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Abstract

Purpose Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) have emerged as independent risk factors for an
carlier onset of Alzheimer’s disease (AD), although the pathophysiology underlying this risk is unclear. Postmortem studies have
revealed extensive cerebral accumulation of tau following multiple and single TBI incidents. We hypothesized that a history of
TBI and/or PTSD may induce an AD-like pattern of tau accumulation in the brain of nondemented war veterans.

Methods Vietnam War veterans (mean age 71.4 years) with a history of war-related TBI and/or PTSD underwent ['*F]AV 145
PET as part of the US Department of Defense Alzheimer’s Disease Neuroimaging Initiative. Subjects were classified into the
following four groups: healthy controls (n=21), TBI (n=10), PTSD (n = 32), and TBI+PTSD (n=17). [lgF]AV1451 reference
tissue-normalized standardized uptake value (SUVr) maps, scaled to the cerebellar grey matter, were tested for differences in tau
accumulation between groups using voxel-wise and region of interest approaches, and the SUVr results were correlated with
neuropsychological test scores.

Results Compared to healthy controls, all groups showed widespread tau accumulation in neocortical regions overlapping with typical
and atypical patterns of AD-like tau distribution. The TBI group showed higher tau accumulation than the other clinical groups. The
extent of tauopathy was positively correlated with the neuropsychological deficit scores in the TBI+PTSD and PTSD groups.
Conclusion A history of TBI and/or PTSD may manifest in neurocognitive deficits in association with increased tau deposition in
the brain of nondemented war veterans decades after their trauma. Further investigation is required to establish the burden of
increased risk of dementia imparted by earlier TBI and/or PTSD.

Keywords Traumatic brain injury - Posttraumatic stress disorder - Alzheimer’s disease - Tau - Positron emission tomography - US
Department of Defense Alzheimer’s Disease Neuroimaging Initiative

Introduction

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00259-018-4241-7) contains supplementary
material, which is available to authorized users.

Alzheimer’s disease (AD) is the most common form of dementia
in the elderly, leading to a progressive deterioration of memory
and spatial cognition, along with other cognitive impairments
[1]. AD pathology is characterized by the aggregation of
amyloid-f3 and phosphorylated tau [2-4], and tau deposition is
particularly associated with progression of clinical symptoms
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[2]. 1t is increasingly recognized that traumatic brain injury
(TBI) and posttraumatic stress disorder (PTSD) increase the risk
of cognitive decline and dementia [5, 6], suggesting a link with
AD. In addition, there is considerable comorbidity of PTSD with
TBI in both civilian and military settings [7-9], which raises the
possibility of synergistic effects favouring the risk of dementia.

A retrospective cohort study by Yaffe et al. showed that vet-
erans with PTSD have a twofold higher risk of developing de-
mentia than veterans without PTSD [10]. In addition, a system-
atic review revealed an association between TBI and the
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development of AD with an odds ratio of 2.3 [11]. These asso-
ciations imply that the two conditions may interact by increasing
the risk of neurodegeneration and dementia. Indeed, several neu-
roimaging studies have shown overlapping patterns of brain vol-
ume loss in TBI, PTSD and AD [12—14]. Post-mortem investi-
gations have shown intraneuronal tau accumulation after a single
TBI incident [15] and in subjects with multiple TBI events suf-
fering from chronic traumatic encephalopathy (CTE) [16]. PET
with ['®F]AV1451 [17] and other tau ligands [18] has recently
been used to detect tau deposits in the brain of living AD pa-
tients. There is a single report in abstract form of tauopathy in the
cerebral cortex of living veterans with PTSD [19].

According to the National Institute on Aging and the
Alzheimer's Association (NIA-AA) research framework, AD
is defined by the presence of both amyloid-[3 and pathological
tau deposits. However, when amyloid deposition is accompa-
nied by primary age-related tauopathy, the disorder should
properly be designated as “Alzheimer’s pathological change”
which could be considered as an early presentation of the
“Alzheimer’s continuum” [20]. Tau PET is a new in vivo
molecular imaging modality used to investigate the progres-
sion of tauopathy in the brain, and has been correlated with the
Braak neurofibrillary tangle (NFT) stages as defined post
mortem [21]. Indeed, Schwarz et al. used ['*F]AV1451 PET
to identify Braak stages that represent the well-defined neuro-
anatomical signature of tau pathology in typical AD [22].
Furthermore, elevated tau binding on PET has been shown
to be associated with amyloid positivity and cognitive impair-
ment in both normal ageing and dementia [20, 22-24].

