S20). 466 

 467 

Multilayer Local 468 

 469 

Table 5 depicts the number of nodes in specific brain regions that were significantly different 470 

between layers for the multilayer analysis (FDR correction with alpha = 0.01) (See Table S7 for 471 

specific values and regions). Betweenness centrality identified the most significant nodes 472 

(58/148) with 19/48 frontal nodes, 16/28 limbic nodes, 2/20 occipital nodes, 5/20 parietal nodes, 473 

and 16/32 temporal nodes (Table 5). The limbic region had highest percentage of nodes in all 474 

measures except clustering coefficient (4/32 in temporal) and local efficiency (no significant 475 

nodes found). Additionally, using betweenness centrality the frontal region had the highest 476 

number of significant nodes (19/48). Again, in all measures, the right hemisphere had more 477 

nodes with significant differences between layers (Table 5). While most significant regions 478 

across measures were highest in the superficial layers (layers 1,2), especially in betweenness 479 

centrality, the deepest layer (layer 5) had the highest values for nodes significant in clustering 480 

coefficient (Table 5, Table S7, Figure S21). The thickness of significant nodes was spread 481 
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across the spectrum of thickness levels, with a preference towards thicker nodes for betweenness 482 

centrality (Figure S22–S23). 483 

 484 

Table 5. Number of significant nodes within each brain region for multilayer analysis. 

Significance was calculated from the area-under-the curve (AUC) values using a one-way 

ANOVA with an FDR correction (alpha = 0.01) to account for multiple comparisons (Groppe, 

2023; Holm, 1979). Details of nodal mapping to each region can be found in Table S1. Orange: 

hemisphere with the highest number of nodes; Yellow: measure with the highest number of 

nodes; Green: region within each measure with the highest number of nodes. 

Network 

Measure 

Hemisphere All 

Regions 

Frontal Limbic Occipital Parietal Temporal 

Degree 

Centrality 

Left: 2/74 0/24 2/14 0/10 0/10 0/16 

Right: 4/74 0/24 2/14 0/10 0/10 2/16 

Both: 6/148 0/48 4/28 0/20 0/20 2/32 

Strength Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 4/74 0/24 2/14 0/10 0/10 2/16 

Both: 5/148 0/48 3/28 0/20 0/20 2/32 

Eigenvector 

Centrality 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 2/74 0/24 2/14 0/10 0/10 0/16 

Both: 3/148 0/48 3/28 0/20 0/20 0/32 

Betweenness 

Centrality 

Left: 24/74 8/24 6/14 1/10 2/10 7/16 

Right: 34/74 11/24 10/14 1/10 3/10 9/16 

Both: 58/148 19/48 16/28 2/20 5/20 16/32 

Clustering 

Coefficient 

Left: 1/74 0/24 0/14 0/10 0/10 1/16 

Right: 6/74 2/24 1/14 0/10 0/10 3/16 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2024. ; https://doi.org/10.1101/2023.12.23.573208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.23.573208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31

Both: 7/148 2/48 1/28 0/20 0/20 4/32 

Local 

Efficiency 

Left: 0/74 0/24 0/14 0/10 0/10 0/16 

Right: 0/74 0/24 0/14 0/10 0/10 0/16 

Both: 0/148 0/48 0/28 0/20 0/20 0/32 

Participation 

Coefficient 

Left: 3/74 0/24 2/14 0/10 0/10 1/16 

Right: 4/74 1/24 2/14 0/10 0/10 1/16 

Both: 7/148 1/48 4/28 0/20 0/20 2/32 

 485 

 486 

Figure 6. Area-under-the-curve (AUC) values across different layers for significant global

measures (p ≤ 0.05) for between-layer analysis. Significance was calculated using a one-way

ANOVA with an FDR correction (alpha = 0.05). Linear interpolation was used for visualization.

The mean value across participants at each layer is plotted while the shaded region indicates the
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standard error. P values shown are FDR corrected (Benjamini-Hochberg method, alpha = 0.05). 

