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Abstract: To investigate the role and microorganism-related mechanisms of macrophytes and assess
the feasibility of Oenanthe javanica (Blume) DC. in promoting nitrogen removal in free-water surface
constructed wetlands (FWS-CWS) under low temperatures (<10 ◦C), pilot-scale FWS-CWS, planted
with O. javanica, were set up and run for batch wastewater treatment in eastern China during
winter. The presence of macrophytes observably improved the removal rates of ammonia nitrogen
(65%–71%) and total nitrogen (41%–48%) (p < 0.05), with a sharp increase in chemical oxygen demand
concentrations (about 3–4 times). Compared to the unplanted systems, the planted systems not only
exhibited higher richness and diversity of microorganisms, but also significantly higher abundances of
bacteria, ammonia monooxygenase gene (amoA), nitrous oxide reductase gene (nosZ), dissimilatory
cd1-containing nitrite reductase gene (nirS), and dissimilatory copper-containing nitrite reductase
gene (nirK) in the substrate. Meanwhile, the analysis of the microbial community composition further
revealed significant differences. The results indicate that enhanced abundances of microorganisms,
and the key functional genes involved with nitrogen metabolism in the planted systems played critical
roles in nitrogen removal from wastewater in FWS-CWS. Furthermore, abundant carbon release from
the wetland macrophytes could potentially aid nitrogen removal in FWS-CWS during winter.

Keywords: rhizospheric microorganism; community composition; gene abundance; carbon source;
C/N ratio; nitrification–denitrification

1. Introduction

Free-water surface constructed wetlands (FWS-CWS) consist of basins or channels with a suitable
medium, such as soil and sand, for macrophyte rooting, and typically have water depths less than 0.4 m
and hydraulic loading rates (HLR) between 0.7 and 5.0 cm·d−1 [1,2]. In recent years, FWS-CWS have
been increasingly applied as part of an integrated wastewater treatment train and as a “stand-alone”
wastewater treatment technology because of their high economy and removal efficiency [1,3]. Previous
studies have indicated that FWS-CWS can achieve a removal efficiency of over 70% for total suspended
solids, chemical oxygen demand (COD), biochemical oxygen demand (BOD), and pathogens, and
of typically 40%–50% and 40%–90% for N and P, respectively [2,4]. The purification processes in
FWS-CWS mainly occur through complex interactions between macrophytes and the associated
microorganisms in the water phase [2,4]. The major pathway for nitrogen removal in the FWS-CWS
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is nitrification–denitrification. During nitrification, the nitrifying bacteria oxidize ammonia under
aerobic conditions, while during denitrification, nitrate is converted to free nitrogen or nitrous oxide
by denitrifying bacteria in the anoxic zones [5–7].

It is generally assumed that wetland macrophytes are closely related to the abundance, activity,
and diversity of the rhizospheric microorganisms in FWS-CWS [4,5,8]. The macrophytes provide root
surface for the growth of microorganisms in the rhizosphere [9,10]. They also provide root exudates or
plant litter as a source of carbon compounds for heterotrophic bacteria [5,8,11]. In addition, aquatic
macrophytes can deliver oxygen to the rhizosphere by radial oxygen loss (ROL) [12], thus affecting
the redox status of wetland sediments and the aerobic microorganisms [2,5,13,14]. However, some
researchers have concluded that macrophytes rarely affect the microbial community composition,
abundance, and specific microbial functional genes [15–18]. Furthermore, some studies have indicated a
limited or even negligible influence of wetland macrophytes on the nutrient removal from wastewater in
constructed wetlands (CWs) under certain conditions [19,20]. Previous studies have also indicated that
the exact effects of macrophytes in CWs are complex and remain disputed. Therefore, further research
on the detailed mechanisms, especially the microbiological mechanisms, of nutrient removal from
wastewater in FWS-CWS by macrophytes is necessary to help elucidate the exact role of macrophytes
in CWs. Further, the temperature is an important factor influencing the wastewater treatment in
FWS-CWS. Nutrient removal from wastewater remains a challenge in North China where the average
water temperature during winter is lower than 10 ◦C, resulting in declined biotic activity [21–23].
Hence, the selection of suitable macrophyte species to mitigate the decrease in system purification
capacity during winter merits attention.

The most common species used in FWS-CWS include those from the genera Typha, Scirpus,
Phragmites, Juncus, and Eleocharis [3,24,25]. Oenanthe javanica (Blume) DC., a native aquatic macrophyte
of China, has been proposed as an ideal candidate for nitrogen removal in CWs during the
low-temperature season because of its advantages, such as fast growth in wastewater, tolerance
to freezing temperatures, and capacity for repeated harvest [26]. However, studies on the potential
of O. javanica for wastewater purification in FWS-CWS are still limited. In particular, the underlying
microorganism-related mechanisms influencing nitrogen removal by O. javanica roots in FWS-CWS
during low-temperature seasons are poorly investigated.

In the present study, FWS-CWS planted with Oenanthe javanica (Bl.) DC. as well as other control
systems, were set up and fed with effluents from a secondary wastewater treatment plant (WWTP)
during the low-temperature season. The nutrient removal performances were measured and compared
among the different treatment systems. Plant growth dynamics, root physiological characteristics,
abundances of the key functional genes involved in the nitrogen removal process as well as the
microbial abundances, diversity, and community composition in the substrate were investigated to
establish the exact role and detailed mechanism of nutrient removal by macrophytes in FWS-CWS.
This is the first study that systematically explains the effects of O. javanica on the nitrogen removal in
WS-CWS under low-temperature conditions.