Inspired by this background, we analysed tau PET data that
had been acquired using ['®F]AV1451 PET from the
Alzheimer's Disease Neuroimaging Initiative-Department of
Defense (ADNI-DOD) study of nondemented Vietnam War
veterans suffering from service-related TBI, PTSD, and comor-
bid TBI with PTSD. Using parametric mapping procedures, we
evaluated tau deposition in cohorts with TBI and/or PTSD com-
pared with healthy veterans, and addressed the relationship be-
tween the individual tau burden and cognitive test scores. In
addition, we investigated tau pathology in relation to amyloid
PET findings and to the histopathological Braak stages, which
were defined using the criteria of Schwarz et al. [22].

Materials and methods
Study design

All data were obtained from the ADNI-DOD which is a multi-
modal (MRI, PET and neuropsychological assessment),
nonrandomized study that recruited Vietnam War veterans select-
ed from the Department of Veterans Affairs compensation and
pension records, investigating TBI and/or PTSD as potential risk
factors for the development of AD. ADNI-DOD is part of the
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ADNI project launched in 2003 as a public/private partnership
led by Principal Investigator Michael W. Weiner, MD. All partic-
ipants signed a consent form, and the use of deidentified data was
approved by the Human Research Ethics Committee of the
University of Queensland, Australia (IRB number 2017000630).

['®F]AV1451 PET for tau imaging had been performed in a
total of 99 subjects as part of the ADNI-DOD study, and 81 of
these subjects had their T1-weighted structural MRI data avail-
able at the time of this research. Data from one female participant
was excluded to avoid gender effects, leaving a total of 80
datasets from male Vietnam War veterans of mean age 71.4 +
5.1 years. PET with ['®F]AV45 for amyloid imaging had also
been performed in all 80 subjects. Subjects were classified into
the following four groups: healthy controls (n =21), moderate/
severe TBI (n=10), PTSD (n = 32), and TBI with PTSD (TBI+
PTSD, n=17). All subjects’ clinical categories were identified
from the “VAELG.csv” file provided by the ADNI-DOD admin-
istration. In addition, subjects with mild cognitive impairment
(MCI) were identified by ADNI-DOD based on cognitive test
scores. The TBI subjects had a documented history of moderate-
to-severe nonpenetrating TBI during their military service. PTSD
subjects were identified using the clinician-administered PTSD
scale (CAPS) within DSM-IV (CAPS score >40).

In addition to imaging, all participants completed several
neuropsychological questionnaires, including Everyday
Cognition (ECog), Clinical Dementia Rating (CDR), Mini-
Mental State Examination (MMSE), Montreal Cognitive
Assessment (MOCA), Alzheimer’s Disease Assessment
Scale—Cognitive (ADAS-Cog), Geriatric Depression Scale,
Functional Assessment Questionnaire, Combat Exposure
Scale, and the Armed Forces Qualification Test (AFQT). All
participants were also assessed using a battery of neuropsycho-
logical tests including the Clock Drawing Test, the Rey
Auditory Verbal Learning Test, the Category Fluency Test, the
Trail Making Test, the Boston Naming Test, and the American
National Adult Reading Test. The ECog ratings were reported
by the participants that cover multiple cognitive domains, in-
cluding language, memory, visual spatial ability, and executive
function, including planning, organization, and divided atten-
tion. The ECog questionnaire contains 39 items, which are rated
on a four-point scale: 1 = better or no change compared with 10
years earlier, 2 = questionable/occasionally worse, 3 = consis-
tently a little worse, 4 = consistently much worse, and subjects
can respond with “9” if they wish to indicate “I don’t know.”
The score of each category was calculated as the average of the
answered questions in each subcategory and the total ECog
score as the mean of all answered questions in all categories.

MRI/PET image acquisition and processing
PET tau imaging was performed with ['*FJAV1451. Data acqui-

sition procedures were standardized across all ADNI sites (infor-
mation can be found at: http://adni.loni.usc.edu/wp-content/
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uploads/2015/02/01_DOD-ADNI_Tau-Addendum-Protocol
230ct2014.pdf). Data were preprocessed and analysed as
described in our previous paper [25] using the FMRIB
software library (FSL 5.0.9). MRI images were corrected for
intensity inhomogeneity, skull-stripped, and segmented using
the RECON-ALL [26] from Freesurfer. Structural data were then
resampled to an isotropic resolution of 1.5 mm and normalized
to the Montreal Neurological Institute (MNI) structural template
nonlinearly using FSL-FNIRT [27].

The preprocessed data were downloaded from ADNI-DOD
(http://adni.loni.usc.edu/methods/pet-analysis-method/pet-
analysis/). The four sequential emission frames were
coregistered, and standardized uptake values (SUV) were calcu-
lated and averaged. SUV maps were intensity-normalized and
spatially smoothed using a scanner-specific filter function to gen-
erate SUV maps with a uniform isotropic resolution of 8 mm
full-width at half-maximum. The SUV maps were skull-stripped
using FSL-BET and linearly coregistered to each individual’s T1-
weighted image using FSL-FLIRT. Each individual’s SUV map
was scaled to the mean intensity in a cerebellar grey matter tem-
plate to generate reference tissue-normalized standardized uptake
(SUVr) maps [28] in the native (individual) space. Finally, ['°F]
AV1451 SUVr maps were spatially normalized to the MNI tem-
plate using the transformation matrix and warp calculated for T1
structural MR-to-MNI registration.

