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microRNAs with AAGUGC seed motif constitute an integral
part of an oncogenic signaling network
Y Zhou1, O Frings1, RM Branca1, J Boekel1,2, C le Sage3, E Fredlund1, R Agami3 and LM Orre1

microRNA (miRNA) dysregulation is a common feature of cancer cells, but the complex roles of miRNAs in cancer are not fully
elucidated. Here, we used functional genomics to identify oncogenic miRNAs in non-small cell lung cancer and evaluate their
impact on response to epidermal growth factor (EGFR)-targeting therapy. Our data demonstrate that miRNAs with an AAGUGC
motif in their seed sequence increase both cancer cell proliferation and sensitivity to EGFR inhibitors. Global transcriptomics,
proteomics and target prediction resulted in the identification of several tumor suppressors involved in the G1/S transition as
AAGUGC-miRNA targets. The clinical implications of our findings were evaluated by analysis of AAGUGC-miRNA expression in
multiple cancer types, supporting the link between this miRNA seed family, their tumor suppressor targets and cancer cell
proliferation. In conclusion, we propose the AAGUGC seed motif as an oncomotif and that oncomotif-miRNAs promote cancer cell
proliferation. These findings have potential therapeutic implications, especially in selecting patients for EGFR-targeting therapy.
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INTRODUCTION
One of the most studied areas in cancer biology is related to
cancer growth and oncogenic drivers of cancer cell proliferation.
In addition to expanding the general knowledge of cancer
biology, a major reason for this focus is that oncogenic drivers
are tempting targets for anti-cancer therapy. The majority of
targeted cancer therapies in use today or in clinical studies are
inhibitors of proteins that increase cancer cell proliferation as
exemplified by epidermal growth factor tyrosine kinase inhibitors
(EGFR-TKIs) in non-small cell lung cancer (NSCLC) or ERBB2
inhibitors in breast cancer. Clinical studies have shown us that this
type of targeted therapy is only efficient against tumors that rely
on the targeted protein for proliferation. Furthermore, it is likely
that several parallel pathways/networks need to be targeted
simultaneously to achieve long-term efficacy and combat
resistance development. To predict treatment response and select
targeted therapies, it is therefore of great importance to fully
understand the signaling networks that drive cancer cell
proliferation.
In spite of massive research efforts, knowledge of specific

oncogenic drivers is still lacking in a large part of cancer cases.1–3

One of the reasons for this incomplete knowledge of oncogenic
pro-growth signaling is the multiple levels of regulation used by
the cancer cells, that is, epigenetic, transcriptional, translational and
posttranslational regulation. To complete the current fragmentary
picture, additional levels will be needed in the analysis, such as
protein-level analysis by mass spectrometry (MS)-based proteomics.
These methods are currently reaching sufficient analytical depth
and throughput to be integrated in systems biology analysis as
shown by us4 and others,5 and will certainly further improve our
knowledge of cancer biology.
One important level of regulation used in cells is posttranscriptional

regulation by microRNAs (miRNAs). miRNAs are small, non-coding

RNAs that repress gene expression through base pairing between
the miRNA seed sequence (5’ nucleotides 1–8) and 3’ untranslated
regions (3’UTRs) of mRNAs, causing mRNA degradation, translation
inhibition or both.6 Each miRNA can target hundreds of different
mRNAs, and it has been estimated that the 1000–1500 different
miRNAs expressed in the human genome collectively have the
capacity to repress more than 50% of all protein-coding genes.7

A huge body of evidence supports the importance of miRNA
deregulation in cancer, and both overexpression of cancer-promoting
miRNAs (oncomiRs) and loss of cancer-inhibiting miRNAs (tumor
suppressor (TS) miRs) are common.8,9 However, the complex target
spectrum and biology of miRNAs complicates the interpretation
of data and consequently, even when measured, miRNA deregulation
is often neglected when presenting the oncogenic drivers in cancer
landscape publications.
In this study, we used a functional genomics approach to

identify potentially oncogenic miRNAs in NSCLC. Our analysis
indicated that expression of miRNAs with an AAGUGC motif in
the seed sequence resulted in increased cellular proliferation,
which, interestingly, was accompanied by increased sensitivity
to EGFR-TKI inhibitors. Molecular profiling of the effects of
AAGUGC-miRNA expression at the mRNA and protein level, as
well as miRNA target prediction analysis resulted in a large
number of potential AAGUGC-miRNA targets. Among these
targets were several well-known TSs, explaining the proliferation
promoting activities of AAGUGC-miRNAs. Expression of
AAGUGC-miRNAs and targets were then evaluated in a number
of different cancer types using public domain data. Collectively,
our data have led us to suggest the AAGUGC seed sequence
motif in miRNAs as an 'oncomotif' and, in addition, a model
where oncomotif-miRNAs are an integral part of a signaling
network that drives cancer cell proliferation.
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RESULTS
miRNAs with an AAGUGC motif in their seed sequence increase
proliferation and EGFR-TKI sensitivity in NSCLC cells
To identify potentially oncogenic miRNAs in NSCLC and to
investigate their impact on EGFR-TKI response, a functional
genomics screen was performed (Figure 1a). In brief, a library of
miRNA expression vectors (n=~450)10 was individually transduced
into the NSCLC cell line U1810, and after selection of stable miRNA
expressing cells (~80% of library vectors yielded stable clones),
cells were pooled and split into nine cultures. Twenty-four hours
after seeding, triplicate untreated cultures were harvested for use
as a baseline reference. Triplicate cultures were then treated with
an EGFR-TKI (gefitinib) or left untreated for a period of 30 days.
At the end of the experiment, altered relative abundances of
miRNA-expressing populations between the three conditions
(Ctrl0, Ctrl30 and Gef30) were evaluated by deep sequencing
(Supplementary Table 1).
The main focus of our analysis was on miRNA-expressing clones

that were enriched after 30 days of culture in normal medium

(indicating increased proliferation, Figure 1b), and miRNA clones
that were depleted after EGFR-TKI treatment (indicating increased
EGFR-TKI sensitivity, Figure 1c). We arbitrarily considered only
miR-Vecs that had been sequenced at least 300 times in all three
replicates of one condition, resulting in 140 unique miR-Vec miRNAs
remaining for the enrichment/depletion analysis. Interestingly,
several (11) of the miR-Vec miRNAs that increased proliferation
also increased EGFR-TKI sensitivity. In addition, a group of these
miR-Vecs contain miRNAs (hsa-mir-372, hsa-mir-373, hsa-mir-519c
and hsa-mir-520c) with strong seed sequence homology, as they
all contain an AAGUGC motif in the 5’ end (nt 1–8) of the mature
miRNA (Figure 1d). As previous studies have shown oncogenic
potential for miRNAs with an AAGUGC motif in their seed sequence,
we decided to investigate this group of miRNAs further.
To validate the impact of AAGUGC-miRNA expression on cell