 487 

Between-layer Global 488 

 489 

Significant between-layer global measures can be found in Figure 6. AUC values for all global 490 

measures can be found in Table S8. Average degree centrality (p < 0.001), average strength (p = 491 

0.0021), average eigenvector centrality (p < 0.001), average betweenness centrality (p < 0.001), 492 

and average participation coefficient (p = 0.032) decreased from superficial (layer 1) to deep 493 

(layer 5) with all except average participation coefficient showing a peak in layers 2 and 3 494 

(Figure 6A–D, F). Average clustering coefficient (p = 0.0033) increased from layer 1 to layer 5 495 

with a slight decrease from layer 1 to layer 2 (Figure 6E). Average local efficiency was the only 496 

measure that showed no significant difference between layers (Figure S24–25, Table S8).  497 

 498 

Between-layer Local 499 

 500 

Brain regions with nodes that were significantly different using between-layer matrices can be 501 

found in Table 6 (FDR correction with alpha = 0.01) (See Table S9 for specific values and 502 

regions). Betweenness centrality had the largest number of significant nodes (57/148) followed 503 

by clustering coefficient (22/148) (Table 6). For betweenness centrality, most significant nodes 504 

had the highest values in the superficial layers (layers 1 and 2) while for clustering coefficient, 505 

all significant nodes were highest in layer 5 (Figure S26). In degree centrality, strength, 506 

eigenvector centrality, and betweenness centrality, the limbic region had the highest percentage 507 

of significant nodes within each region (Table 6). In betweenness centrality, frontal region nodes 508 
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had the highest absolute number of significant nodes (20/48). In clustering coefficient (10/32) 509 

and participation coefficient (4/32), the temporal region had the most significant nodes (Table 510 

6). Local efficiency had no significant nodes (Table 6, Table S9, Figure S26). The right 511 

hemisphere had more significant nodes than the left hemisphere for all measures (Table 6). 512 

Significant nodes were dispersed across different thickness levels, with betweenness centrality 513 

nodes leaning slightly more toward thicker regions (Figure S27–S28). 514 

 515 

Table 6. Number of significant nodes within each brain region for between analysis. 

Significance was calculated from the area-under-the curve (AUC) values using a one-way 

ANOVA with an FDR correction (alpha = 0.01) to account for multiple comparisons (Groppe, 

2023; Holm, 1979). Details of nodal mapping to each region can be found in Table S1. Orange: 

hemisphere with the highest number of nodes; Yellow: measure with the highest number of 

nodes; Green: region within each measure with the highest number of nodes. 

Network Measure Hemisphere All 

Regions 

Frontal Limbic Occipital Parietal Temporal 

Degree Centrality Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 4/74 0/24 2/14 0/10 0/10 2/16 

Both: 5/148 0/48 3/28 0/20 0/20 2/32 

Strength Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 4/74 0/24 2/14 0/10 0/10 2/16 

Both: 5/148 0/48 3/28 0/20 0/20 2/32 

Eigenvector 

Centrality 

Left: 1/74 0/24 1/14 0/10 0/10 0/16 

Right: 2/74 0/24 2/14 0/10 0/10 0/16 

Both: 3/148 0/48 3/28 0/20 0/20 0/32 

Betweenness Left: 25/74 10/24 7/14 1/10 1/10 6/16 
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Centrality Right: 32/74 10/24 11/14 1/10 2/10 8/16 

Both: 57/148 20/48 18/28 2/20 3/20 14/32 

Clustering 

Coefficient 

Left: 6/74 0/24 3/14 0/10 0/10 3/16 

Right: 16/74 3/24 5/14 1/10 0/10 7/16 

Both: 22/148 3/48 8/28 1/20 0/20 10/32 

Local Efficiency Left: 0/74 0/24 0/14 0/10 0/10 0/16 

Right: 0/74 0/24 0/14 0/10 0/10 0/16 

Both: 0/148 0/48 0/28 0/20 0/20 0/32 

Participation 

Coefficient 

Left: 2/74 0/24 1/14 0/10 0/10 1/16 

Right: 5/74 1/24 1/14 0/10 0/10 3/16 

Both: 7/148 1/48 2/28 0/20 0/20 4/32 
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Figure 7. Layer with the highest area-under-the-curve (AUC) value across different global 

network measures methods (p ≤ 0.05). Significance was calculated using a one-way ANOVA 

with an FDR correction (alpha = 0.05). White sections indicate no significant difference between 

layers. Gray sections indicate network measures that cannot separate effects of different layers.  