To assess amyloid positivity, SUV maps of the amyloid
['®F]AV45 PET tracer from the same subjects were
downloaded. The acquisition parameters were as described
previously [25]. The ['®F]JAV45 SUV maps were coregistered
to individual T1-weighted MR images in native space using
FSL-Flirt, and amyloid-PET SUVr values were calculated
using the whole cerebellum as the reference region [22]. To
identify amyloid-positive subjects, a global SUVr score was
calculated which was the mean SUVr in the whole cerebral
cortex, where SUVr >1.1 was deemed as amyloid-positive.

Regions of interest and algorithm for estimating
Braak staging using ['®FIAV1451 SUVr

Braak staging is based on the characteristic progression of tau
pathology starting in the medial temporal lobe and eventually
encompassing the neocortex as revealed by post-mortem exam-
ination. We applied methods developed by Schwarz et al. [22],
whose algorithm scores Braak staging noninvasively using
['"®F]AV1451 SUVr measured in the entorhinal cortex, hippo-
campus, superior and middle temporal gyri (STG, MTG), fusi-
form cortex, lingual gyrus (BA17), and pericalcarine visual cor-
tex (V1+V2+V3). Whereas Schwarz et al. defined regions of
interest (ROIs) in MNI space based on 2-mm isotropic voxels
lying close to slices of the histological Braak staging protocol
[29], we defined the same ROIs in the individual’s native space
after Free-surfer segmentation. We then calculated the mean
['"®F]AV1451 SUVr in bilateral ROIs, from which we assigned

the Braak stage using the staging algorithm described by
Schwarz et al. [22], with visual confirmation from the SUVr
maps. The final Braak stage was defined as the highest score
between the two hemispheres.

Statistical analysis

To investigate tau accumulation associated with a history of TBI
and/or PTSD, the three clinical groups were compared to the
healthy control group using voxel-based approaches
encompassing all brain voxels of the tau PET SUVr images,
using a nonparametric permutation test (FSL-randomise) with
5,000 permutations, with correction for multiple comparisons
using false discovery rate (FDR) (p < 0.05). All analyses were
corrected for ApoE4 status, age, MCI status (for confirmed
cases) and hypertension. We investigated the correlation be-
tween tau accumulation and the ADAS-Cog score, ECog total
score, and CDR score, as well as cerebral total amyloid. These
correlations were calculated using a multilinear regression per-
formed using (FSL-GLM) that generated Pearson correlation
maps, with FDR correction for multiple comparisons (p < 0.05).

Statistical analyses were performed with R-studio, version
3.3.1 ® Foundation for Statistical Computing, Vienna,
Austria). Differences in neuropsychological assessment mea-
sures and ROI-based SUVr values between groups were eval-
uated using the Kruskal-Wallis test, with the significance lev-
el set at p <0.05 persisting after Bonferroni correction for
multiple comparisons (n=6). To investigate tau distribution
in the four great lobes of the cortex, each individual’s mean
regional ['®F]JAV1451 SUVr values in the frontal, cingulate,
parietal, and temporal lobes were extracted.

Results
Clinical outcome in TBI and/or PTSD groups

In this cross-sectional study, cognitive function in groups of
veterans with a history of TBI and/or PTSD was investigated.
The four subject groups were healthy controls (age 74.3 +

7.2 years, mean =+ standard deviation), TBI (72.6 + 6.8 years),
PTSD (70+£2.7 years), and TBI+PTSD (69.9 +£2.5 years;
Table 1). Overall, the neuropsychological test results sug-
gested that cognitive deficits were more pronounced in the
PTSD and TBI+PTSD groups than in the TBI or healthy con-
trol groups, without any subject being diagnosed with AD by
any test (Fig. 1, Table 1).

According to the information provided by ADNI-DOD, sub-
jects with memory deficits were identified by applying the cri-
terion of a CDR score of >0.5 to each group: 14 of 32 subjects
were identified in the PTSD group, 4 of 10 in the TBI group, 6
of 17 in the TBI+PTSD, and none of 21 in the healthy controls.
Furthermore, MCI was diagnosed in 8 subjects in the PTSD
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group (6 amnestic and 2 nonamnestic), 4 subjects in the TBI
group (all amnestic), and 3 subjects in the TBI+PTSD group
(all amnestic; Table 1). Thus, we found that at least one third of
the subjects with PTSD and/or TBI had a significant memory
decline based on the CDR score, most of whom were diagnosed
with amnestic MCI, suggesting an ongoing memory decline
with likely eventual conversion to AD. Those same subjects
had tau pathology with Braak stages II-V, which is consistent
with previously reported findings in MCI subjects [22].