proliferation and EGFR-TKI sensitivity, four different lung cancer
cell lines (U1810, A549, NCI-H1703 and SK-MES-1) were stably
transduced with a hsa-mir-372 (hereafter refered to as miR-372)
expression vector or a control vector. Stably transduced cells were
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Figure 1. miRNAs with an AAGUGC motif increase proliferation and EGFR-TKI sensitivity. (a) Overview of the functional genomics screen for
potentially oncogenic miRNAs with an impact on EGFR-TKI sensitivity. A library of different miRNA expression vectors (miR-Lib) was used for
individual transduction into U1810 NSCLC cells. After culturing with or without EGFR-TKI (gefitinib, 10uM), miRNA inserts from all samples were
recovered by PCR and enrichment or depletion of specific miRNA-expressing clones was determined by deep sequencing. (b) Analysis of the
relative abundance of recovered miRNA inserts comparing baseline control cells and cells grown in normal medium for 30 days. Volcano plot
indicates miRNAs with a positive impact on proliferation. Red lines indicate arbitrarily chosen cutoffs for miRNA clones enriched after 30 days
in culture (Ctrl30/Ctrl0, 1.5 log2, Po0.05). (c) Analysis of the relative abundance of recovered miRNA inserts comparing cells grown in normal
medium or gefitinib for 30 days. Volcano plot indicates miRNAs conferring EGFR-TKI sensitivity (miRNA clones depleted after treatment with
gefitinib, Gef30/Ctrl30, − 1.5 log2, Po0.05). (d) Four miRNAs enriched after long-term culturing and depleted after treatment with gefitinib
share the same AAGUGC motif in the miRNA seed sequence (also indicated in b and c).
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fluorescence-activated cell-sorted based on green fluorescent
protein (GFP) expression from the miR-372 and control vectors.
qPCR analysis of miR-372-3p expression in all parental, control
and miR-372 transduced cells demonstrated the absence of
miR-372-3p in all parental and control cells and clear expression in
all four miR-372 transduced cell lines (Figure 2a). As a reference,
we also measured miR-372-3p expression level in a testicular germ
cell tumor cell line (833KE) with previously shown endogenous
expression of miR-372-3p,10 indicating that the miR-372 expres-
sion in our NSCLC models was physiologically relevant. Flow
cytometry analysis showed that miR-372 expression resulted
in altered cell cycle distribution in all four miR-372 models, with a
general trend of a decrease in the G0/G1 population, and an
increase of the S and G2/M populations (Figure 2b). In concordance
with the results from the functional genomics screen, miR-372
expression resulted in an increased proliferation index, defined as
the ratio between S/G2/M cells and G0/G1 cells in three of the
miR-372 models (A549, NCI-H1703 and SK-MES-1, Figure 2c). The
impact of miR-372 expression on EGFR-TKI sensitivity was evaluated
using clonogenic survival assay in U1810, A549 and NCI-H1703 cell
line models (Figure 2d). Strikingly, in all three cell line models, EGFR
inhibition using gefitinib resulted in a complete loss of colonies
formed by miR-372 expressing cells, while only causing a modest
decrease in colony size in parental and control cells. The results
from the clonogenic assay therefore fully supported the results from
the functional genomics screen. In summary, our functional
genomics screen indicated that expression of miR-372 and other
AAGUGC-containing miRNAs in lung cancer cells results in increased
proliferation and increased sensitivity to EGFR inhibitors. Further,
these results were confirmed for miR-372 in several NSCLC models
stably expressing miR-372.

Global target analysis of the AAGUGC-miRNA miR-372-3p
Our next objective was to investigate the molecular consequences
of AAGUGC-miRNA expression in relation to the detected pheno-
type. As miRNAs exert their cellular functions through targeting
mRNAs, resulting in mRNA degradation, translation inhibition or
both, we performed global mRNA- and protein-level analysis of cells
treated with synthetic miR-372-3p mimics to identify potential
AAGUGC-miRNA targets. Briefly, triplicate cultures of U1810 cells
were transfected with miR-372-3p mimics or non-targeting siRNA
and harvested 30 h after transfection (Figure 3a). The choice of
time point was based on a previously published global analysis
of miRNA effects at both protein and mRNA level.11 For the mRNA-
level analysis of miR-372-3p effects, RNA sequencing was performed
resulting in the identification and quantification of transcripts
corresponding to 12 657 genes (Supplementary Table 2). The
protein-level analysis was performed by high-resolution isoelectric
focusing–liquid chromatography–mass spectrometry (HiRIEF-LC-MS)
with relative quantification between samples using isobaric tags,
and led to the identification and quantification of proteins
corresponding to 9514 genes (Supplementary Table 3). Potential
miR-372-3p target genes were defined as genes being down-
regulated at mRNA (1741) or protein (649) level in miR-372-3p
mimic-treated cells compared with non-targeting siRNA treated cells
(P-value cutoff of 0.05, Figures 3b and c).
mRNA targets of specific miRNAs can be predicted based

on complementarity between the miRNA seed sequence and the
mRNA 3’UTR sequence. To predict miR-372-3p targets, we used
nine different miRNA target prediction algorithms through the
miRWalk database.12 In total, 7508 different miR-372-3p targets
were predicted, with the number of predictions per algorithm
ranging from 451 (miRDB) to 6146 (PICTAR5) (Supplementary

A549 U1810NCI-H1703

PC CC MC PC CC MCPC CC MC

C
trl

G
ef

0.0

0.5

1.0

1.5

2.0

2.5

P
ro

lif
er

at
io

n 
In

de
x

A549
NCI-H1703 U1810

SK-MES1

*** *** ***
NS

A549

G0/G
1 S

G2/M
G0/G

1 S
G2/M

G0/G
1 S

G2/M
0

20

40

60

80

P
er

ce
nt

 o
f c

el
ls

 (%
) PC

CC
MC

***
**
**

G0/G
1 S

G2/M
G0/G

1 S
G2/M

G0/G
1 S

G2/M
0

20

40

60

80

P
er

ce
nt

 o
f c

el
ls

 (%
)

SK-MES1
PC
CC
MC

PC
CC
MC

***
***

NS

PC
CC
MC

NCI-H1703

G0/G
1 S

G2/M
G0/G

1 S
G2/M

G0/G
1 S

G2/M
0

20

40

60

80

P
er

ce
nt

 o
f c

el
ls

 (%
)

***
*
**

U1810

0

20

40

60

80

G0/G
1 S

G2/M
G0/G

1 S
G2/M

G0/G
1 S

G2/M

P
er

ce
nt

 o
f c

el
ls

 (%
) PC

CC
MC***

*
NS

PC CC MCPC CC MCPC CC MC PC CC
A549U1810 NCI-H1703 SK-MES1

MC

NSCLC models with
stable hsa-mir-372 expression

hsa-mir-372 effect on cell cycle

hsa-mir-372 effect on proliferation hsa-mir-372 effect EGFR-TKI response

PC: Parental cells

CC: GFP-Ctrl cells

MC: hsa-mir-372 cells

83
3K

E

0.0

0.5

1.0

1.5

R
el

at
iv

e 
m

iR
-3

72
-3

p 
E

xp
re

ss
io

n 
(a

.u
.)

Figure 2. hsa-mir-372 expression increase proliferation and EGFR-TKI sensitivity. (a) Relative expression of miR-372-3p in four different NSCLC
cell line models stably transduced for hsa-mir-372 expression as measured by RT–qPCR. As a reference, endogenous expression of miR-372-3p
in the testicular germ cell cancer cell line 833KE was also measured. (b) Analysis of hsa-mir-372 impact on cell cycle distribution indicates
a general trend where hsa-mir-372 expression results in a decrease in the G0/G1 population, and an increase of the S and G2/M populations.
(c) In three out of four cell line models, hsa-mir-372 expression resulted in an increased proliferation index. (d) Expression of hsa-mir-372
results in increased sensitivity to EGFR-targeting therapy (gefitinib, 10 uM) as shown for A549, NCI-H1703 and U1810 cells using clonogenic
assay. Throughout the figure, bars represent mean values of three replicate experiments, error bars indicate standard deviation, P-value
calculation was performed by t-test and reported as follows: P40.05(NS), Po0.05(*), Po0.01(**) and Po0.001(***).
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Figure 1a). To rank the predictions, we used the number
of algorithms predicting the same target, ranging from targets
predicted by a single algorithm (2154 mRNAs) to all nine (only 2
mRNAs) (Supplementary Figure 1b). The mRNAs and proteins
quantified in response to miR-372-3p mimics were then stratified
into four groups according to the number of algorithms
predicting them as targets of miR-372-3p (no predictions, 1–2
predictions, 3–4 predictions and more than 4 predictions).
The cumulative distribution of mRNA or protein fold changes
upon treatment with miR-372-3p mimics across the four groups
showed no general downregulation of mRNAs or proteins
predicted by one to two algorithms, whereas a clear enrichment
of downregulated mRNAs and proteins was evident in the
group predicted by more than four algorithms (Figures 4a
and b). Interestingly, the distribution of the number of
algorithms predicting the same target mRNA was bimodal with
a peak in targets predicted by five algorithms suggesting
a threshold for higher algorithm consistency (Supplementary
Figure 1b). For further analysis, we therefore focused on targets
predicted by five or more algorithms.
Combining the global mRNA- and protein-level analysis of

miR-372-3p targets with the target prediction analysis resulted in
a list of 525 putative miR-372-3p targets that were downregulated
at mRNA and/or protein level and also predicted as targets by
more than four different algorithms (Figure 4c, Supplementary
Table 4).

miRNAs with the AAGUGC-oncomotif target a wide range of
tumor suppressors with growth inhibiting functions
According to the miRNA database miRBase, the human genome
contains a total of 28 different miRNAs with an AAGUGC motif in
their seed sequence (Supplementary Figure 2). These 28 miRNAs
are expressed from seven different loci, and in six of these
loci, several different AAGUGC-miRNAs are clustered together.