 516 

Method Comparison 517 

 518 

All four network measure methods (layer-by-layer, within-layer, multilayer, between-layer) 519 

identified global differences between layers (Figure 7). Layer-by-layer and within-layer methods 520 

showed an increase in an integration-based global measure (diameter) from layer 1 to layer 5; 521 

however, the within-layer approach identified an increase in characteristic path length as well. 522 

Similarly, layer-by-layer and within-layer approaches identified a decrease in largest cluster size 523 

from layer 1 to layer 5, with an additional decrease found in graph density using the within-layer 524 

method.  525 

 526 

For nodal-averaged global measures, which can be applied to all four methods, measures 527 

generally decreased from superficial layers (1 and 2) to deeper layers (Figure 7). The layer-by-528 

layer methodology identified significant differences in three measures (average eigenvector 529 

centrality, average betweenness centrality, and average local efficiency) while the within-layer 530 

approach found significant differences in four measures (average degree centrality, average 531 

strength, average eigenvector centrality, and average participation coefficient). The multilayer 532 

approach also found differences in five measures (average degree centrality, average strength, 533 

average eigenvector centrality, average betweenness centrality, and average participation 534 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2024. ; https://doi.org/10.1101/2023.12.23.573208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.23.573208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36

coefficient). Interestingly, the between-layer method identified the most measures with535 

significant differences between layers using six measures, with two measures (average strength536 

and average eigenvector centrality) peaking in the middle layer. Additionally, the between-layer537 

approach was the only method to identify a difference in average clustering coefficient which538 

was the highest in layer 5.  539 

 540 

Figure 8. Nodes with significant differences between layers for each nodal measure pipeline

(layer-by-layer, within-layer, multilayer, between-layer) for (A) betweenness centrality and (B)

clustering coefficient. Significance was calculated from the area-under-the curve (AUC) values

using a one-way ANOVA with an FDR correction (alpha = 0.01) to account for multiple

comparisons (Groppe, 2023; Holm, 1979). The colored section represents the layer with the

highest value for the node. The nodes are based on the Destrieux atlas in FreeSurfer (Destrieux et

al., 2010; Fischl et al., 2004). LH: left hemisphere; RH: right hemisphere. 
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Similar to global measures, the multilayer-based approaches (within-layer, multilayer, between-542 

layer) identified more nodal differences between layers than the layer-by-layer approach (Table 543 

3–6). For example, the layer-by-layer method identified a maximum of four nodes with 544 

significant differences per measures compared to fifteen for within-layer (degree centrality), 545 

fifty-eight for multilayer (betweenness centrality), and fifty-seven for between-layer 546 

(betweenness centrality). Despite this, in a majority of measures for all four methods, the limbic 547 

region had the greatest number of nodes with significant differences between layers. The right 548 

hemisphere also had more significant nodes across all methods and measures (Table 3–6). The 549 

right (2.4127 ± 0.0306 mm; AVG ± SE) and left (2.4069 ± 0.0303 mm) hemispheres had 550 

comparable cortical thicknesses overall and across brain regions (Figure S29). Additionally, 551 

while the thickness of significant nodes versus non-significant nodes was significantly larger in 552 

betweenness centrality metrics (multilayer, between-layer), the absolute difference between 553 

significant and non-significant nodes was typically less than 1 mm (Figure S30).  554 

 555 

Two measures that showed a considerable benefit from the multilayer-based approach were 556 

betweenness centrality and clustering coefficient (Figure 8). For example, the multilayer and 557 

between-layer methods showed substantial increase in the number of nodes that had significant 558 

differences between layers. Similarly, the number of nodes with significant differences between 559 

layers in clustering coefficient increased using multilayer and between-layer methods. More 560 

importantly, however, is clustering coefficient in multilayer and between-layer approaches is the 561 

only measure to highlight the deepest layer as having the largest value. Likewise, the multilayer 562 

and between-layer methods are the only methods to include nodes that are the highest value in 563 

the middle layer (Figure S21, S26).  564 
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 565 