2. Materials and Methods

2.1. Experimental Design

To investigate the precise role of macrophytes in facilitating nitrogen removal from wastewater
in FWS-CWS during winter, different wastewater purification systems were built via several
fiber-reinforced plastic incubators (2.1 m in length, 1.3 m in width, and 0.65 m in height) in Huai’an,
Jiangsu Province, Eastern China (33.3◦ N, 119.0◦ E) on 20 November 2015. These systems were:
(1) FWS-CWS planted with O. javanica and substrate sand (Tcw); (2) control systems without
macrophytes but with substrate sand (Tcs) [27]; (3) control systems planted with O. javanica but
without the substrate sands (Tcp); (4) control systems with blank incubators filled with wastewater only
(Tck). Each system included four replicates. Cleansed sand (1–2 mm in diameter; 15 cm in thickness)
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was used as the substrate in Tcw and Tcs. The water level of each system was 35 cm. Several concrete
bricks wrapped in polyethylene bags were used in Tcp to maintain the same liquid height as the other
two groups. Planted seedlings of O. javanica with similar size (65 ± 2.5 cm in length) were selected
from a local nursery and cleaned to remove the rhizospheric soil. The initial density was 26 plants per
m2 (72 plants per incubator). The secondary wastewater was obtained from a neighboring WWTP and
their primary characteristics are listed in Table 1. The experiments were performed as a batch model
(i.e., wastewater was filled to a liquid height of 0.3 m at the beginning of each batch and then drained
before the next batch). Each batch lasted 10 days (hydraulic retention time = 10 days). At the end of
each batch, the water level of each system was measured to calculate changes in the water volume.
There was a total of eight batches (80 days) from 10 December 2015 to 29 February 2016 in this study. A
Temperature/Light Data Logger (HOBO UA-002-08; Onset, Cape Cod, MA, USA) was used to record
the water temperature. The changes in water temperature during the experiment are shown in Figure A1.

Table 1. Characteristics of the influent at the beginning of 2nd, 4th, 6th, and 8th batch (means ± S.D.,
p < 0.05, n = 4).

Parameter 20 December 2015 19 January 2016 29 January 2016 18 February 2016

NH4
+–N (mg·L−1) 8.9 ± 0.9 10.8 ± 0.4 10.8 ± 0.3 11.6 ± 0.5

NO3
−–N (mg·L−1) 10.5 ± 0.8 10.8 ± 0.7 10..8 ± 0.9 10.4 ± 0.4

NO2
−–N (mg·L−1) 0.650 ± 0.025 0.560 ± 0.025 0.380 ± 0.005 0.335 ± 0.005

TN (mg·L−1) 24.8 ± 1.5 25.7 ± 3.0 25.3 ± 0.9 26.6 ± 2.0
COD (mg·L−1) 14.4 ± 2.2 15.4 ± 2.5 14.6 ± 2.8 15.8 ± 1.8
DO (mg·L−1) 9.7 ± 0.8 8.9 ± 0.5 9.3 ± 0.9 8.3 ± 0.6

pH 7.88 ± 0.65 7.05 ± 0.45 6.45 ± 0.98 8.45 ± 1.24

NH4
+–N: ammonia nitrogen; NO3

−–N: nitrate nitrogen; NO2
−–N: nitrite nitrogen; TN: total nitrogen; COD: chemical

oxygen demand; DO: dissolved oxygen.

2.2. Water and Plant Sampling and Analysis

The water in each system was sampled for water quality at the end of the 2nd, 4th, 6th, and 8th
batches. The water temperature, pH, and dissolved oxygen (DO) were measured by a Temperature/Light
Data Logger (HOBO UA-002-08; Onset, Cape Cod, MA, USA), a portable Multi-parameter Water
Quality Meter (U52; Horiba Ltd., Kyoto, Japan) and a DO electrode (HQ40D-53LED; Hach Company,
Loveland, CO, USA), respectively. NH4

+–N, NO2
−–N, NO3

−–N, total nitrogen (TN), and COD were
determined through water quality analyzing systems (DRB200 and DR2800; Hach Company, Loveland,
CO, USA) according to standard analytical procedures [28]. The water sampling was conducted
according to guidelines on sampling from lakes, natural and man-made (ISO/FDIS 5667-4:2016).

Biomass and nitrogen content of plant samples from the beginning and end of the experiment were
determined according to [29]. Briefly, plant samples were separated into roots, stems, and leaves, dried
at 65 ◦C to a constant weight, grounded into powder, and then measured by an elemental analyzer
(CHN-O-Rapid; W. C. Heraeus GmbH., Hanau, Germany) [30]. Root vitality was quantified with the
triphenyl tetrazolium chloride (TTC) method [29]. The rate of root ROL was measured through the
titanium (III) citrate buffer method [31,32].

2.3. Microorganism Sampling and Analysis

2.3.1. Preparation of Microbial Samples

The microbial samples from the rhizoplane of wetland macrophytes and the substrates were
obtained on 10 January 2016. For the rhizoplane samples, 5 g of root was obtained from five plants
in each system and placed into clean phosphate buffer in a Falcon tube. After ultrasonic processing
at 90 W for 30 min, the isolated biofilm from the rhizoplane was collected by vacuum filtration with
0.22 µm membranes [33]. For substrate samples, 100 g of sand was obtained using a cylindrical sampler
(diameter, 0.5 cm) from five sampling points in each system and added to a sterile glass bottle, then
mixed well, and vigorously shaken at 200 rpm for 3 h to isolate the biofilm. After the centrifugation
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process of samples at 5000× g for 12 min, the precipitate was collected for analysis [34]. Biofilm isolated
from the rhizoplane and the substrate were used for subsequent DNA extraction, qPCR, 16S rRNA
gene PCR amplification, and Illumina MiSeq sequencing.

2.3.2. Extraction of Total Genomic DNA

The total genomic DNA from microbial samples was first extracted and purified using QIAamp Fast
DNA Stool Mini Kit (QIAGEN, Chatsworth, CA, USA) and the yield was evaluated with SpectraMax
190 (Molecular Devices, Sunnyvale, CA, USA). Subsequently, the integrity was detected with 1%
agarose gel electrophoresis and stored at −20 ◦C until further use.