Differences in tau deposition between TBI and/or
PTSD groups

Foci of mean ['®F]AV 1451 SUVr that showed significant dif-
ferences between healthy controls and each of the three clin-
ical groups are shown in Fig. 2. The TBI group (Fig. 2a)
showed significantly higher mean SUVr in the superior frontal
gyrus (SFG; 1.17+0.05 versus 1.12+£0.10; p=0.01), middle
frontal gyrus (MFG; 1.18 £0.12 versus 1.16 £0.12; p = 0.02),
medial orbitofrontal cortex (mOFC; 1.21 £0.14 versus 1.16 +
0.13; p=0.001), lateral orbitofrontal cortex (OFC; 1.18 £0.12
versus 1.16+0.12; p=0.01), precentral gyrus (1.19+0.14
versus 1.16+0.13; p=0.001), postcentral gyrus (1.10£0.06

versus 0.99 +0.07; p = 0.025), insula (1.13 £0.17 versus 1.10
+0.11; p=0.003), supramarginal gyrus (SMG; 1.08 +0.08
versus 1.00+0.07; p=0.015), precuneus (1.11 +0.08 versus
1.06 £0.07; p=0.03), STG (1.17+0.12 versus 1.03+0.11;
p =0.04), transverse temporal gyrus (TTG; 1.10£0.11 versus
0.93£0.06; p =0.02), temporal pole (1.10 £0.07 versus 1.04
+0.11; p=0.04), STG (1.08 £0.08 versus 1.00£0.07; p=
0.003), and basal ganglia (1.41 £0.16 versus 1.32+0.15;
p=0.05). Tau PET SUVr was lower in the
TBI group compared to the control group in the left inferior
temporal gyrus (ITG; 1.21£0.16 versus 1.25+0.15; p=
0.04).

The TBI+PTSD group (Fig. 2b) showed higher mean
['®F]AV1451 SUVr in the TTG (1.10+0.08 versus 0.93 +
0.06; p=0.045), SMG (1.10£0.17 versus 1.01 £0.10; p=
0.032), MFG (1.04+0.19 versus 0.97+0.1; p=0.05),
precuneus (1.13+0.2 versus 1.06 £0.07; p=0.04), and STG
(1.06 £0.13 versus 1.00£0.07; p=0.05. The PTSD group
(Fig. 2c) showed higher mean SUVr in the brainstem (1.00 +
0.01 versus 0.95 +0.05; p = 0.03), precuneus (1.1 +0.07 versus
1.06 +£0.07; p=0.05), insula (1.07+0.09 versus 1.03 £0.06;
p=0.02), pars-opercularis (1.04+0.1 versus 1.0+£0.06; p=
0.04), cuneus (1.10£0.09 versus 1.05+0.06; p=0.02),
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Fig. 1 Differences in neuropsychological test scores between groups.
CAPS Current clinician-administered PTSD scale current score, GD
Total Geriatric Depression Scale, ADAS-Cog Alzheimer’s Disease
Assessment Scale—Cognitive, MOCA Montreal Cognitive Assessment,

MMSE Mini-Mental State Examination, £Cog Everyday Cognition, 7B/
traumatic brain injury, PTSD posttraumatic stress disorder, 7B PTSD
TBI subjects who developed PTSD. *p<0.05, **p<0.01,
ik < 0.001, ##¥%p < 0.0001
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pericalcarine (1.10£0.1 versus 1.07+0.07; p=0.03), STG
(1.04+0.07 versus 0.99+0.07; p=0.05), TTG (1.00+0.08
versus 0.93+0.06; p=0.003), mOFC (1.07+0.07 versus
1.02£0.07; p=0.04). ['"®*F]AV1451 SUVr in the ITG was low-
er in the TBI group (1.18 +£0.17 versus 1.25+0.15; p=0.04)
than in healthy controls.

Figure 3 shows the ['®F]JAV1451 SUVr in the frontal, pa-
rietal, and temporal lobes along with the cingulate cortex in
each of the clinical groups. The TBI group showed signifi-
cantly higher SUVr only in the frontal lobe (1.06 + 0.05 versus
1.00£0.07; p=0.015) as compared to healthy controls,
whereas the PTSD and TBI+PTSD groups showed no signif-
icant differences in any of the large ROIs compared to healthy
controls (p > 0.05).