Discussion 566 

 567 

Graph theory analysis of high-resolution (7T) resting-state fMRI revealed global and nodal 568 

network differences between cortical depths. Global integration measures (diameter, 569 

characteristic path length) were higher in deeper layers while composition (largest cluster size, 570 

graph density, degree centrality, strength) and centrality (eigenvector centrality, betweenness 571 

centrality) measures were often higher in superficial layers (Figure 7).  572 

 573 

Current literature exploring graph theory measures and overall laminar connectivity through 574 

networks in the human brain is very limited. Structural analysis of the human connectome using 575 

diffusion MRI combined with T1-weighted anatomical imaging found qualitative differences in 576 

degree, strength, and betweenness centrality nodal distributions across cortical depths (Shamir et 577 

al., 2022); however, network-wide global calculations were absent. In a functional approach, 578 

Deshpande et al. found no global differences between layers using mean blind deconvoluted 579 

Pearson correlations from resting-state fMRI (Deshpande et al., 2022). However, no threshold 580 

was used, enabling spurious correlations to impact the mean. Additionally, using the mean across 581 

the whole brain obfuscates any impact of a particular ROI. Our results, thus, significantly extend 582 

global and nodal network analysis of cortical architecture across the entire brain. 583 

 584 

Our findings provide evidence of an advantage of applying of multilayer graph theory to 585 

connectomic analysis. While differences between layers were seen across all methodologies, the 586 

multilayer approach provided a greater identification of these differences through identifying 587 
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more measures with larger significant differences (Figure 7). Previous connectomic studies have 588 

shown a benefit of applying a multilayer network framework (Betzel & Bassett, 2017; De 589 

Domenico, 2017; Vaiana & Muldoon, 2018). For example, multilayer connectomics enables the 590 

integration of complex neuroimaging data (cortical lamina, frequency bands, multi-modal 591 

neuroimaging) (Betzel & Bassett, 2017; Breedt et al., 2023; Buldu & Porter, 2018; Casas-Roma 592 

et al., 2022; De Domenico, 2017; Shamir & Assaf, 2023; Vaiana & Muldoon, 2018) and the 593 

creation of new network features. New network features can be used to explain neuroscientific 594 

findings, as in this work, or even enhance machine learning workflows to better discriminate 595 

between disease states (Zhu et al., 2022). Future connectomics studies with available data should 596 

therefore consider using a multilayer framework to augment brain network modeling and 597 

analysis. 598 

 599 

One particular benefit of multilayer analysis in laminar connectomics is the ability to 600 

discriminate between and incorporate the impact of within- and between-layer connections. 601 

While this comparison was limited to nodal averaged global measures and nodal values, there 602 

was still a stark comparison between within- and between-layer connections. When exploring 603 

layers individually (within-layer connections), the most superficial layer had the highest 604 

activation and is densely connected to itself while the deepest layer was relatively sparsely 605 

connected and took longer network paths to transmit information to different brain regions 606 

(Figure 4,7). However, in between layer connections, layer 1 becomes less important and the 607 

superficial-middle layers (layers 2 and 3) become integral for cortical connectivity (Figure 6–7). 608 

The superficial-middle layers (layers 2 and 3) had the highest between-layer degree, strength, 609 

and eigenvector centrality, indicating both layers are densely connected to other layers. 610 
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Additionally, layer 2’s significantly larger betweenness centrality demonstrates it is the most 611 

important layer for information flow between layers (Figure 6–7). Lastly, the deepest layer had 612 

the highest clustering coefficient meaning it had the highest likelihood of forming local hubs 613 

(triangles) with other layers. Thus, within- and between-layer analysis provides evidence of a 614 

highly active superficial layer that utilizes layers 2 and 3 to transmit information to other cortical 615 

layers.  616 

 617 

One important note to contextualize the above findings is that while activity and hubs of 618 

information flow can be identified, the direction of information flow cannot be delineated. 619 