2.3.3. Real-Time Quantitative PCR Analysis

Quantitative PCR analysis of seven target functional gene fragments, (i.e., bacteria (bacterial 16S
rRNA gene), archaea (archaeal 16S rRNA gene), anaerobic ammonia oxidation (anammox), bacteria
(ANO 16S rRNA gene), ammonia monooxygenase gene (amoA), nitrous oxide reductase gene (nosZ),
dissimilatory cd1-containing nitrite reductase gene (nirS), and dissimilatory copper-containing nitrite
reductase gene (nirK) was conducted using the Illumina-Eco real-time PCR system (Illumina, San Diego,
CA, USA). The primers were synthesized by Genergy Biotechnology Limited Corporation (Shanghai,
China) and the details are listed in Table A1. Further information regarding the qPCR analysis is
shown in Table A2.

2.3.4. 16.S rRNA Gene Illumina MiSeq Sequencing

PCR amplification of the 16S rRNA gene was performed with the universal primer set at 341F
(5′-CCTAYGGGRBGCASCAG-3′) and 785R (5′-GACTACHVGGGTATCTAATCC-3′). Raw fastq files
were demultiplexed, quality-filtered, and merged by FASTX-Toolkit (version 0.0.14) and Mothur
program (version 1.34.0,) [35]. All reads were quality filtered using an average quality value of
20 (Q20) during demultiplexing. Short reads (length <40 bp) and chimeras were excluded. Reads
were clustered according to the degree of similarity by using the Uclust program (version 1.2.22q,
Edgar 2010). Sequences with ≥97% similarity were assigned to the same genus. Taxonomic information
was annotated by the Ribosomal Database Project (RDP) classifier (version 2.2) [36], and the alpha
diversity was analyzed by Mothur. Chao1 and Simpson index were used to estimate the species
richness [37] and species diversity [38,39], respectively. More information of the 16S rRNA gene
Illumina MiSeq sequencing is listed in Table A2.

2.3.5. Sequence Storage Information

The Illumina sequencing raw data have been deposited in the National Center for Biotechnology
Information (NCBI) Sequence Read Archive database (Study Accession: SRP105263; Sample Accessions:
SRS2149921, SRS2149998, SRS2149999, SRS2150553).

2.4. Statistical Analysis

Statistical Package for Social Sciences (SPSS) 17.0 (SPSS Inc., Armonk, NY, USA) was used for
statistical analysis. The data were analyzed using a one-way analysis of variance to compare the
performance of each mesocosm, and statistically significant differences (p > 0.05) between the mean
values of the treatments were determined using Duncan’s test. Nonparametric tests were used for
non-normal distribution data.

3. Results

3.1. Nutrient Removal Performance

The performance of nutrient removal varied greatly across the different systems (Figure 1). Tcw and
Tcp, followed by Tcs (28.62%), achieved the highest average removal rate of NH4

+–N (64.58%–70.68%).
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However, no significant differences in the average removal rates of NO3
−–N and NO2

−–N were
observed among the three systems in the four detected batches. The best removal efficiency with
regard to TN was observed in Tcp (40.57%–46.41%) in the 2nd, 4th, and 6th batches and in Tcw (48.37%)
in the 8th batch. Additionally, over time, an increase in the effluent COD concentrations was observed
in Tcw and Tcp. It increased from 9.2 mg·L−1 to 26.9 mg·L−1 and from 9.1 mg·L−1 to 38.2 mg·L−1 in Tcw
and Tcp, respectively. Accordingly, the ratio of COD/N in the effluent sharply increased from 0.5 to 2.1
and from 0.7 to 2.5 in Tcw and Tcp, respectively.
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Figure 1. Concentrations (mg·L−1) of NH4
+–N, NO3

−–N, NO2
−–N, TN, and COD as well as the

COD/N ratio (n = 4) Different letters indicate significant differences (p < 0.05) among the different
systems. Tcw: free-water surface constructed wetlands (FWS-CWS) planted with O. javanica in substrate;
Tcs: control systems without plants; Tcp: control systems without sands; Tck: control systems with
blank incubators filled with wastewater only. II, IV, VI, and VIII represent respectively the 2nd, 4th, 6th,
and 8th batch of different systems (Tcw, Tcs, Tcp, and Tck).

3.2. Plant Growth Dynamics and Physiological Root Characteristics

Table 2 shows the plant lengths, biomass, nitrogen content, and root activity as well as the ROL
rate. The data indicate slight plant growth during the operation; however, no obvious difference was
observed among these indicators between Tcw and Tcp. First, the plant shoot lengthened by 5.0–6.0 cm
while the plant root lengthened by 7.6–8.0 cm at the end of the 8th batch in Tcw and Tcp. Meanwhile,
the plant shoot biomass was enhanced by 7.3–9.5 g·m−2 while the plant root biomass was enhanced
by 11.8–13.0 g·m−2 during the operation period. Accordingly, the nitrogen content also increased by
0.110–0.143 g·m−2 and 0.108–0.117 g·m−2 in the shoot and root, respectively. Unlike the plant growth
dynamics indicators, the physiological characteristics of plant root presented a mild fluctuation in Tcw
and Tcp during the operation period. The plant root vitality showed a slight decline at the end of 2nd,
4th, and 6th batches in comparison to the beginning, but increased to 58.7–63.6 µg TTC·g−1 root·h−1 at
the end of the 8th batch. Further, the ROL rates increased by 0.32–0.52 µmol O2·g−1 root·h−1 in Tcw
and Tcp at the end of 8th batch, though they presented a slight decline at the end of the 2nd and 4th
batches when compared to the beginning.
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Table 2. Length, biomass, nitrogen content, root activity, and radial oxygen loss (ROL) rate in the plants (means ± SD., p < 0.05, n = 4).