In two cases, these miRNA clusters are located within an intron of
a so-called miRNA host gene (MIR17HG for miR-17 ~ 92 and MCM7
for miR-106b~ 25), and in remaining cases, they are located
in intergenic regions. Although it is likely that these different
miRNAs have their own unique target mRNAs, our and others’ data
indicate that there is a common oncogenic phenotype for many
of these miRNAs, suggesting that there is also a common set
of target mRNAs. The performed analysis indicates that the
AAGUGC-core motif present in the seed sequence of all these
miRNAs is important for their oncogenic properties. For this
reason, we will refer to this core motif as the oncomotif and to the
group of 28 miRNAs as oncomotif-miRNAs.
To identify mRNA targets involved in the regulation of cell

proliferation, we performed a literature search of previously
described and validated targets of individual oncomotif-miRNAs.
Our primary focus was directed towards TSs because inhibition of
such targets would promote oncogenic growth. The literature
search resulted in the identification of seven well-established TS
targets previously described to be regulated by one or several
different oncomotif-miRNAs (TGFBR2,13 CDKN1A,14 LATS2,10 RBL2,15

ZBTB7A,16 PTEN17 and RB1;18 for additional references and details,
see Supplementary Table 5). All of these TS targets except
RB1 were among the 525 putative miR-372-3p targets here
identified, suggesting that they are common oncomotif-miRNA
targets (Figures 5a and b). Conversely, several oncomotif-miRNAs
have also been shown to target E2F1, resulting in translational
inhibition but no impact on mRNA stability, indicating that they
may be involved in negative regulation of proliferation.19 Our
experimental analysis of miRNA targets showed concordance
between mRNA- and protein-level analysis in some cases
(for example, TGFBR2, RBL2 and ZBTB7A), whereas in other cases,
the regulation was only seen at one level (for example, LATS2 at
mRNA level and CDKN1A at protein level). The overlap between
the analyses was also not complete as illustrated by E2F1, which
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was not identified by mass spectrometry. To further evaluate our
findings, we selected three oncomotif-miRNA targets (TGFBR2,
CDKN1A and E2F1) for western blot validation in four different cell
lines (U1810, A549, NCI-H1703 and SK-MES-1) using miR-372-3p
mimics. The western blot data showed robust downregulation of
the targets at the protein level in all cell lines (Figure 5c).

Oncomotif-miRNA expression in lung adenocarcinoma is linked
to E2F-driven cancer cell proliferation, TP53 mutation and MYC
amplification
To investigate the clinical relevance of oncomotif-miRNAs in
lung adenocarcinoma (LUAD), miRNA and mRNA expression
data generated in The Cancer Genome Atlas (TCGA) project were
downloaded from the UCSC Cancer Browser. The expression of
oncomotif-miRNAs in 445 LUAD cases indicated dramatically different
expression levels across the patient cohort, with hsa-mir-93 showing
the highest expression followed by hsa-mir-17 and hsa-mir-106b
(Supplementary Figure 3a). Even though hsa-mir-93 was the
dominant oncomotif-miRNA in most tumors, sporadic cases of
high expression was seen for most miRNAs as exemplified for the
10 tumors with the highest sum expression of oncomotif-miRNAs
(Supplementary Figure 3b). The five miRNAs of the miR-302
family (hsa-mir-302 a–e) were not expressed in LUAD, which is in
agreement with previous reports showing stem cell-specific
expression of these miRNAs.20

Because of the overlapping target spectrum of oncomotif-
miRNAs, we considered the sum of their expression for the

continued analysis of the TCGA data. To investigate differences in
signaling between tumors with high or low oncomotif-miRNA
expression, we performed differential mRNA expression analysis
between the top and bottom 5th percentiles of the 445 TCGA LUAD
samples (Supplementary Figure 4a). Gene set enrichment analysis21,22

indicated a strong association between oncomotif-miRNA expression
and cell proliferation as both KEGG and Reactome cell cycle
gene sets were enriched among the genes with higher expression
in oncomotif-miRNA high tumors (Supplementary Figure 4b).
Next, Ingenuity pathway analysis (www.ingenuity.com) was used
to identify pathways or networks associated with oncomotif-miRNA
expression by analyzing the top 275 genes separating the high
and low expressing tumors (log2 abs(fold) 41, false discovery
rateo1.0 E-05, Supplementary Figure 4c and Supplementary
Table 6). The top scoring network in this analysis was centered
on E2F1 (Supplementary Figure 4d), further supporting a role
of oncomotif-miRNAs in regulation of tumor cell proliferation.
Hierarchical clustering of the 445 LUAD samples and 19 normal lung
samples based on the 275 oncomotif-miRNA signature genes
resulted in a clear separation of the cohort into two main clusters
(Figure 6a). One cluster (containing oncomotif-miRNA high tumors)
was characterized by higher expression of a large number of genes
driving cell proliferation (for example, E2F1, CDK2, CDC25A, CCNA2),
while the other cluster (containing oncomotif-miRNA low tumors)
also contained all normal lung samples. Importantly, tumors
with high oncomotif-miRNA expression clustered together irrespec-
tive of the relative contribution of different miRNAs, as shown for
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the three cases with the highest oncomotif-miRNA expression
(indicated with an asterisk) but different dominating miRNAs
(C19MC cluster miRNAs, miR-371~373 cluster miRNAs and miR-93,
respectively, Supplementary Figure 3b). When analyzing oncomotif-
miRNA expression in relation to common genetic alterations in
LUAD, the top two findings were significantly higher expression
of oncomotif-miRNAs in tumors harboring TP53 mutation and
MYC amplifications (Supplementary Figures 5a and b). In addition,
but with lower significance, oncomotif-miRNA expression was
higher in tumors with mutated KEAP1 or RB1, and in tumors with
TERT amplification. The association of the miRNA signature with
clinical parameters was also investigated showing significantly
lower relapse-free survival in patients with tumors belonging to
the high oncomotif-miRNA cluster (Figure 6b). To test whether
these results were independent of genetic alterations associated
with oncomotif-miRNA expression, we performed univariate and
multivariate survival analysis including also TP53, KEAP1 and RB1
mutation as well as MYC or TERT amplification. The only significant
finding in this analysis was that patients with tumors belonging to
the high oncomotif-miRNA cluster has shorter relapse-free survival

(Supplementary Figures 5c and d). In summary, our analyses show
that oncomotif-miRNA expression in LUAD is strongly associated
with E2F-driven tumor cell proliferation, TP53 mutation, MYC
amplification and shorter relapse-free survival.

Oncomotif-miRNAs are part of an oncogenic signaling network in
LUAD
As at least part of the impact of miRNAs on their targets is
excerted through mRNA degradation, the correlation between
miRNA expression and mRNA levels in clinical samples can provide
information about targets that are clinically relevant. Out of the
525 potential targets defined here, 194 were found to inversely
correlate with oncomotif-miRNA expression in the TCGA LUAD
cohort (pearson correlation o − 0.15, Supplementary Table 7).
Importantly, all seven TS targets discussed here were found
to inversely correlate with oncomotif-miRNA expression in
LUAD (Figure 7a). Among these 194 candidate targets were
also several other previously reported targets of individual
oncomotif-miRNAs, supporting a common target spectrum.
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Furthermore, a positive correlation was seen between miRNA
expression and known oncomotif-miRNA transcription factors
(E2F1-3 and MYC) and host genes (MCM7 and MIR17HG).
In addition, a strong positive correlation was observed between
oncomotif-miRNA expression and cell cycle-related genes as
well as the proliferation marker MKI67.
On the basis of our findings, we suggest that oncomotif-miRNAs

are an integral part of a signaling network that regulates cell
proliferation, and that overexpression of these miRNAs has the

potential to promote oncogenic growth through the inhibition of
a series of TS targets (Figure 7b).