Cortical layer architecture can have diverse connectivity patterns across layers and hierarchal 620 

schemes (Felleman & Van Essen, 1991). Therefore, it is important to recognize the correlation 621 

nature of this work rather than infer causality. Furthermore, while our results primarily focus on 622 

layers with the highest measure/activity, this does not imply that other layers are inactive. This 623 

contextualization is notably important in the context of feedback/feedforward interpretations, a 624 

common framework for laminar analysis. In general, feedback is thought to target superficial and 625 

deep layers, and feedforward targets the middle layer (Barbas, 2015; Felleman & Van Essen, 626 

1991; Rockland & Pandya, 1979). However, the fact that one area might also send information, 627 

makes the interpretation less straightforward. Thus, the information transfer and clustering 628 

processes might not directly reflect the feedback/feedforward processes, but complex 629 

interactions between them. This intricate feedback/feedforward interplay may also explain the 630 

connections between layer 1 and layer 5 (7.06%) being the most consistent between participants 631 

(Figure 2A) with both superficial and deep layers are activated on opposite sides of the 632 
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feedback/feedforward circuit (Miyashita, 2022). However, this feedback/feedforward interaction 633 

would need to be further validated and studied before drawing concrete conclusions. 634 

 635 

The significance of connectivity patterns and characteristics for cortical depths differed across 636 

different brain regions. We identified extensive differences between layers in the frontal, limbic, 637 

and temporal brain regions (Figure 8, Table 3–6). Interestingly, the limbic cortex, often with the 638 

most significant regions per measures, typically has less layers than other brain regions (Barbas, 639 

2015). Thus, cellular architecture may play a role in the ability for laminar fMRI, and potentially 640 

multilayer connectomics, to detect differences between cortical layers. Cortical thickness may 641 

also play a role in detecting differences between layers (Fukutomi et al., 2018). The regions 642 

(frontal, limbic, and temporal) with the most differences were often the thickest regions (Figure 643 

S29), with our results overlapping with previous studies (Fukutomi et al., 2018). Additionally, 644 

other factors that may impact cortical function and detectability including the neurite density 645 

index, orientation dispersion index, and myelin (Fukutomi et al., 2018). However, Fukutomi’s et 646 

al. findings show a varied distribution across regions for these measures (Fukutomi et al., 2018). 647 

Despite this variation, hot-spots in these metrics near the posterior-ventral part of the cingulate 648 

gyrus and transverse temporal sulcus often overlap with significant nodes in our work. 649 

Therefore, our results indicate the need to contextualize layer fMRI results within cortical 650 

metrics while providing a framework for potential regions (frontal, limbic, temporal) that may be 651 

suited for whole-brain laminar analysis. 652 

 653 

On a global network level, there were high levels of activation in superficial layers when 654 

compared to deeper layers, in line with previous resting-state fMRI analyses reporting increased 655 
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activation patterns in superficial cortical depths (Guidi et al., 2020; L. Huber et al., 2021; L. R. 656 

Huber et al., 2021; Polimeni et al., 2010). This was also reflected in the in higher graph density 657 

in superficial layers (Figure S20), despite marginally higher tSNR in deeper layers (Figure S3). 658 

Higher composition and centrality measures indicate a more robustly connected network (Figure 659 

7). Additionally, at least within the same network (layer-by-layer and within-layer), deeper 660 

layers had significantly longer paths to transmit information, shown by higher global integration 661 

measures. It is, however, important to consider the pial vein bias (Polimeni et al., 2010), which 662 

increases gradient-echo BOLD signals from the deep to the more superficial parts of cortex. 663 

Further studies with alternative contrast mechanisms, which are less affected by the draining vein 664 

effect, are thus needed to determine whether the superficial cortical depths play a more critical 665 

role in the brain at rest, compared to the deeper aspects of the cortex or if this result is a function 666 

of signal strength and variance increasing toward the superficial depth.  667 

 668 

Limitations 669 

 670 

This study does have some limitations, both in terms of laminar analysis and connectomic 671 

analysis. Regarding our laminar analysis approach, the limitations of this study include biases 672 

associated with our fMRI pulse sequence, signal-to-noise ratio bias, the number of cortical 673 

depths chosen, the depth to cortical layer incongruence, and the impact of resting-state versus 674 

task-based paradigms. This work uses gradient-echo BOLD pulse sequences which may not be 675 

fully optimal for laminar analysis (Bandettini et al., 2021; L. Huber et al., 2021). Gradient-echo 676 