Phase System Shoot Length
(cm)

Root Length
(cm)

Shoot Biomass
(g·m−2)

Root Biomass
(g·m−2)

N in Shoot
(g·m−2)

N in Root
(g·m−2)

Root Activity
(µg TTC·g−1

Root·h−1)

ROL Rate
(µmol O2·g−1

Root·h−1)

Initial
Tcw 50.0 ± 2.5 15.0 ± 1.0 95.0 ± 6.3 35.0 ± 3.6 1.425 0.315 48.5 ± 6.4 0.96 ± 0.045
Tcp 50.0 ± 2.5 15.0 ± 1.0 95.0 ± 6.3 35.0 ± 3.6 1.425 0.315 48.5 ± 6.4 0.96 ± 0.045

2nd Batch
Tcw 52.0 ± 2.7 16.0 ± 1.4 86.0 ± 5.3 35.8 ± 5.5 1.290 0.322 42.6 ± 3.7 0.68 ± 0.097
Tcp 52.0 ± 2.8 16.0 ± 1.3 84.0 ± 6.5 36.4 ± 3.7 1.260 0.328 46.7 ± 5.2 0.88 ± 0.098

4th Batch
Tcw 55.0 ± 3.5 17.0 ± 1.5 87.0 ± 5.8 37.0 ± 4.1 1.305 0.333 43.2 ± 5.3 0.79 ± 0.054
Tcp 55.0 ± 3.4 17.7 ± 1.2 87.2 ± 7.6 38.3 ± 3.3 1.305 0.345 46.4 ± 5.5 0.87 ± 0.093

6th Batch
Tcw 54.0 ± 2.6 20.5 ± 2.0 92.3 ± 5.7 40.5 ± 5.2 1.385 0.365 42.8 ± 4.5 1.02 ± 0.065
Tcp 53.0 ± 1.7 20.0 ± 2.4 91.6 ± 6.5 40.6 ± 5.1 1.374 0.365 47.5 ± 6.2 1.03 ± 0.061

8th Batch
Tcw 56.0 ± 2.5 22.6 ± 2.2 102.3 ± 13.5 46.8 ± 4.3 1.535 0.421 58.7 ± 6.5 1.28 ± 0.078
Tcp 55.0 ± 2.5 23.0 ± 2.7 104.5 ± 14.4 48.0 ± 4.8 1.568 0.432 63.6 ± 8.9 1.48 ± 0.085

Tcw: FWS-CWS planted with O. javanica in substrate; Tcp: control systems without sands. The plant in each system was sampled at the initial time of the experiment and at the end of the
2nd, 4th, 6th, and 8th batches.
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3.3. Microbial Population and Composition

The absolute abundances of bacteria, archaea, and anammox as well as the four functional
genes, (i.e., amoA, nosZ, nirS, and nirK) in the samples from plant roots or sand in the three systems
are shown in Figure 2. Except for anammox and nirK, the abundances of bacteria, archaea, amoA,
nosZ, and nirS in samples from rhizoplane in Tcw (Ps) were higher when compared to samples from
rhizoplane in Tcp (Pw). The copy numbers in Ps were recorded as 8.947 × 1010 copies·g−1 root (bacteria),
1.954 × 1011 copies·g−1 root (archaea), 7.335 × 107 copies·g−1 root (amoA), 1.491 × 107 copies·g−1 root
(nosZ), and 2.517 × 108 copies·g−1 root (nirS), while the numbers were 7.017 × 1010 copies·g−1 root
(bacteria), 7.871× 1010 copies·g−1 root (archaea), 4.828× 107 copies·g−1 root (amoA), 6.812× 106 copies·g−1

root (nosZ), and 2.017× 108 copies·g−1 root (nirS) in Pw. On the other hand, significantly high abundances
of all seven target functional gene fragments were observed in samples from sand in Tcw (Sp) when
compared to samples from sand in Tcs (Su). The copy numbers of bacterial 16S rRNA, archaeal 16S rRNA,
anammox bacterial 16S rRNA, amoA, nosZ, nirS, and nirK in Sp were recorded as 7.987 × 108 copies·g−1

sand, 1.049 × 1010 copies·g−1 sand, 2.392 × 107 copies·g−1 sand, 5. 413 × 107 copies·g−1 sand,
1.716 × 106 copies·g−1 sand, 2.842 × 107 copies·g−1 sand, and 7.865 × 106 copies·g−1 sand, respectively,
while they were 3.220 × 108 copies·g−1 sand, 7.930 × 109 copies·g−1 sand, 1.241 × 107 copies·g−1

sand, 3.658 × 107 copies·g−1 sand, 3.897 × 105 copies·g−1 sand, 2.170 × 107 copies·g−1 sand, and
4.343 × 106 copies·g−1 sand, respectively, in Su.
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Figure 2. Absolute abundances of microbial communities and functional genes: (a) bacterial 16S rRNA,
archaeal 16S rRNA, and 16S rRNA related to anammox bacteria; (b) amoA, nosZ, nirS, and nirK (n = 3).
Ps: sample from rhizoplane in Tcw; Pw: sample from rhizoplane in Tcp; Sp: sample from sand in Tcw;
Su: sample from sand in Tcs. The microbial samples from the plants rhizoplane and the substrate were
obtained in the end of the 6th batch.

Alpha diversity analysis based on the 16S rRNA gene MiSeq sequencing shows the community
composition characteristics of microorganisms from plant rhizosphere and sand in the three systems
(Table A3). The community richness was analyzed by calculating the Chao1 estimator at 5% dissimilarity,
while community diversity was estimated by Shannon index at 5% dissimilarity. Community evenness
was indicated via Shannon-even index at 5% dissimilarity. The results showed a significant improvement
in richness, diversity, and evenness of microbial communities in the plant roots of Pw in contrast to
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those of Ps. Meanwhile, an obvious superiority of microbial community diversity and evenness was
observed for Sp in comparison to Su.