Pan-cancer oncomotif-miRNA analysis
To further investigate the oncomotif-miRNA expression pattern
in the context of cancer, we used miRNA-profiling data generated
in the TCGA project. Oncomotif-miRNA expression analysis
in 32 different cancer types showed large differences in overall
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expression between cancer types (Supplementary Figure 6).
The highest expression was seen in testicular germ cell cancer
(TGCT, median number of oncomotif-miRNA reads per million
miRNA reads mapped equaled 55 023) followed by acute myeloid
leukemia (30 344) and thymoma (THYM, 26 629). Cancer types
with low oncomotif-miRNA expression included pancreatic cancer
(PAAD, 3493) and kidney cancer (KIRC, 3875 and KICH, 2587).
The relative contribution of different oncomotif-miRNAs to the
summed expression showed a general pattern with the highest
expression of hsa-mir-93 followed by hsa-mir-17 in the majority of
cancer types (Supplementary Figure 7a). A striking exception from
this general pattern was noticed in TGCT where the miR-371 ~ 373
cluster was dominating together with the miR-302~367 and C19MC
clusters. Also, THYM showed a specific oncomotif-miRNA expression
pattern with relatively high expression of the C19MC cluster. Similar
to the results in LUAD, sporadic high expression of oncomotif-

miRNAs from the miR-371~ 373 and C19MC clusters was noticed in
several other cancer types (Supplementary Figure 7b).
To evaluate a general role of oncomotif-miRNAs in oncogenic

signaling, correlation networks for an additional 15 cancer types
were produced through correlating the oncomotif-miRNA expres-
sion with mRNA expression levels from TCGA as was performed for
LUAD (Figure 8). This analysis revealed that the correlations found in
the LUAD analysis were present also for other cancer types. The
strongest average negative correlation between oncomotif-miRNA
expression and the seven TS targets was seen in TGCT, the cancer
type with the highest expression of oncomotif-miRNAs. Conversely,
the weakest negative correlation was seen in KIRC, the cancer type
with the lowest expression of oncomotif-miRNAs of the cancer types
analyzed. Despite these results, we did not see a direct connection
between oncomotif-miRNA expression level and TS target correla-
tion. As an example, the second and third strongest negative
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correlations were seen in breast (BRCA) and lung (LUAD)
cancers, two cancer types with intermediate oncomotif-miRNA
expression.

To further validate the results from the LUAD analysis, the breast
cancer dataset (BRCA) was selected because it showed a generally
high correlation between oncomotif-miRNAs and TS targets.

Figure 8. Oncomotif-miRNA signaling network in additional cancer types. Oncomotif-miRNA correlation networks in 16 cancer types based on
miRNA and mRNA sequencing data (TCGA). Individual genes are color-coded based on the mRNA correlation to oncomotif-miRNA expression
for each cancer type separately. Cancer types are ordered from left to right and top to bottom based on the strongest average negative
correlation between oncomotif-miRNA expression and TS target genes. Cancer type abbreviations are: TGCT (testicular germ cell tumor), BRCA
(breast carcinoma), LUAD (lung adenocarcinoma (AC)), HNSC (head and neck squamous cell carcinoma (SCC)), LUSC (lung SCC), BLCA (bladder
urothelial carcinoma), PRAD (prostate AC), READ (rectum AC), UCEC (uterine corpus endometrial carcinoma), COAD (colon AC), THYM
(thymoma), SKCM (skin cutaneous melanoma), LAML (acute myeloid leukemia), PAAD (pancreatic AC), OV (ovarian serous cystadenocarci-
noma), KIRC (kidney renal clear cell carcinoma).
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Hierarchical clustering of 762 samples from BRCA patients and 87
normal samples based on the expression of the 275 oncomotif-
miRNA signature genes defined in LUAD generated results that very
closely mimicked the results in LUAD (Supplementary Figure 8a).
Two main clusters were produced, one containing cancers with high
oncomotif-miRNA expression showing higher expression of genes
related to cell cycle activity and proliferation, and one cluster
with low oncomotif-miRNA-expressing tumors and normal samples.
Also, in BRCA, the expression of oncomotif-miRNAs was higher
in tumors harboring TP53 mutation and MYC copy number gain
(Supplementary Figure 8b). In addition, although without reaching
statistical significance, there was a trend for shorter relapse-free
survival in BRCA patients in the oncomotif-miRNA-high cluster
compared with the oncomotif-miRNA-low cluster, similarly to what
was seen in lung cancer (Supplementary Figure 8c).
In summary, the analysis across multiple cancer types strongly

supports the results of the LUAD analysis, indicating that
oncomotif-miRNAs are in fact an integrated part of the oncogenic
signaling network that drives cancer cell proliferation.

DISCUSSION
Our miRNA target analyses revealed broad oncomotif-miRNA
targeting of bona fide TSs responsible for inhibition of cell
proliferation. RB1 (pRb) and RBL2 (p130) are directly involved in
inhibition of activating E2F transcription factors (E2F1-3) that
transactivate genes crucial for G1/S progression. RB1 binds to and
inhibits E2F1-3 directly, and RBL2 forms a repressor complex
together with inhibitory E2F transcription factors (E2F4-5) resulting
in repression of E2F1-3 target genes.23 CDKN1A (p21) is a cyclin-
dependent kinase (CDK) inhibitor that binds to and inhibits the
activity of cyclin/CDK complexes resulting in RB1-dependent
inhibition of activating E2F transcription factors. TGFBR2 also has a
negative impact on cell proliferation as TGFBR2 signaling results in
the upregulation of several different CDK inhibitors including
CDKN1A.24 PTEN is an inhibitor of the PI3K/AKT signaling pathway
that promotes both proliferation and survival. The LATS2 TS is
suggested to function through inhibition of MDM2 resulting in
stabilization of the TS TP53 (p53),25 as well as directly inhibiting
the activity of the cyclinE/CDK2 complex.26 ZBTB7A has been
shown to be a TS in prostate cancer as ZBTB7A activity results
in increased RB1 stability.16 Our analysis of oncomotif-miRNA
targets included miRNA target prediction algorithms that predict
targets based on complementarity between the seed sequence
of the miRNA and the 3’ UTR of mRNAs as well as evolutionary
conservation in the 3’ UTR sequence. It should be acknowledged
that other parts of the miRNA, not considered by the prediction
algorithms, also affect the binding to mRNA, resulting in both
false-negative and false-positive predictions.27 Importantly, all of
the TS targets here discussed have previously been described
and validated as targets of different oncomotif-miRNAs. Our
analysis here shows that expression of a single oncomotif-miRNA
(miR-372-3p) is sufficient for targeting an entire panel of these
tumor supressors. Our data also support previous studies showing
that different oncomotif-miRNAs share common TS targets.
Consequently, whenever two or more oncomotif-miRNAs are
expressed in the same cell, they will jointly contribute to the
silencing of those targets. In addition, our data demonstrate that
high expression of oncomotif-miRNAs in cancer cells promotes cell
cycle progression and increases proliferation.
In normal cells, expression of oncomotif-miRNAs through

activating E2F transcription factors14 and MYC19 in response to,
for example, growth factor signaling, could be beneficial to
rapidly induce proliferation when needed. In analogy, it has been
shown that a set of miRNAs that target immediate early genes
responsible for cell cycle entry are rapidly downregulated in
response to growth factor stimulation.28 Such signaling, however,
needs to be carefully regulated not to become oncogenic and this