BOLD can be influenced largely by large draining vessels (Markuerkiaga et al., 2016a; Olman et 677 

al., 2007; Polimeni et al., 2010; Turner, 2002), while spin-echo BOLD (Duong et al., 2003; 678 
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Uludag et al., 2009; Yacoub et al., 2003; Zhao et al., 2004) and VAscular Space Occupancy 679 

(VASO) (Chai et al., 2020; Chai et al., 2021) have been proposed as alternative fMRI contrasts 680 

for laminar analysis to address this large vein bias (Bandettini et al., 2021; L. Huber et al., 2021). 681 

However, VASO and spin-echo BOLD have lower sensitivity and several practical challenges 682 

(Moerel et al., 2021). Similarly, signal-to-noise ratio (SNR) can vary at different cortical depths. 683 

For example, depths within the middle of the cortex will contain less tissue boundary effects 684 

compared to the depths near the pial and white matter surfaces (Blazejewska et al., 2019). This 685 

difference may be further exacerbated since the thickness and functionality of cortical layers can 686 

change based on brain region (Barbas, 2015; Ding et al., 2009; Zachlod et al., 2020) and cortical 687 

curvature (Fatterpekar et al., 2003; Fischl & Dale, 2000; Hilgetag & Barbas, 2006; Van Essen & 688 

Maunsell, 1980). However, as shown above for nodal analysis, thickness varied across 689 

statistically significant nodes suggesting our results are not purely a function of cortical thickness 690 

since significant differences were identified in “thinner” nodes (Figure S10–S11, S16–S17, 691 

S22–S23, S27–S30). However, for multilayer (p < 0.001) and between-layer (p < 0.001) 692 

betweenness centrality (Figure S30), nodes with significant differences between layers had 693 

higher cortical thickness. This finding could either result from methodological constraints 694 

indicating an inability to detect differences at lower cortical thicknesses or a neurophysiological 695 

phenomenon of thicker nodes having larger functional differences between layers. Cortical 696 

curvature was not explored, and future laminar work should include the anatomical constraints of 697 

the cortex to address this. In addition to the location of the cortical depths chosen, the number of 698 

depths can affect the results. Other studies have used a smaller number of depths to ensure 699 

independence between depths (Sharoh et al., 2019), six depths to match the number of cortical 700 

layers (Pais-Roldan et al., 2023), or even a larger amount that showed an improved detection of 701 
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cortical responses (Huber et al., 2017). The number of depths chosen should balance 702 

independence, cortical response detection, and computational demands from a higher depth 703 

count. The number of depths can also impact the role of partial volume effects due to voxel 704 

overlap. Furthermore, as mentioned above, the cortical depths do not directly equate to 705 

cytoarchitectural cortical layers. Lastly, this study used resting-state fMRI to study whole-brain 706 

connectivity; however, laminar resting-state fMRI activation patterns may be different than 707 

laminar task-based patterns (Pais-Roldan et al., 2023), limiting the broad applicability to task-708 

based laminar paradigms. Despite potential activation pattern differences, the underlying 709 

anatomical basis of resting-state connections (Adachi et al., 2012; Honey et al., 2009; Turk et al., 710 

2016; van den Heuvel et al., 2016) can still inform task-based paradigms. Ideally, a second 711 

dataset would be utilized to validate our results; however, few comparable datasets are available. 712 

 713 

Regarding our connectomic analysis, limitations include the parcellation choice, network 714 

construction approach, thresholding methodology, and multilayer measure calculations. 715 

Parcellation choice can impact graph theory results (Albers et al., 2021; Arslan et al., 2018). This 716 

work used the Destrieux atlas in FreeSurfer (Destrieux et al., 2010; Fischl et al., 2004), which is 717 

based on anatomical nomenclature. However, an atlas derived from functional connectivity 718 

(Schaefer et al., 2018) or utilizing functional localizers for specific areas of interest (Nieto-719 