Correlation between regional ['®F]AV1451 SUVr
and dlinical outcomes

The TBI group (Fig. 4a) showed negative correlations be-
tween the ADAS-Cog score and ['*F]AV1451 SUVr in the
anterior cingulate cortex (ACC; r=-0.65; p=0.04),
paracentral gyrus (r=-0.71; p=0.02), and SFG (»=-0.45;
p=0.02). The TBI+PTSD group (Fig. 4b) showed significant
positive correlations between the ADAS-Cog score and
['®F]AV1451 SUVr in the frontal pole (r=0.59; p=0.01),
posterior cingulate cortex (PCC; r=0.53; p=0.03), SFG
(r=0.69; p<0.01), pars-orbital gyrus (»=0.59; p=0.01),

Fig.2 Comparisons of ['®F]JAV1451 SUVr between healthy controls and
(a) the TBI group, (b) the TBI+PTSD group, and (c¢) the PTSD group.
The red—yellow scale represents more tau accumulation in the clinical
groups and the blue—green scale indicates more tau in healthy controls.
Difference maps were calculated using the unpaired ¢ test for
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pars-triangularis (r=0.7; p <0.01), pars-opercularis (r=
0.63; p=0.01), rostral MFG (r=0.71; p<0.01), temporal
pole (r=0.51; p =0.04), transentorhinal cortex (»=0.55; p =
0.02), MTG (r=0.71; p<0.01), ITG (r=0.72; p<0.01),
STG (r=0.69; p<0.01), lateral occipital cortex (r=0.58;
p=0.01), fusiform gyrus (»=0.62; p =0.01), inferior parietal
lobule (IPL; »=0.67; p < 0.01), superior parietal lobule (SPL;
r=0.66; p<0.01), and SMG (r=0.72; p <0.01), while in the
PTSD group (Fig. 4c) a positive correlation was observed in
the lateral occipital cortex (#=0.43; p=0.05).

The TBI group (Fig. 5a) showed a negative correlation
between ['*F]JAV1451 SUVr and ECog total score only in
the left SMG (r=-0.45; p=0.02), while the TBI+PTSD
group (Fig. 5b) showed positive correlations in the ACC
(r=0.59; p=0.01), PCC (r=0.64; p<0.01), lateral oribito-
frontal gyrus (OFG; r=0.52; p=0.03), SFG (r=0.69;
p<0.01), MFG (r=0.62; p=0.01), MTG (r=0.6; p=0.01),
parahippocampus (= 0.59; p = 0.01), temporal pole (» = 0.58;
p=0.01), fusiform gyrus (r=0.7; p<0.01), ITG (r=0.69;
p<0.1), STG (r=0.65; p<0.01), transentorhinal cortex (r=
0.8; p<0.01), precuneus (r=0.56; p=0.02), IPL (»=0.65;
p=0.01), SPL (r=0.68; p <0.01), supramarginal gyrus (» =
0.70; p<0.01), and amygdala (»=0.63; p=0.01), and nega-
tive correlations in the cuneus (r=—0.47; p = 0.01), SMG (r =
—0.47; p=0.04), and left insula (»=-0.50; p=0.02). The
PTSD group (Fig. 5c) showed positive correlations in the
caudal MFG (r=0.4; p=0.02), fusiform gyrus (»=0.35;

TBI<HC TBI>HC

10 104 102 102 10* 10°
P-value

TBI+PTSD <HC TBI+PTSD > HC

10€ 104 102 102 10* 10%
P-value

PTSD <HC PTSD >HC

106 104 102 102 10+ 10
P-value

["®F]AV1451 uptake in the clinical groups. The results were corrected
using the false discovery rate (p <0.05, cluster volume >40 voxels).
TBI traumatic brain injury, PTSD posttraumatic stress disorder, 7B/+
PTSD TBI subjects who developed PTSD
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Fig. 3 ['®F]AV1451 SUVr in four cortical regions of interest including (a) the frontal cortex, (b) the parietal cortex, (c) the temporal cortex, and (d)
cingulate cortex. 7B/ traumatic brain injury, PTSD posttraumatic stress disorder, 7B+ PTSD TBI subjects who developed PTSD

p =0.05), lateral occipital cortex (= 0.40; p =0.02), ITG (r=
0.40; p=0.02), postcentral gyrus (r=0.40; p=0.02),
precentral gyrus (r=0.41; p=0.02), PCC (r=0.38; p=
0.03), ACC (r=0.45; p=0.01), SPL (r=0.41; p=0.02),
and cuneus (r=0.47;, p=0.01).

Figure 6 shows the correlations between total cortical amyloid
reprsented by mean ['*F]AV45 SUVr and ['*F]AV1451
SUVr voxel-wise maps. The TBI group (Fig. 6a) showed negative
correlations in the PCC (»=—0.56; p =0.02), SMG (r=0.50; p =
0.04), and transentorhinal cortex (7= 0.46; p <0.05), and a posi-
tive correlation in the MFG (= 0.40; p < 0.05). The TBI+PTSD
group (Fig. 6b) showed positive correlations in the PCC (7= 0.64;
p=0.01), pars-opercularis (r=0.69; p<0.01), MFG (r=0.73;
p<0.01), frontal pole (r=0.84; p<0.01), SFG (»r=0.75;
p<0.01), precuneus (r=0.66; p<0.01), IPL (»=0.79;
p<0.01), SPL (r=0.73; p<0.01), SMG (r=10.80; p<0.01),
transentorhinal cortex (=0.57; p=0.02), fusiform gyrus (r=
0.71; p <0.01), temporal pole (»=0.66; p < 0.01), ITG (r=0.83;