is usually accomplished by efficient negative feedback loops. It has
previously been suggested that several oncomotif-miRNAs them-
selves are part of such a negative feedback loop via targeting
of activating E2F transcription factors.19 Even though we also
detect E2F1 targeting, the overall analysis supports a powerful
feed-forward loop through oncomotif-miRNA targeting of several
TSs known to cause inhibition of E2F activity and G1/S
progression. The oncomotif-miRNA-dependent increase in E2F
activity would subsequently result in additional oncomotif-miRNA
transcription, creating a self-propagating loop. This model is
further supported by the fact that ectopic expression of
oncomotif-miRNAs results in increased proliferation. Our data
thus suggest that even if oncomotif-miRNAs target E2F transcrip-
tion factors, the net effect when taking into account the TS targets
of oncomotif-miRNAs is increased proliferation.
Oncogenic growth signaling, for example, through EGFR or KRAS,

results in cyclinD/cdk4-dependent hyperphosphorylation of retino-
blastoma protein (RB1), release of activating E2F transcription
factors (E2F1-3) from RB1 inhibition and E2F-dependent transcrip-
tion of genes involved in cell cycle progression. Our data suggest
that E2F-dependent transcription of oncomotif-miRNAs (hsa-mir-93
and hsa-mir-106b)14 contributes to cell cycle progression by
targeting TSs that would otherwise inhibit cell cycle entry. Likewise,
oncogenic MYC signaling would result in inhibition of the same
TSs through transcription of other oncomotif-miRNAs (hsa-mir-17
and hsa-mir-20a).19 The fact that hsa-mir-93 and hsa-mir-17 are
the dominant oncomotif-miRNAs in most cancer cases suggests
that oncogene-dependent transcription through MYC and E2Fs is an
important contributor to oncomotif-miRNA expression in cancer,
but the elucidation of specific mechanisms of oncomotif-miRNA
expression in different cancer types warrants further investigation.
Further, our analysis shows that in sporadic cases, oncomotif-miRNA
expression from other genomic loci becomes dominant. Interest-
ingly, three of the alternative loci (including miR-106a ~ 363,
miR-371 ~ 373 and miR-302 ~ 367 clusters) have been shown to be
expressed specifically in embryonic stem cells during early
embryogenesis29 and are important for proliferation.30 Sporadic
re-expression of stem cell-specific miRNAs could potentially be
a result of a genetic translocation, placing the miRNA locus
under the control of an active promoter as previously shown
for oncomotif-miRNAs of the C19MC and miR-371 ~ 373
clusters.15,31 Additional mechanisms for altered regulation could
include genetic imprinting, epigenetic regulation and antisense-
mediated regulation as described for the miR-371 ~ 373 cluster.32

Importantly, cancer cases with high oncomotif-miRNA expression
cluster together irrespective of the relative contribution of
individual miRNAs, supporting an overlapping core set of target
mRNAs and redundant oncogenic properties. This finding
motivates the analytical approach used here, where different
miRNAs with strong seed sequence homology are analyzed as
a group. The grouped analysis also allows for identification of low
frequency events that would otherwise have been difficult to find.
An important cellular defense mechanism against oncogene

activation is through induction of permanent cell cycle arrest, a
process termed oncogene-induced senescence.33 Both RB1 and
TP53 are key regulators of the senescence program that includes
and relies on the activation of several different CDK inhibitors
including CDKN1A.34 It has previously been shown that several
different oncomotif-miRNAs have the potential to rescue cells
from oncogene-induced senescence by targeting CDKN1A35 or
LATS2.10,35 In addition, oncomotif-miRNA-dependent inhibition of
TGFBR2 would result in further hampering of the senescence
program by decreasing the level of additional CDK inhibitors
activated by TGF-beta signaling.
Without a functional negative feedback regulatory system and

with the oncogene-induced senescence system impaired, a final
defense mechanism for the organism against oncogenic signaling is
to activate the programmed cell death machinery. It is well known
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that increased E2F1 signaling as well as oncogenic MYC signaling
can result in induction of apoptosis.36,37 TP53 is generally described
as the master regulator of apoptosis and it has been shown that
the induction of oncogene-driven apoptosis is dependent, at least
partially, on functional TP53. Consequently, a fully operational
apoptosis system should have the capacity to efficiently protect
against the oncogenic signaling described here. Unfortunately, the
apoptosis system is commonly disabled in cancer, for example,
through mutation of TP53, which would allow the oncogenic
signaling to continue. We have shown here that the expression of
oncomotif-miRNAs in both LUAD and breast cancer is significantly
higher in tumors harboring TP53 mutations, indicating that the
oncogenic signaling including oncomotif-miRNAs is tolerated in
cells with the apoptotic machinery inactivated.
Previous studies have described connections between all individual

oncomotif-miRNA containing miRNA clusters and cancer as exempli-
fied by miR-17~92 cluster in lymphoma,38 miR-106a~363 cluster in
T-cell leukemia,39 miR-106b~25 cluster in gastric cancer,14 C19MC
cluster in CNS-PNET,40 miR-371~373 cluster in testicular cancer10 and
miR-302~367 cluster in germ cell tumors.41 Hence, there is a well-
established association between individual oncomotif-miRNA con-
taining miRNA clusters and cancer. Importantly, oncomotif-miRNAs
are also members of a suggested oncogenic miRNA superfamily
defined by a central GUGC core motif that was shown associated
with targeting of TSs.42 Our analysis supports these studies, and
further suggests that multiple different oncomotif-miRNAs will
cooperate in driving proliferation through targeting of the same set
of TSs. Our analysis also shows that the expression level of
oncomotif-miRNAs varies dramatically across and within a large
number of different cancer types, indicating that the importance of
oncomotif-miRNA expression for cancer cell growth varies between
cancer types and cancer cases. Furthermore, in lung adenocarci-
noma (LUAD) and breast cancer (BRCA), our analysis indicates that
high expression of oncomotif-miRNAs is connected with shorter
relapse-free survival. Collectively, these findings suggest that
oncomotif-miRNA expression analysis could contribute important
information for prognostication and therapy prediction in certain
cancer types and for certain drugs, as discussed below.
Our data demonstrate that expression of oncomotif-miRNAs

not only results in increased proliferation, but also in increased
sensitivity to EGFR inhibitors. A possible connection between
these two findings could be that cells become addicted to the
oncogenic signaling potentiated by oncomotif-miRNA expression.
The addicted cells would then be more sensitive to treatments
such as EGFR inhibitors that target upstream signaling. These
findings have several potential clinical implications. The first and
most obvious is that patients with certain cancer types driven by
EGFR signaling, which also have a high expression of oncomotif-
miRNAs, may benefit from treatment with therapies targeting
EGFR. This hypothesis needs to be further investigated, and
for such an investigation, the performance of oncomotif-miRNAs
as biomarkers in this setting should also be assayed. Interestingly,
the clinical relevance of circulating cell-free miRNAs as biomarkers
in cancer is currently being investigated intensively.43 In fact,
many different oncomotif-miRNAs have already been suggested
as diagnostic and prognostic blood-based biomarkers for different
cancer types. Whether circulating cell-free oncomotif-miRNAs can
be used as predictive biomarkers for EGFR-TKI-based therapy
remains to be tested.
Second, our analysis suggests that elevated oncomotif-miRNA

expression in patients results in loss of the G1/S checkpoint leading
to uncontrolled proliferation of cancer cells. Large ongoing
efforts are made to investigate pharmacological strategies to restore
the G1/S checkpoint to halt cancer cell proliferation, for example,
through inhibition of CDK4/6 (palbociclib44). Clinical trials have
demonstrated promising results of palbociclib in treatment of
breast cancer45,46 and active research is now focusing on identifying
predictive markers for improved selection of patients for palbociclib

treatment. Our study suggests that evaluation of tumor expression
of oncomotif-miRNAs could contribute important information in this
setting.
Finally, the discovery of oncomiRs and TS miRNAs during the