Castanon & Fedorenko, 2012) may be more appropriate for a functional analysis study. 720 

Additionally, for laminar analysis, a custom atlas using laminar cytoarchitecture and cortical 721 

thickness may improve the accuracy of the results. Another impactful choice in connectomic 722 

methodology is how to construct the network from the fMRI time series. Pearson correlations 723 

perform better for network construction when using a large number of ROIs (Smith et al., 2011) 724 
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or in noisier data (Liegeois et al., 2020; Matkovic et al., 2023). However, Pearson correlations 725 

also include indirect effects of ROIs which can alter analysis. A popular alternative is partial 726 

correlation which utilizes the inverse covariance matrix, and, thus, excludes the indirect network 727 

effects. However, partial correlations can also include spurious connections (Berkson’s paradox 728 

(Berkson, 1946)) and tend to increase network construction complexity since partial correlations 729 

require regularization that has varying optimization parameters (Kim et al., 2015; Pervaiz et al., 730 

2020). Thus, partial correlations may have future utility in laminar multilayer analysis; however, 731 

limited ROI number in relation to fMRI time series data points and lack of optimized laminar 732 

multilayer regularization parameters led to Pearson correlation being used in this work. Also, as 733 

mentioned above, graph theory measures are directly impacted by thresholding the network 734 

(Osmanlioglu et al., 2020). AUC analysis attempts to correct for this thresholding bias but still 735 

may be inadequate for eliminating thresholding's effect on network characteristics. Additionally, 736 

network measures may be impacted as a result of SNR and network layer normalization (Mandke 737 

et al., 2018). For example, increased noise will transition network structure from small-world to 738 

more random (Humphries & Gurney, 2008), which may occur as we measure deeper into the 739 

cortex. However, our results showed no significant differences in small-worldness between 740 

layers, indicating that this network structure change is not occurring in our work (Figure S7). 741 

Similarly, within multilayer approaches, normalization plays a key role since graph density can 742 

influence network properties. However, even with comparable tSNR (Figure S3), the graph 743 

density varied across cortical depths. While we believe this to be an intrinsic property of cortical 744 

connectivity having higher density in superficial cortical depths, as demonstrated by other 745 

studies (Logothetis et al., 2001), future work should explore different multilayer normalization 746 

schemes in laminar connectivity to more thoroughly parse through this effect (Mandke et al., 747 
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2018). Lastly, our statistical analysis of our measures may be limited be the use of ANOVA 748 

since it assumes normality and equal variance which are sometimes violated by network 749 

measures. Additionally, when selecting peak values for each measure, the highest value was 750 

selected instead of using a planned contrast ANOVA. 751 

 752 

Increased BOLD signal in superficial vs. deeper layers may be due to vascular-related bias 753 

(Markuerkiaga et al., 2016a; Olman et al., 2007; Pais-Roldan et al., 2023; Polimeni et al., 2010; 754 

Turner, 2002). One might conclude that the present results reflect vascular biases. The most 755 

superficial depth was excluded in this work to reduce this bias; however, the other layers will 756 

still have some effect of vascular draining. Additionally, even with removal of the most 757 

superficial depth, the current most superficial depth may still be including superficial voxels that 758 

are sensitive to vascular-related bias. Despite this limitation, some composition and centrality 759 

measures peaked in layers 2 and 3, notably average strength, suggesting that some observed 760 

effects are not explainable by biases in superficial layers (Figure 7, S10–S11, S16–S17, S22–761 

S23, S27–S30). Lastly, even the utility of the multilayer approach to find more significant effects 762 

may be a result of the multilayer model being more sensitive to draining/signal confounds.  763 

 764 

Conclusion 765 

 766 

Our multilayer connectomics findings demonstrate global and nodal network differences 767 

between cortical depths that can be more aptly identified through the multilayer approach 768 

compared to traditional single layer connectomics. These results demonstrate the validity of the 769 

multilayer connectomic framework on laminar fMRI and provide a methodological foundation 770 
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for future multilayer laminar studies. Future work should further explore the intersection of 771 

connectomics and laminar studies and address current methodological constraints.  772 
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