A pairwise comparison of the bacterial community composition at the phylum level is shown
in Figure 3. A total of 25 distinguishable phyla were detected, of which 0.06%, 0.21%, 1.41%, and
0.80% were unclassified reads in Ps, Pw, Sp, and Su, respectively. In Ps and Pw, the dominant phylum
Proteobacteria accounted for 84.29% of the total reads, followed by Firmicutes with relative abundances
of 11.28% (Ps) and 8.80% (Pw), followed by Bacteroidetes, of which, the relative abundances were
recorded as 2.19% (Ps) and 2.56% (Pw). A different phylum abundance order was found in bacterial
samples from Sp and Su. Though the dominant phylum was also Proteobacteria (70.08% for Sp, 78.49%
for Su), the second abundant phylum was Bacteroidetes (15.20% for Sp, 10.26% for Su), followed by
Actinobacteria (3.36%) in Sp and Firmicutes (2.93%) in Su.
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Figure 3. Microbial communities in the samples from plants or sands at the phylum level. Some phyla
(read numbers <10) are grouped into “others”. Ps: sample from rhizoplane in Tcw; Pw: sample from
rhizoplane in Tcp; Sp: sample from sand in Tcw; Su: sample from sand in Tcs. The microbial samples
from the plants rhizoplane and the substrate were obtained at the end of the 6th batch.

Furthermore, the predominant phylum Proteobacteria was extensively analyzed by order
(Figure 4). The samples from Ps and Pw shared a similar composition of order, and differences
were observed only in the relative abundances of the primary orders. These were recorded as
Pseudomonadales (74.70%), Aeromonadales (2.44%), Burkholderiales (1.79%), and Rhizobiales
(1.12%) in Ps, and Pseudomonadales (66.15%), Aeromonadales (7.23%), Burkholderiales (2.37%),
and Rhizobiales (2.09%) in Pw. The microbial samples presented larger differences between
Sp and Su with regard to order composition. The predominant orders in Sp included
Oceanospirillales (14.49%), Burkholderiales (14.33%), Pseudomonadales (8.80%), Xanthomonadales
(6.49%), Sphingomonadales (4.76%), Rhodobacterales (4.02%), and Rhodocyclales (3.42%), while
those in Su were Oceanospirillales (18.69%), Pseudomonadales (13.19%), Burkholderiales (10.42%),
Xanthomonadales (8.88%), Rhodocyclales (5.41%), Sphingomonadales (5.09%), and Rhodobacterales
(3.40%).
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sand in Tcw; Su: sample from sand in Tcs. The microbial samples from the plants rhizoplane and the
substrate were obtained at the end of the 6th batch.

The primary genera (relative abundance >1.00%) in the four systems with the addition of two
nitrifying bacteria (unclassified-Nitrosomonadaceae and Nitrospira), comprised a total of 48 genera
(Table A4). According to the list of genera provided by Heylen et al. [40] and Philippot et al. [41], which
included at least one denitrifying strain, nearly half of these were closely related to denitrification.
Comparison of the community composition of these denitrifying bacteria showed a significant
difference among the two groups of wastewater treatment systems. In Ps, Pseudomonas, with a relative
abundance of 74.33%, was the dominant genus, followed by Exiguobacterium (8.89%), Aeromonas
(2.44%), Bacillus (1.72%), and Rhizobium (0.60%). In Pw, Pseudomonas accounted for 65.76%, followed by
Aeromonas (7.23%), Exiguobacterium (5.14%), Paenibacillus (2.93%), Rhizobium (1.01%), Acidovorax (0.94%),
Flavobacterium (0.67%), and unclassified-Rhodobacteraceae (0.61%). The order for Sp was Halomonas
(14.49%), Rhodoferax (7.73%), Pseudomonas (5.19%), Arenimonas (5.00%), unclassified-Bacteroidetes (4.18%),
Flavobacterium (2.79%), Perlucidibaca (2.46%), unclassified-Rhodobacteraceae (2.20%), Simplicispira (1.93%),
Hydrogenophaga (1.82%), and Thiobacillus (1.35%). The order for Su was Halomonas (18.68%), Pseudomonas
(9.64%), Arenimonas (5.01%), Rhodoferax (3.19%), unclassified-Xanthomonadaceae (3.16%), Perlucidibaca
(2.93%), Hydrogenophaga (2.79%), unclassified-Bacteroidetes (1.88%), unclassified-Rhodobacteraceae (1.84%),
and Thiobacillus (1.71%). In addition, more abundant nitrifying bacteria were observed in Sp in
comparison to Su. The relative abundance of unclassified-Nitrosomonadaceae was recorded as 0.0889%
and 0.0333% in Sp and Su, respectively.

4. Discussion

Although the process of nitrogen transformation and removal in CWs is complex and attributed
to various mechanisms including ammonification, nitrification–denitrification, anammox, vegetation
uptake, biomass assimilation, dissimilatory nitrate reduction, substrate adsorption, and ammonia
volatilization [10,42,43], it has been widely considered that the removal of nitrogen is primarily due to
microbial metabolic pathways [44,45]. Therefore, in the current research, only the nitrogen content was
measured in the wastewater as well as the macrophytes. As previously reported, the present results
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indicate that the vegetation uptake pathway in planted systems was limited. It was attributed to the
weak growth of O. javanica at a low average temperature below 5 ◦C.

Due to the presence of diverse forms of nitrogen in wastewater, nitrogen removal in CWs often
involves a series of microbial communities with a variety of metabolic functions. In general, the
removal of nitrogen from wastewater is closely related to the microbial abundance and community
composition which directly decides the functional characteristics of microorganisms in the CWs [46,47].
In this study, the presence of macrophytes significantly improved microbial abundances, as well as had
slight lifting effects on the richness, diversity, and evenness of microbial composition, which, in turn,
led to an enhanced performance of nitrogen removal. This is consistent with previous studies that
reported enhanced density, activity, and diversity of microorganisms in the plant rhizosphere [48–51].
Quantitative analysis showed dramatically higher abundances of bacteria and archaea in the plant
rhizoplane compared to those in the substrate of both planted and unplanted systems which suggests
that it could be potentially attributed to the enlargement and complexity in attachment surface for
microbial growth [10].