last 15 years spawned the idea of targeting miRNAs for cancer
treatment. In principle, such treatment would involve either
inhibition of oncogenic miRNAs or administration/derepression
of TS miRNAs as reviewed by Ling et al.47 Highly interesting
in relation to oncomotif-miRNA expression in cancer, is the
development of seed-targeting tiny locked nucleic acids.48 These
8-mer oligonucleotides can be designed to inhibit entire seed
sequence families, which would make it possible to target all
oncomotif-miRNAs simultaneously. Also, it was shown that, when
systematically administered, unconjugated tiny locked nucleic acids
showed uptake in breast tumors in mice, coinciding with long-term
miRNA inhibition. In fact, it was subsequently shown that tiny locked
nucleic acids targeting miRNAs with an AAAGUGCU-seed motif
(for example, miR-17-5p and miR-93-5p) were able to reduce
cancer cell proliferation and prolong survival in mouse models of
medulloblastoma.49 It is tempting to speculate that targeting the
entire oncomotif-miRNA group by tiny locked nucleic acids could be
an efficient way of re-establishing the G1/S checkpoint in cancers
with high expression of oncomotif-miRNAs. For such an approach,
careful consideration would have to be taken regarding the effects
on normal cells because these miRNAs have various functions also
in non-cancer cells.
In conclusion, our data suggest that oncomotif-miRNAs are an

integral part of an oncogenic signaling network, and that oncomotif-
miRNAs form a feed-forward loop promoting cell proliferation.
In cancer, especially when pushed by MYC amplification and without
the inhibitory effects of a functional TP53 system, this feed-forward
loop becomes a self-propagating, continuous oncogenic driver
of uncontrolled cell growth. In addition, we show that knowledge of
oncomotif-miRNA expression in cancer patients may contribute
valuable information in terms of prognostication, and even more
importantly for selection of therapy.

MATERIALS AND METHODS
Cell lines and treatments
NSCLC cell lines U1810,50 A549 (ATCC, Rockville, MD, USA, CCL-185), NCI-
H1703 (ATCC, CRL-5889) and SK-MES-1 cells (ATCC, HTB-58) were cultured in
RPMI-1640 AQ media (Sigma-Aldrich, St Louis, MO, USA, R2405). Testicular
germ cell cancer cell line 833KE (Sigma-Aldrich, 06072611) was cultured in
Dulbecco's modified Eagle's medium (Sigma-Aldrich D0819). All media were
supplemented with 10% fetal bovine serum (Sigma-Aldrich F6178) and 1%
penicillin/streptomycin (Sigma-Aldrich P4333) at 37 °C and 5% CO2. All cell
lines were tested and found Mycoplasma-free using MycoAlert Mycoplasma
detection kit (Lonza, Walkersville, MD, USA, Cat. No. LT07-218). Gefitinib was
purchased from Selleckchem (Houston, TX, USA, Cat. No. S1025).
For miR-Lib virus production, EcoPack II cells were cultured in Dulbecco’s

modified Eagle’s medium (41966, Invitrogen, Grand Island, NY, USA)
supplemented with 10% fetal calf serum and antibiotics (complete medium).
Retrovirus was made by polyethyleneimine transfection of EcoPack II cells.
The pMSCV–miR constructs were made as described previously.10 All miRNA
transfection and virus collection steps were carried out on a Hamilton ML
STAR (Hamilton Bonaduz, Bonaduz, Switzerland). Protocols were developed at
the Netherlands Cancer Institute using Hamilton STAR Software 3.2. The
methods were completely automated.
For proteomics, RNA sequencing and western blot experiments, cells

were transfected with 10 nM Syn-hsa-miR-372-3p miScript miR-mimic
(Qiagen, Hilden, Germany, Cat. No. MSY0000724), 10 nM AllStar neg. control
siRNA (siCtrl, Qiagen, Cat. No. 1027281, thoroughly tested and validated
nonsilencing siRNA) or 10 nM AllStars hs cell death siRNA (Qiagen, Cat. No.
1027298, positive cell death phenotype transfection control). Transfection
reagent used in this study was Lipofectamine RNAiMAX (Thermo Fisher
Scientific, Waltham, MA, USA, 13778-150). Thirty-two hours (RNAseq and
proteomics) or 48 h (western blot) after transfection, cultures in biological
triplicates for each condition (miR-372-3p mimic and control siRNA) were
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prepared and processed as described below for extraction of proteins
and RNA.
For phenotype validation (flow cytometry and clonogenic assay) of

miR-372 effects, stable hsa-mir-372-expressing cell lines and control cell
lines were generated as follows. GFP-containing plasmids were purchased
from SBI (System Biosciences, Mountain View, CA, USA, pre-miR-372
expression plasmid product number: PMIRH372PA-1; control plasmid
product number: PMIRH000VA-1). The plasmids were transformed into E.
coli separately and plasmid DNA was extracted using GeneJET plasmid
midiprep kit (Thermo Fisher Scientific, K0482) according to product
protocol. Lentiviruses were produced by transfecting plasmids into the virus
packing cell line HEK293T together with Gag-pol/Rev/Envelope VsV-g
pantropic plasmid (a gift from Professor Thomas Helleday Lab at Karolinska
Institutet). Viruses were harvested every 12 h by collecting virus-containing
culture media and used to infect target cell lines at the time of harvest. In
total, target cell lines were infected three times. Virus-infected cells were
sorted with BD Influx Cell Sorter (BD Biosciences, San Diego, CA, USA) using
140 micron nozzle tip. High GFP expression cell population (more than 1000
times GFP expression than basal cells) were sorted, collected and expanded
for further experiments. Validation of GFP expression was performed by
seeding 10 000 cells from each cell line in 12-well plates; GFP photos were
taken with Bio-Rad ZOE Fluorescent Cell Imager (Bio-Rad, Hercules, CA, USA)
to analyze expression of the constructs.

miRNA dropout screen
Polyclonal pool of U1810 cells stably carrying the murine ecotropic receptor
were generated to allow infections with ecotropic retroviral supernatants
as described previously.51 U1810 cells were individually transduced with
approximately 450 miRNA vectors (miR-Vecs) from a miRNA expression
library (miR-Lib; for details see Voorhoeve et al.10 and Huang et al.52) using
retroviral infection and drug selection (Blasticidin 5 ug/ml) to obtain resistant
growing cells, each containing a unique integrated miR-Vec. Around 80% of
vectors yielded stable clones. Cells were then pooled and plated at 1 000 000
cells per 10 cm dish for the three different conditions (Ctrl0, Ctrl30 and
Gef30) in biological triplicates. Twenty-four hours after seeding, triplicate
cultures were harvested for use as the baseline reference (Ctrl0). Ctrl30 and
Gef30 cultures were cultured in separate biological triplicates in the absence
or presence of 10 uM gefitinib and the medium was refreshed twice per week
for 30 days and cells were split when needed to avoid confluency. After
harvesting of cells, genomic DNA was isolated using QiaAmp kit (Qiagen)
according to the manufacturer's protocol. miR-Vec inserts were recovered
from 250 ng of genomic DNA by Phusion PCR amplification (Thermo Fisher
Scientific) according to the manufacturer's protocol using primers specific for
the pMSCV vector. Indexes and adaptors for deep sequencing (Illumina) were
incorporated into PCR primers in two consecutive PCR reactions. PCR
products were retrieved by electrophoresis followed by cutting out bands
and purification using QIAEX II gel extraction kit (Qiagen). Deep sequencing
was performed using the Illumina platform (Illumina, San Diego, CA, USA) at
the NKI Central genomics facility. Sequencing indexes and miR-Vec
sequences were segregated and deconvoluted from each sequencing read.
Samples were normalized to total reads. We arbitrarily considered only miR-
Vecs that had been sequenced at least 300 times in all three biological
replicates of one condition, resulting in 140 unique miR-Vec miRNAs
remaining for the enrichment/depletion analysis. P-values for enrichment/
depletion analysis were calculated using two-sided t-test without correction
for multiple testing.

Protein extraction, digestion and Isobaric labeling
For extraction of proteins, pellets (biological triplicates) containing five
million cells were lysed with sodium deoxycholate buffer (5% sodium
deoxycholate, 1 mM dithiothreitol (Sigma-Aldrich, Product No. 43819),
25 mM HEPES), vortexed and kept on ice for 10 min, and then boiled
in 95 °C for 10 min followed by sonication (2 cycles of 30 s, 80% energy).
Vials were centrifuged at 11 000 r.p.m. for 15 min. Supernatants containing
proteins were collected into new vials. Protein concentration was
determined by Bio-Rad Quick Start Bradford protein assay.
Protein extracts were digested using trypsin (Thermo Fisher Scientific,

90058) using a filter-aided sample preparation protocol.53 The peptides
generated from each sample were subsequently individually labeled with
tandem mass tag (TMT)-10plex isobaric label reagents (Thermo Fisher
Scientific, Cat. No. 90110). After pooling, the labeled peptides were cleaned
by strong cation exchange solid-phase extraction (Phenomenex Strata-X-C,

Phenomenex, Torrance, CA, USA) and aliquoted to 200 μg peptides mixture
for isoelectric focusing (IEF).