p<0.01), MTG (r=0.86; p<0.1), and STG (r=0.81; p<0.01),
while negative correlations were observed in the caudate nucleus
(r=-0.54; p=0.02), pallidum (»=—0.49; p = 0.04), and thalamus
(r=—0.62; p=0.01). The PTSD group (Fig. 6¢) showed positive
correlations in the amygdala (=0.38; p =0.03), fusiform gyrus
(r=0.38; p=0.03), hippocampus (r=0.36; p=0.04), ITG (r=
0.36; p=0.04), MTG (r=0.37; p = 0.04), parahippocampus (> =
0.5; p<0.01), transentorhinal cortex (»=0.45; p=0.01), ACC
(r=0.38; p=0.03), and PCC (=0.50; p <0.01).

Of the three clinical groups, the TBI+PTSD group showed
the most significant positive correlations between tau PET
data and CDR scores, whereas the PTSD group showed a
trend towards a positive correlation (see Supplementary
Fig. 1). This might suggest that individuals with a CDR score
>0.5 have relatively more tau accumulation in regions typical-
ly involved in AD. However, as part of the inclusion criteria of
ADNI-DOD, none of the participants had a diagnosis of AD
or other dementia at the time of scanning.
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Fig. 4 Correlations between ['®F]AV1451 SUVr and ADAS-Cog scores
in (a) the TBI group, (b) the TBI+PTSD group, and (¢) the PTSD group.
The red—yellow scale represents positive correlations between
['®F]AV1451 SUVr and the ADAS-Cog score, while the blue—green scale

Estimated Braak stages for different clinical groups
recapitulated by ['®FIAV1451 PET

The ['®F]AV1451 PET images in the present study exhibited
distributions of tau pathology consistent with those expected
from post-mortem studies of healthy control, MCI and AD
subjects. Many subjects (mostly healthy controls) showed a

Fig.5 Correlations between ['®F]AV1451 SUVr and the ECog total score
in (a) the TBI group , (b) the TBI+PTSD group, and (c) the PTSD group.
The red—yellow scale represents positive correlations between
['®F]AV1451 SUVr in the clinical groups and the ECog score, while the

@ Springer
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represents negative correlations between ['*FJAV1451 SUVr and the
ADAS-Cog score. TBI traumatic brain injury, PTSD posttraumatic stress
disorder, 7B+ PTSD TBI subjects who developed PTSD

uniformly low cortical SUVr similar to the reference region’s
SUVr (stage 0; n=39), while other subjects showed focally
increased tracer retention in the medial temporal lobes consis-
tent with Braak stages I-III (n =35), and still others showed
more widespread distributions of tracer binding characteristic
of Braak stage IV (n=15) and even Braak stage V (n=1;
Table 2). Upon further visual investigation, subjects in the

TBI with ECog
[ -

104 102 102 104
P-value

TBI+PTSD with ECog
E |

104 102 102 104
P-value

PTSD with ECog
[ _

10% 102 102 104
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blue—green scale represents negative correlation between ['*F]AV1451
SUVr and the ECog score. 7B/ traumatic brain injury, PTSD
posttraumatic stress disorder, 7B/+PTSD TBI subjects who developed
PTSD
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Fig. 6 Correlations between ['®F]AV1451 SUVr and the total cortical
amyloid represented by mean ['®F]JAV45 SUVr in (a) the TBI group,
(b) the TBI+PTSD group, and (c) the PTSD group. The red—yellow
scale represents positive correlations between tau and amyloid

TBI group exhibited increased SUVr in the frontal cortex in
association with the different Braak stages shown in Table 2.

Discussion

In vivo tau PET imaging in our clinical groups revealed in-
creased tau tracer binding with topographical patterns resem-
bling the distributions of tau pathology in neurodegenerative
disorders such as AD and CTE [29-32]. We also observed
positive correlations between tau and the severity of deficits
in the various cognitive tests in the PTSD and TBI+PTSD
groups. These results suggest that a history of TBI and/or
PTSD might initiate pathological changes eventually coming
to resemble aspects of tauopathy in AD, and manifesting in
significant (but not yet pathological) deficits across a range of
cognitive domains.

Neurocognition suggests more progressive
impairments of TBI+PTSD and PTSD towards AD

Among subjects in the investigated clinical groups, PTSD
subjects exhibited the worst cognitive performance in all as-
sessments, followed by TBI+PTSD subjects, whereas cogni-
tive scores in TBI subjects and healthy controls did not differ
significantly (Fig. 1, Table 1). Yaffe et al. have shown that
military personnel with PTSD are twice as likely to develop
dementia as those without PTSD [10]. TBI and PTSD are
highly comorbid conditions in civilian life and among vet-
erans [7, 9], and both conditions are associated with an in-
creased risk of developing dementia later in life [5]. This link

TBI with Amyloid
[ .