Nitrification includes two steps [10]. In the first step, ammonia oxidation oxidizes ammonium
to nitrite, which is generally believed to be the rate-limiting step of nitrification and is usually
marked by the amoA gene [44]. The second step, nitrite oxidation, converts nitrite into nitrate, which
involves nitrite-oxidizing bacteria. The organisms that participate in ammonia oxidation mainly
belong to two groups. One is ammonia-oxidizing bacteria (AOB), which have long been considered
critical in nitrification, and the other is ammonia oxidizing archaea (AOA), which play an active role
in nitrification by molecular biological methods. In the current study, archaeal abundances were
significantly high when compared to the bacterial abundances in the planted systems. This result was
consistent with several previous reports that found that AOA was the preponderant ammonia-oxidizing
microorganism in the plant rhizosphere and had significantly active involvement in nitrification in the
rhizosphere due to their better adaptability to the rhizosphere microenvironment in comparison to
AOB [52–54]). Moreover, the abundances of archaea and amoA gene in the planted systems showed
significant increases than those in the unplanted ones. The analysis of bacterial composition at
different taxonomic levels also revealed a higher relative abundance of Nitrosomonadaceae, identified
as a representative family of AOB, in planted systems compared to the unplanted ones. The results
indicate that the presence of macrophytes facilitated nitrogen removal from wastewater via stimulating
the abundance of ammonia-oxidizing microorganisms in the FWS-CWS. The detailed mechanism may
involve the release of oxygen by roots of macrophytes which changed the partial oxidation-reduction
conditions in the rhizosphere. According to the studies applying stoichiometry method, the lowest
critical concentration of DO for ammonium oxidation is 1.0 mg·L−1 and the complete nitrification
of 1.0 g ammonia nitrogen needs 4.6 g of oxygen [5]. Although there is a thin aerobic layer at the
water surface due to passive diffusion from air to water, the FWS-CWS is largely an anoxic system
because DO decreases with water depth and organic sedimentation at the surface of the substrate
consumes a mass of oxygen [5]. Therefore, together with the low temperature, the removal of ammonia
nitrogen and TN in the unplanted systems were found to be limited in the current research. In contrast,
the removal of ammonia nitrogen in planted systems presented evident superiority in contrast to
unplanted ones because wetland macrophytes can efficiently transfer oxygen from air to the CW
system via ROL [4]. However, the advantage of TN removal was not recorded in the planted systems
during the experiment. This result may be related to the limited nitrate-nitrogen removal which could
be attributed to another group of the microbial community named denitrifies.

Denitrifying microorganisms exist across a wide range of microbial groups, which involve
Actinomycetes, Aquifaceae, Bacteroides, Firmicutes, Proteobacteria, and even archaea as well as fungus [41].
A total of more than 60 genera have been identified as denitrifying bacteria and most of them belong to
Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria [41]. In this study, denitrifying bacteria
accounted for half of the primary genera listed, which indicated the diversity of denitrifier in the
FWS-CWS. Halomonas, Rhodoferax, Pseudomonas, and Arenimonas constituted the four primary genera of
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denitrifying bacteria in both the planted and unplanted systems. Hence, it is likely that the difference in
community composition of denitrifying bacteria was not the material cause of the difference in nitrogen
removal efficiency between the planted and unplanted systems. In contrast, significant differences
between the planted and unplanted systems were obviously revealed by the quantitative analysis of
the critical functional genes, including nosZ, nirS, and nirK.

Denitrification, which converts nitrate to nitrogen gas, consists of four steps and commonly
occurs under anaerobic conditions [6,55]. The first step which involves converting nitrate into nitrite
may occur under aerobic conditions catalyzed by Nap or anaerobic conditions catalyzed by Nar.
The second step which converts nitrite into nitric oxide is catalyzed by two key enzymes: dissimilatory
copper-containing nitrite reductase encoded by the nirK gene and dissimilatory cd1-containing nitrite
reductase encoded by the nirS gene. The third step is the conversion from nitric oxide to nitrous oxide.
The last step is catalyzed by the product of the nosZ gene which converts nitrous oxide into nitrogen
gas. Additionally, the nosZ gene is often regarded as the marker of complete denitrification while
the nirS and nirK genes usually act as the markers for the second denitrification step [6,55]. In the
current research, the absolute abundances of the three genes, especially the nosZ gene, presented
significant increases in the planted systems in contrast to the unplanted ones. This result indicates
the remarkable facilitation of the quantity of denitrifying bacteria by wetland macrophytes which
could be ascribed to the increased supply of biodegradable carbon. It is widely believed that the
denitrification in CWs depends on organic carbon levels. Ye and Li [56] concluded that the entire
denitrification of 1.0 g nitrate nitrogen into nitrogen gas needed 2.86 g BOD. Meanwhile, a variety of
studies have shown that macrophytes can effectively enhance the carbon content, thus, aiding nitrogen
removal in the CWs [7,25,57]. On the one hand, plant root exudates can provide available organic
compounds to heterotrophic bacteria [8], on the other, plant litter can release various dissolved organic
matters including sugars, amino acids, and volatile fatty acids [48,58]. In this study, the enhanced
COD content and COD/N ratios in wastewater accompanied by the increased removal of TN from
the wastewater were recorded in the planted systems. Despite the optimal COD/N ratio of 5:1 for
nearly complete removal of nitrogen in the FWS-CWS [59], the elevated COD/N ratio, which reached
up to 2:1 in several later batches in the planted systems, may effectively promote the accumulation
of denitrifying microorganisms and stimulate denitrification, and subsequently, comprehensively
improve the removal efficiency of TN from wastewater.

Besides the nitrification–denitrification process, anammox has been widely indicated as a
new ammonium oxidation process which occurs under anaerobic conditions. Compared with the
nitrification–denitrification pathway, the anammox pathway has the advantage of a lower demand for
carbon sources [5,10,55]. The microorganisms involved in the anammox process have been identified
to belong to the order Brocadiales of the phylum Planctomycetes [60,61]. However, no Brocadiales
were detected by the analysis based on V3–V4 regions of the 16S rRNA gene in the current research.
Nevertheless, the quantitative analysis of the anammox bacterial 16S rRNA gene, which is usually
regarded as the marker of anammox process, clearly indicated the presence of anammox bacteria [55].
However, the absolute abundance of anammox bacteria was far lower than that of the amoA gene, which
indicated that the ammonia process was not the dominant pathway of the ammonia nitrogen removal.
This result was consistent with the opinion that nitrification–denitrification primarily contributes to
the removal of ammonia nitrogen when the C/N ratio is less than or equal to 6:1 in the CWs [55].