Peptide-level isoelectric focusing (HiRIEF)
Each labeled peptide pool (200 μg) was dissolved in 250 μl of rehydration
solution (8 M urea, 1% pharmalyte for pH range 3–10 from GE Healthcare,
Little Chalfont, UK), which was then used to re-swell an immobilized pH
gradient gel-strip (GE Healthcare) pH 3–10. For the IEF in the 3.7–4.9 pH
range, 200 μg of labeled peptide pool were dissolved in 150 μl of 8 M urea,
and this solution was used to rehydrate a sample gel bridge (pH 3.7)
overnight. The 3.7–4.9 immobilized pH gradient strip was rehydrated in
8 M urea, 1% pharmalyte for pH range 2.5–5 (GE Healthcare). All IEFs were
run on an Ettan IPGphor (GE Healthcare) until at least 150 kVh for the 3–10
range and until at least 250 kVh for the 3.7–4.9 range (~1 day running time
in either case). After focusing was complete, a well-former with 72 wells
was applied onto each strip, and liquid-handling robotics (GE Healthcare
prototype) added MilliQ water and, after 3 × 30 min incubation/transfer
cycles, transferred the 72 fractions into a microtiter plate (96 wells,
V-bottom, Corning, Lowell, MA, USA, Cat. No. 3894), which was then dried
in a SpeedVac.

LC-MS/MS analysis
For each LC-MS run of a HiRIEF fraction, the auto sampler (Ultimate 3000
RSLC system, Thermo Fisher Scientific) dispensed 15 μl of mobile phase A
(95% water, 5% dimethylsulfoxide, 0.1% formic acid) into the correspond-
ing well of the microtiter plate, mixed by aspirating/dispensing 10 μl ten
times, and finally injected 7 μl into a C18 guard desalting column (Acclaim
pepmap 100, 75 μm × 2cm, nanoViper, Thermo Fisher Scientific). After
5 min of flow at 5 μl/min with the loading pump, the 10-port valve
switched to analysis mode in which the NC pump provided a flow of
250 nl/min through the guard column. The curved gradient (curve 6 in the
Chromeleon software) then proceeded from 3% mobile phase B (90%
acetonitrile, 5% dimethylsulfoxide, 5% water, 0.1% formic acid) to 45% B in
50 min followed by wash at 99% B and re-equilibration. Total LC-MS run
time was 74 min. We used a nano EASY-Spray column (pepmap RSLC, C18,
2 μm bead size, 100 Å, 75 μm internal diameter, 50 cm long, Thermo Fisher
Scientific) on the nano electrospray ionization EASY-Spray source (Thermo
Fisher Scientific) at 60 °C. Online LC-MS was performed using a hybrid
Q-Exactive mass spectrometer (Thermo Fisher Scientific). FTMS master
scans with 70 000 resolution (and mass range 300–1700 m/z) were
followed by data-dependent MS/MS (35 000 resolution) on the top five
ions using higher energy collision dissociation at 30% normalized collision
energy. Precursors were isolated with a 2 m/z window. Automatic gain
control targets were 1e6 for MS1 and 1e5 for MS2. Maximum injection
times were 100 ms for MS1 and 150 ms for MS2. The entire duty cycle
lasted ~ 1.5 s. Dynamic exclusion was used with 60 s duration. Precursors
with unassigned charge state or charge state 1 were excluded. An underfill
ratio of 1% was used.

Proteomics database search pipeline
Raw MS/MS files were converted to mzML format using msconvert from the
ProteoWizard tool suite.54 Spectra were then searched using MSGF+55

(v10072) and Percolator56 (v2.08), where eight subsequent search results were
grouped for Percolator target/decoy analysis. The reference database used
was the human protein subset of ENSEMBL 79. MSGF+ settings included
precursor mass tolerance of 10 p.p.m., fully tryptic peptides, maximum
peptide length of 50 amino acids and a maximum charge of 6. Fixed
modifications were TMT-10plex on lysines and N-termini, and carbamido-
methylation on cysteine residues, a variable modification was used for
oxidation on methionine residues. Quantification of TMT-10plex reporter ions
was carried out using OpenMS project's IsobaricAnalyzer57 (v2.0). Peptide
spectrum matches found at 1% false discovery rate were used to infer gene
identities, which were quantified using the medians of peptide spectrum
matches quantification ratios. P-values for protein-level regulation in response
to miR-372-3p mimics were calculated using two-sided t-test without
correction for multiple testing. The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD004163.

RNA sequencing and mapping
Total RNA was prepared in biological triplicates from U1810 cells
(transfected and cultured as described above) using RNeasy Plus Mini Kit
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(Qiagen, 74134) according to product protocol. Total RNA concentration
was measured using Qubit fluorometer (Invitrogen). RNA quality was
assessed using LabChip GX-Caliper with HT 5 K/RNA LabChip, Ver2 (Perkin
Elmer, Waltham, MA, USA) according to the manufacturer's instructions,
and all samples showed high quality (RIN values49). RNA libraries for
sequencing were prepared using TruSeq Stranded mRNA Sample prep kit
with 96 dual indexes (Illumina) according to the manufacturers instructions
with the following changes. The protocols were automated using an
Agilent NGS workstation (Agilent, Santa Clara, CA, USA) using purification
steps as previously described.58,59 Clonal clusters were generated using
cBot (Illumina) and sequencing was performed on HiSeq2500 (Illumina)
with a read length of 2 × 125 bases, generating an average number of
reads per sample of 20.7 million read pairs per sample (ranging from 16.8
to 28 million read pairs). Mapping of the raw reads was performed using
Tophat/2.0.4 to the Human genome assembly build GRCh37. Raw read
counts were calculated with HTSeq (http://www-huber.embl.de/users/
anders/HTSeq/) v0.5.1 on bam files with duplicates included. Differential
expression analysis was performed on total read normalized values.
Analysis was performed on all genes with a gene biotype annotated in
ENSEMBL as protein coding. Genes with missing reads in any of the
samples were removed from the analysis. P-values for mRNA level
regulation in response to miR-372-3p mimics were calculated using two-
sided t-test without correction for multiple testing. The RNA sequencing
data have been deposited to the Gene Expression Omnibus (GEO) with the
accession number GSE81417.

Reverse transcription–quantitative PCR
miRNAs were extracted from 50 000 cells in biological triplicates from each
cell line (A549, U1810, NCI-H1703, SK-MES1 and 833KE) and type (parental
cells (PC), GFP-control cells (CC) and hsa-mir-372-transduced cells (MC))
using mirVana miRNA isolation kit with phenol (Thermo Fisher Scientific,
AM1560). miR-372-3p or the reference small RNA RNU48 were reverse-
transcribed using Bio-Rad MyCycler thermal cycler with TaqMan MicroRNA
Reverse Transcription Kit (Thermo Fisher Scientific, 4366596) according to
product protocol, and miR-372-3p or RNU48 RT primer from TaqMan
MicroRNA Assay (Life Technolgies, 4427975. RNU48 assay id: 001006
and miR-372 assay id: 000560). NTC (Non-Template Control) and NRT
(Non-Reverse Transcriptase control) were included in the cDNA reverse
transcription reaction. One microliter out of 15 μl cDNA product was used
in each qPCR reactions, pipetted into Hard-Shell PCR plates 96-well
thin wall (Bio-Rad, HSP9631) with TaqMan Universal Master Mix II no UNG
(Thermo Fisher Scientific, 4440048) and analyzed using Bio-Rad CFX96
C1000 Touch Real-Time PCR detection systems according to the protocol.
Relative fluorescence unit and quantitation cycle (abbreviated as Cq) were
used to calculate ΔΔCq as follows: ΔCq for each biological replicate was
calculated by normalizing miR-372-3p Cq to RNU48 Cq (ΔCq =Cq(miR-372) - Cq
(RNU48)). Log2-transformed ΔCq values were used to calculate triplicate
average and standard deviation. Finally, ΔΔCq was calculated by normal-
izing the mean of ΔCq expression to non-targeting control (NTC), using the
equation ΔΔCq=mean of ΔCq expression/NTC mean ΔCq expression. The
whole calculation was performed with Bio-Rad CFX Manager 3.1 (Scan
mode: SYBR/FAM only; Analysis mode: baseline substracted curve fit).
Finally, as miR-372-3p expression was undetectable in all parental cells and
GFP-control cells, miR-372-3p expression in the four NSCLC cell lines was
reported in relation to the endogenous expression of miR-372-3p in
833KE cells.