104 102 102 104
P-value

TBI+PTSD with Amyloid
[ ___

10+ 102 102 104
P-value

PTSD with Amyloid
-

104 102 102 104
P-value

accumulation in the clinical groups, while the blue—green scale
represents negative correlations between tau and amyloid accumulation.
TBI traumatic brain injury, PTSD posttraumatic stress disorder, 7B+
PTSD TBI subjects who developed PTSD

between TBI and PTSD may result from the physical injury
and consequent cognitive impairments arising from TBI [33],
or may be due to persistent trauma-related memory [34]. The
ADAS-Cog, MMSE, ECog and CDR scores all showed great-
er memory and cognitive impairment in subjects with PTSD,
recapitulating the findings of our earlier study in a larger group
of ADNI-DOD subjects who had undergone amyloid PET
imaging [25]. In their review, Regehr and LeBlanc found that
the degree of impairment of cognitive and working memory
was correlated with the severity of PTSD [35].

In the present study, >35% of the subjects with TBI and/or
PTSD had some memory decline (CDR score >0.5), and most
of these subjects were diagnosed with amnestic MCI, suggest-
ing a progressive memory decline and raising the suspicion of
early AD pathology. Indeed, these subjects were classified as
Braak stages 11—V, which is consistent with the range of Braak
stages reported in MCI subjects [22]. Furthermore, this also
suggests that a history of TBI and/or PTSD might predict
memory deficits occurring decades after the trauma.

Increased tau deposition might suggest typical AD
progression in TBI+PTSD and PTSD as a possible link
to AD

In the present study, elevated tau deposition (10-20%) was
found in the cerebral cortex of TBI subjects compared with
controls. Tau is a scaffolding protein binding axonal microtu-
bules and other proteins, and TBI causes tau to abnormally
phosphorylate, misfold and cleave, and thus to form NFTs
[36]. A post-mortem study of long-term (up to 49 years) sur-
vivors of a single TBI event showed exceptionally abundant
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Estimated Braak stages in different groups
Group (n)

Table 2.
Braak stage
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TBI traumatic brain injury, PTSD posttraumatic stress disorder, TBI+PTSD subjects with TBI who developed PTSD

NFTs in the cingulate gyrus, SFG and insular cortex, which
led the authors to suggest a causal relationship between a
single TBI event and the acquisition of AD-like neuropatho-
logical features [15]. Tauopathy has also been reported in
cohorts of individuals with a history of repetitive TBI leading
to CTE and ultimately proceeding to AD [16, 32], and in a
group of players of American football with repeated concus-
sion who showed high ['®F]AV1451 uptake in the cortical
grey matter—white matter junction of multiple regions, which
is considered pathognomonic for CTE [16]. The relationship
between TBI and tau deposition may be a consequence of the
physical damage to the axonal cytoskeleton by shearing forces
[37] in conjunction with the nucleation of abnormal tau pro-
moting the formation of NFTs [38]. This biophysical model of
tau pathogenesis was proposed by Ahmadzadeh et al., who
suggested that tau-crosslinked microtubules are sufficiently
flexible to accommodate mechanical strain in the brain when
it arises slowly [39, 40], but may fail if severe mechanical
strain arises rapidly, and thus overwhelms the integrity of mi-
crotubules crosslinked by tau, causing tau dissociation and
aggregation [41, 42].

Another possible mechanism may be that damage to the
blood-brain barrier (BBB) after TBI facilitates tau accumula-
tion. In this scenario, TBI induces NFT formation particularly
around small blood vessels of the cortex, typically in the
depths of the sulci, and this may lead to CTE [32]. Ramos-
Cejudo et al. proposed that TBI first accelerates amyloid ag-
gregation, leading to cerebrovascular injury and BBB dam-
age, which then results in a deleterious feed-forward mecha-
nism in which increased arterial stiffness favours further am-
yloid and tau deposition [42]. PET and histopathological ex-
amination have shown that amyloid plaque density increased
within a year of the occurrence of a TBI event [43, 44]. On the
other hand, Chen et al. found no evidence of provoked amy-
loid plaques in subjects who had suffered their TBI 3 years
previously, despite ongoing elevation of the expression of the
amyloid precursor protein in the white matter [45].