Analysis of bacterial community composition revealed that Proteobacteria was the dominant
phylum followed by Bacteroidetes in not only the plant rhizoplane, but also the rhizosphere in the current
system. Proteobacteria has been widely considered an active participant in nitrogen removal in the
CWs for its high diversity of metabolism which involves global carbon, nitrogen, and sulfur cycling [62].
The results of this study were consistent with several previous studies that indicated Proteobacteria as
the dominant bacterial community in a variety of wetland substrates [48,49,62,63]. Further comparison
of Proteobacteria by order also indicated a difference in the relative abundances of many orders,
such as Burkholderiales, Oceanospirillales, Pseudomonadales, and Rhodocyclales, between samples
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from the substrate of planted systems and those from the unplanted ones. All the four mentioned
orders have been reported to have a close relationship with denitrification, which indicates different
characteristics of nitrogen removal between the planted and unplanted systems [41,64]. Moreover, a
higher relative abundance of Bacteroidetes, which was presented by the genera Flavobacterium in the
class Flavobacteria, in the planted systems may also relate to the nitrogen removal via the denitrification
process [64]. In summary, the enhanced community diversity and evenness of the bacteria, especially
denitrifying bacteria, in the planted systems, may play a significant role in the improved removal rate
of TN from wastewater.

5. Conclusions

In conclusion, the presence of O. javanica had a significant facilitating effect on the nitrogen,
especially TN, removal from wastewater in the FWS-CWS during the low-temperature season with
mean water temperature lower than 10 ◦C. Because the macrophyte could provide extra organic
carbon by root exudation and plant residues, it enhanced the microbial abundance, diversity, and
evenness, as well as the abundances of amoA, nosZ, nirS, and nirK, and those closely related to
nitrification–denitrification, on the rhizoplane and in the substrate. This suggests that FWS-CWS
planted with O. javanica is a reliable option for a higher removal rate of nitrogen during low-temperature
seasons. However, the increased COD concentration in planted systems may also cause secondary
pollution and pose a new challenge for the wastewater purification, especially, when the wetland
macrophytes begin to shrivel and die under low temperatures. Therefore, further studies on the
selection of plant species, the control of plant density, as well as feasible improvements to the approach,
for instance, adopting the FWS-CWS as part of an integrated wastewater treatment train, merit more
attention in the future.
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Table A1. Primers of QPCR.

Target Primer Primer Sequence (5′-3′) References

bacterial 16S rRNA gene 690F TGTGTAGCGGTGAAATGCG [65]
829R CATCGTTTACGGCGTGGAC

archaeal 16S rRNA gene ARC344F ACGGGGYGCAGCAGGCGCGA [66]
ARC915R GTGCTCCCCCGCCAATTCCT

ANO 16S rRNA gene AMX809F GCCGTAAACGATGGGCACT [67]
AMX1066R AACGTCTCACGACACGAGCTG

amoA
amo1F GGGGGTTTCTACTGGTGGT [68]
amo2R CCCCTCKGSAAAGCCTTCTTC

nosZ
NosZ 1527F CGCTGTTCHTCGACAGYCA [69]
NosZ 1773R ATRTCGATCARCTGBTCGTT

nirS
nirS cd3AF GTSAACGTSAAGGARACSGG [70]
nirS R3cd GASTTCGGRTGSGTCTTGA

nirK
nirK 583F TCATGGTGCTGCCGCGKGACGG[71]
nirK 909R GAACTTGCCGGTKGCCCAGAC

Table A2. Detailed information for 16S rRNA gene qPCR and Illumina MiSeq sequencing analysis.

Information qPCR Illumina MiSeq Sequencing

Analysis system Illumina-Eco real-time PCR system
(Illumina, San Diego, CA, USA)

Illumina MiSeq 2500 sequencing platform
(Illumina, San Diego, CA, USA)

Reaction mixture

5.0 µL SYBR® Premix Ex Taq™ II
(Takara, Otsu, Japan),
1.0 µL template DNA (diluted 100-fold),
0.5 µL forward and 0.5 µL reverse
primers (10 µM),
3.0 µL RNase-free water

25 µL reaction mixture (including 10 ng
template, 0.5 µL forward primer, 0.5 µL
reverse primer)

PCR program
30 s at 94 ◦C, 40 cycles of 5 s at 95 ◦C,
30 s at 55 ◦C (amoA) or 60 ◦C (other
genes), and 30 s at 72 ◦C

3 min at 94 ◦C, 30 cycles of 10 s at 94 ◦C,
15 s at 55 ◦C, and 72 ◦C for 30 s, and a
final incubation at 72 ◦C for 7 min

PCR product purification /
Agencourt AMPure beads (Beckman
Coulter, Inc., Fullerton, CA, USA)

Libraries construction /
NEBNext Ultra DNA Library Prep Kit for
Illumina (New England Biolabs Inc.,
Boston, MA, USA)

Table A3. Alpha diversity analysis at 5% dissimilarity based on the 16S rRNA gene Miseq
sequencing analysis.

Sample OTUs ACE Simpson Shannon-Even Coverage

Ps 446 629.398681 0.219313 0.382270 0.994148

Pw 567 720.449124 0.137883 0.462411 0.994037

Sp 710 788.302182 0.031945 0.748674 0.995926

Su 675 761.131090 0.046425 0.695539 0.995444

The richness estimators (ACE), diversity indices (Simpson), evenness indices (Shannon-even), and coverage (Good’s
coverage index) were calculated using the Mothur program. Ps: sample from rhizoplane in Tcw; Pw: sample from
rhizoplane in Tcp; Sp: sample from sand in Tcw; Su: sample from sand in Tcs. The microbial samples from the
plants rhizoplane and the substrate were obtained at the end of the 6th batch.