Cell cycle analysis
From each cell line (A549, U1810, NCI-H1703 and SK-MES1) and type
(parental cells (PC), GFP-control cells (CC) and hsa-mir-372-transduced cells
(MC)), 50 000 cells in biological triplicates were trypsinized, collected into
fluorescence-activated cell sorting tubes, washed with 2 ml phosphate-
buffered saline and centrifuged down with 1200 r.p.m. for 5 min. Super-
natants were removed, leaving about 100 μl of phosphate-buffered saline,
and the pellets were resuspended by flicking the tubes. Cells were fixed by
incubating 1 h at 4 °C with 1 ml cold 70% ethanol and stained with Citrate
buffer (0.05 M Na2HPO4, 25 mM sodium citrate dehydrate, 0.1% Triton
X-100), 200 μl propidium iodide (Sigma-Aldrich P4863, 100 μg/ml in H2O)
and 100 ul RNase (Sigma-Aldrich R6513, 100 μg/ml in phosphate-buffered
saline) for 15 min at room temperature. The total amount of DNA was
detected with Novocyte Flow Cytometer (ACEA Biosciences, San Diego, CA,
USA). Cell cycle phases were automatically determined by NovoExpress
software using the cell cycle analyze function and the read out contains

G0/G1, S, G2/M phase cells percentile. Proliferation index, defined as the
ratio between S, G2/M cells and G0/G1 cells, was calculated as previously
described.60,61 P-values were calculated using two-sided t-test without
correction for multiple testing.

Clonogenic assay
Clonogenic assay was performed as previously described.62 Briefly, 1000
cells from each cell line (A549, U1810 and NCI-H1703) and type (parental
cells (PC), GFP-control cells (CC) and hsa-mir-372-transduced cells (MC))
were seeded in Corning Costar 6-well flat bottom cell culture plates
(Sigma-Aldrich, CLS3516). Cells were cultured for 12 days in RPMI-1640
AQ media with or without 10 μM gefitinib, new media were replaced
every 3 days. Each condition was analyzed in biological triplicates. Plates
were rinsed with phosphate-buffered saline and incubated with 2 ml of 6%
glutaraldehyde and 0.5% crystal violet for at least 30 min in room
temperature. All the staining solutions were removed and plates were
rinsed with water. Plates were then left to dry at room temperature in
normal air before pictures were taken. Representative pictures from one of
the replicates of each analysis is shown.

Western blot
For western blotting, 0.8 million cells were transfected as described above
and harvested by trypsinization 48 h after transfection. Cells were lysed with
CHAPS buffer (1% CHAPS, 0.1% Triton X-100, 20 mM HEPES pH 7.5, 150 mM

NaCl) and protein concentration was determined by Bio-Rad Quick Start
Bradford protein assay. Samples were diluted in 4× Laemmli Sample buffer
(Bio-Rad, 1610747) with 1:10 β-mercaptoethanol. Samples were boiled at
95 °C for 5 min and run on a 10% TGX-gel (Bio-Rad, 4561036) at 150 V for 1 h.
Proteins were transferred onto a mini nitrocellose membrane (Bio-Rad,
1704158) using Bio-Rad’s Trans-Blot Turbo system at 1.3 A for 7 min.
Membranes were blocked with 5% milk in TBS Tween buffer (28360, Thermo
Fisher Scientific), for 1 h at room temperature and incubated with primary
antibodies against TGFBR2 (Santa Cruz Biotechnology, Dallas, TX, USA,
sc-33929), CDKN1A (Cell Signaling, Boston, MA, USA, 2947), E2F1 (Cell
Signaling, 3742) and GAPDH (Sigma-Aldrich, G8795) overnight at 4 °C.
Membranes were washed 3×10 min with TBS, incubated with secondary
antibody (goat anti-mouse or goat anti-rabbit) conjugated with HRP at room
temperature for 1 h. Membranes were developed with ECL (GE Healthcare,
RPN2108) according to the manufacturer's instructions, and images were
generated using ChemiDoc MP system (Bio-Rad). All western blot experi-
ments were performed in biological triplicates. Representative images from
one replicate experiment is shown.

TCGA data analysis
Data from TCGA were accessed via the UCSC Cancer Browser. miRNA
expression data were retrieved for all 32 cancer types and gene expression
data for 16 cancer types. Copy number data, gene-level mutation data
as well as clinical information were further retrieved for LUAD and breast
invasive carcinoma (BRCA).
Differential gene expression analysis was conducted to identify genes

differentially expressed between tumors with high or low oncomotif-
miRNA expression. A two-sided t-test was performed between the top
and bottom 5 percentiles of the TCGA LUAD samples (n= 445). P-values
were adjusted for multiple testing using the false discovery rate with
the procedure outlined by Benjamini and Hochberg.63 All analyses were
performed in R (version 3.2.2) using the t.test and p.adjust functions from
the R stats package. The oncomotif-miRNA signature was defined by
selecting all genes with a false discovery rateo1.0 E-05 and an absolute
log2 fold-change 41. The signature comprises 275 genes, including 240
upregulated and 35 downregulated genes.
Unsupervised cluster analysis of the LUAD and BRCA gene expression

profiles was performed using the 275 genes of the oncomotif-miRNA
signature. All patients and genes were clustered using hierarchical
clustering with complete linkage and Spearman's correlation. Heatmaps
were produced using the heatmap.2 function from the gplots package in R.
Differences in oncomotif-miRNA expression in the LUAD and BRCA data

sets between tumors harboring TP53 mutations and MYC amplifications
were examined using the Wilcoxon rank-sum test from the R stats package.
Univariate and multivariate survival analyses, including Cox proportional

hazard regression and Kaplan–Meier survival curves, were carried out in R
using the stats package. Patients were split into two groups using the two
main clusters defined by the hierarchical clustering based on the oncomotif-
miRNA signature. Cluster membership, mutation status and copy number
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status were all modeled as categorical variables. For the Kaplan–Meier
analyses, the differences in survival time between two groups were assessed
using the P-value of the survdiff function. A significance level of 5% was
considered as statistically significant.

miRNA target prediction, gene set enrichment analysis and
Ingenuity pathway analysis
All miRNA target predictions were performed on 5 November 2014 using
the miRWalk12 portal and standard settings (3´UTR sequences, minimum
seed length:7, P-value:0.05). At that time, the available algorithms in
addition to the miRWalk algorithm were: DIANAmT (version 3.0);
miRanda (August 2010 release); miRDB (April 2009 release); PICTAR5
(March 2007 release); PITA (August 2008 release); RNA22 (May 2008
release); RNAhybrid (version 2.1) and TargetScan (version 5.1). For gene
set enrichment analysis,21,22 a ranked list of log2 ratios between the
oncomotif-miRNA high and low groups (see results section) was loaded
into the gene set enrichment analysis software. For gene set enrichment
analysis, the C2:canonical pathways gene sets were used, and the
analysis was performed using standard settings. Ingenuity pathway
analysis (www.ingenuity.com) was performed by loading the 275 genes
in the oncomotif-miRNA signature gene list with corresponding log2
ratios between the oncomotif-miRNA high and low groups into the
ingenuity software. As background, the Ingenuity standard background
gene list was used, and the analysis was performed using standard
settings.
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