Taken together, these studies imply that transient amyloid
plaques may form rapidly after TBI, but are normally cleared
in subsequent years. This acute or transient response to TBI
might be an initiator of a more chronic increase in tau accu-
mulation in a pathological cascade that eventually leads to a
form of tauopathy. The TBI group included subjects showing
an AD-typical profile of tau deposition, with regions of in-
creased tau appearing during Braak stages [-IV, in addition
to atypical-AD regions including the frontal and cingulate
cortex (Fig. 2a). A sea change in the perception of the long-
term consequences of TBI has been seen in recent years, sug-
gesting that the risks of CTE, Lewy body disease and parkin-
sonism are higher than the risk of AD [46—48]. However, we
cannot currently establish if the increased tau in our TBI group
was related to AD per se or to other tauopathies, mainly be-
cause of the absence of most of the cognitive impairments
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evident in the PTSD groups. Longitudinal tau PET studies in
this or a similar cohort may better establish the relationship
between TBI and AD-like pathology.

The PTSD group also showed elevated tau accumulation in
the neocortex compared with controls. A single report has so
far shown increased binding of the tau tracer [ *F]JAV 1451 in
subjects with chronic PTSD from an Australian cohort of
Vietnam War veterans [19]. To elucidate the underlying mech-
anism by which PTSD induces tau accumulation, Miller et al.
investigated the influence of the lipoxygenase genes ALOX12
and ALOX15 (enzymes involved in inflammatory responses)
on the decreasing cerebrocortical thickness seen in subjects
with PTSD, and found that ALOX12 moderates the association
between PTSD severity and thinning of the prefrontal cortex
[49]. The ALOXI2 pathway has been found to modulate tau
metabolism [50] and may be a mediator of inflammatory
mechanisms in early AD [51].

By examining the tau accumulation profiles in individual
subjects, we were able to identify those with PTSD and TBI+
PTSD who showed similar tau profiles to that in AD patients.
Jack proposed that early accumulation of cortical amyloid
might accelerate the progression and spread of tauopathy in
AD [52]. This author proposed that “primary age-related
tauopathy” develops at some stage in life followed by in-
creased amyloid deposition in certain neocortical areas that
triggers (by an unidentified mechanism) accelerated tauopathy
ultimately leading to severe cognitive deficits and AD [20,
22-24]. In the current study, elevated tau binding on PET
was positively correlated with amyloid positivity and cogni-
tive impairment in the PTSD and TBI+PTSD groups, but this
association was not present in the TBI or healthy control
groups, suggesting a particular association with PTSD.

Although none of the participants in our cohorts met the
clinical diagnosis of AD, the correlation analysis of amyloid
and tau PET findings suggested a strong predisposition for tau
accumulation to track amyloid deposition, especially in the
TBI+PTSD group, thus suggesting a complex relationship be-
tween the two pathologies. However, further investigation is
required to substantiate this association. In amyloid-negative
subjects, tauopathy with Braak stages above zero might be
primary age-related tauopathy [37], and this also might explain
the occasional finding of tau accumulation in our healthy con-
trol group. Alternately, our criterion for amyloid PET positivity
of SUVr >1.1 in the whole cerebral cortex [53] may have re-
sulted in early amyloid changes being missed in some subjects.

We found significant correlations between ADAS-Cog,
ECog total and CDR scores and tau accumulation in both the
TBI+PTSD and PTSD groups, with the most compelling cor-
relations in the TBI+PTSD group (Figs. 4 and 5, and
Supplementary Fig. 1). In this group, the spatial pattern of pos-
itive correlations broadly matched the default mode network
(DMN), that involves the precuneus, PCC and medial frontal
cortex [54]. Furthermore, tau accumulation in these same

regions was positively correlated with total cortical amyloid
deposition (Fig. 6). These regions of the DMN have previously
been shown to contain amyloid deposits in patients with MCI
[55] and early AD [54], suggesting that the DMN is the first
functional network to be disrupted in AD [55]. These various
correlations between tau and cognitive impairments and amy-
loid may suggest that TBI+PTSD and PTSD subjects are at
higher risk of conversion to AD, following the typical AD
progression profile proposed by the NIA-AA framework [20].

The data presented here imply that those veterans who
developed PTSD following their TBI might be at the highest
risk of progression to AD, while those with TBI only might be
more at risk of developing other neuropathies [46—48], a con-
jecture that could be investigated by longitudinal molecular
imaging studies. Work by Li et al. showed that a self-reported
history of TBI was associated with an onset of cognitive im-
pairment in older adults 3—4 years earlier than in those without
a history of TBI [56], but these authors did not report interac-
tions with PTSD.

The major limitation of this study was the small number of
subjects in the TBI cohort (n = 10), which was insufficient to
support strong conclusions. Further investigations are re-
quired to establish better links between TBI or PTSD with
tau pathology and the risk of AD or other forms of dementia.
In addition, there is a need for further investigation of the
mechanisms triggering AD onset and progression. Future
studies in a larger cohort may establish cut-off criteria for
tau PET conforming to Braak staging.

Conclusion

Our findings show for the first time that a history of TBI and/
or PTSD is associated with increased tauopathy resembling
AD-typical and atypical patterns, and is correlated with im-
paired neuropsychological function relative to healthy
controls.
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