Int. J. Environ. Res. Public Health 2019, 16, 1420 14 of 19

Table A4. The main genera (relative abundance >1.00%) with the addition of two nitrifying bacteria (Nitrospira and unclassified-Nitrosomonadaceae) in the samples from
rhizoplane or sand.

Phylum Genus
Read Numbers Relative Abundances (%)

Ps Pw Sp Su Ps Pw Sp Su

Bacteroidetes Anaerorhabdus 0 5 278 98 0.00 0.02 1.03 0.36
Bacteroidetes Chryseobacterium 224 68 5 8 0.83 0.25 0.02 0.03
Bacteroidetes Flavobacterium 76 181 752 321 0.28 0.67 2.79 1.19
Bacteroidetes Lutibacter 0 5 293 366 0.00 0.02 1.09 1.36
Bacteroidetes Sunxiuqinia 2 3 274 28 0.01 0.01 1.01 0.10
Bacteroidetes unclassified-Bacteroidetes 13 31 1129 509 0.05 0.11 4.18 1.89

Cyanobacteria/Chloroplast Bacillariophyta 4 43 328 33 0.01 0.16 1.21 0.12
Firmicutes Bacillus 465 52 73 79 1.72 0.19 0.27 0.29
Firmicutes Exiguobacterium 2401 1387 8 4 8.89 5.14 0.03 0.01
Firmicutes Paenibacillus 21 792 4 1 0.08 2.93 0.01 0.00
Firmicutes Trichococcus 5 0 1 0 0.02 0.00 0.00 0.00

Ignavibacteriae Ignavibacterium 2 1 261 302 0.01 0.00 0.97 1.12
Planctomycetes Planctomyces 4 13 3 3 0.01 0.05 0.01 0.01
Proteobacteria Acidovorax 81 255 9 30 0.30 0.94 0.03 0.11
Proteobacteria Aeromonas 658 1952 55 21 2.44 7.23 0.20 0.08
Proteobacteria Arcobacter 5 1 0 1 0.02 0.00 0.00 0.00
Proteobacteria Arenimonas 24 56 1350 1353 0.09 0.21 5.00 5.01
Proteobacteria Azoarcus 27 7 311 339 0.10 0.03 1.15 1.26
Proteobacteria Azospira 0 6 42 44 0.00 0.02 0.16 0.16
Proteobacteria Azospirillum 12 4 41 9 0.04 0.01 0.15 0.03
Proteobacteria Bradyrhizobium 10 39 23 20 0.04 0.14 0.09 0.07
Proteobacteria Dechloromonas 37 69 85 61 0.14 0.26 0.31 0.23
Proteobacteria Geobacter 0 1 335 106 0.00 0.00 1.24 0.39
Proteobacteria Halomonas 74 129 3911 5044 0.27 0.48 14.49 18.68
Proteobacteria Hydrogenophaga 31 44 492 752 0.11 0.16 1.82 2.79
Proteobacteria Hyphomicrobium 2 6 23 41 0.01 0.02 0.09 0.15
Proteobacteria Limnobacter 1 2 44 174 0.00 0.01 0.16 0.64
Proteobacteria Mesorhizobium 4 11 41 20 0.01 0.04 0.15 0.07
Proteobacteria Paraperlucidibaca 0 1 252 19 0.00 0.00 0.93 0.07
Proteobacteria Perlucidibaca 10 7 664 790 0.04 0.03 2.46 2.93
Proteobacteria Porphyrobacter 59 92 207 80 0.22 0.34 0.77 0.30
Proteobacteria Pseudomonas 20,068 17,756 1402 2603 74.33 65.76 5.19 9.64
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Table A4. Cont.

Phylum Genus
Read Numbers Relative Abundances (%)

Ps Pw Sp Su Ps Pw Sp Su

Proteobacteria Pseudoxanthomonas 1 2 6 6 0.00 0.01 0.02 0.02
Proteobacteria Rhizobium 163 272 50 48 0.60 1.01 0.19 0.18
Proteobacteria Rhodobacter 44 73 253 176 0.16 0.27 0.94 0.65
Proteobacteria Rhodoferax 39 78 2088 863 0.14 0.29 7.73 3.20
Proteobacteria Sandaracinobacter 0 0 84 307 0.00 0.00 0.31 1.14
Proteobacteria Shewanella 0 17 5 1 0.00 0.06 0.02 0.00
Proteobacteria Simplicispira 13 19 522 393 0.05 0.07 1.93 1.46
Proteobacteria Stenotrophomonas 0 4 1 2 0.00 0.01 0.00 0.01
Proteobacteria Sulfuritalea 1 5 207 644 0.00 0.02 0.77 2.39
Proteobacteria Thauera 1 4 94 179 0.00 0.01 0.35 0.66
Proteobacteria Thiobacillus 1 0 367 463 0.00 0.00 1.36 1.71
Proteobacteria unclassified-Rhodobacteraceae66 165 594 496 0.24 0.61 2.20 1.84
Proteobacteria unclassified-Sphingomonadales27 43 202 352 0.10 0.16 0.75 1.30
Proteobacteria unclassified-Xanthomonadaceae8 15 219 855 0.03 0.06 0.81 3.17

Nitrospirae Nitrospira 0 1 3 2 0.0000 0.0037 0.0111 0.0074
Proteobacteria unclassified-Nitrosomonadaceae1 2 24 9 0.0037 0.0074 0.0889 0.0333

Possible denitrifying bacteria according to Heylen et al. (2006) and Philippot et al. (2007) in each sample are given in bold. Ps: sample from rhizoplane in Tcw; Pw: sample from rhizoplane
in Tcp; Sp: sample from sand in Tcw; Su: sample from sand in Tcs.
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