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Field-programmable silicon temporal cloak
Feng Zhou1, Siqi Yan1, Hailong Zhou1, Xu Wang1, Huaqing Qiu2, Jianji Dong 1, Linjie Zhou3, Yunhong Ding 2,

Cheng-Wei Qiu 4,5 & Xinliang Zhang1

Temporal cloaks have aroused tremendous research interest in both optical physics and

optical communications, unfolding a distinct approach to conceal temporal events from an

interrogating optical field. The state-of-the-art temporal cloaks exhibit picosecond-scale and

static cloaking window, owing to significantly limited periodicity and aperture of time lens.

Here we demonstrate a field-programmable silicon temporal cloak for hiding nanosecond-

level events, enabled by an integrated silicon microring and a broadband optical frequency

comb. With dynamic control of the driving electrical signals on the microring, our cloaking

windows could be stretched and switched in real time from 0.449 ns to 3.365 ns. Such a

field-programmable temporal cloak may exhibit practically meaningful potentials in secure

communication, data compression, and information protection in dynamically varying events.
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S ince the breakthrough concept of temporal cloak was pro-
posed by McCall et al. at the first time1, a great deal of
attention was paid to new methodology and experimental

verification of temporal cloaks2–13. Particularly, the concept of
temporal cloak first came true with an experiment by Gaeta
et al.14, and later Weiner et al. facilitated temporal cloak into
more practical applications at telecommunication data rate with
superior cloak efficiency15. Temporal cloak, derived from spatial
cloaking due to the space-time duality16,17, does not create a void
to conceal spatial objects18–20, but open and suture a time gap to
hide events in time-domain. To create a time gap as the cloaking
window, a time lens with quadratic phase profile is required to
bend the light along the time and a dispersive medium is used to
converge the light beam to a time spot14,15,21. The suture of the
time gap is implemented by an opposite dispersive medium. A lot
of temporal cloak approaches were proposed theoretically and
confirmed to be feasible in experiments. However, the existing
cloaking experiments exhibited only a fixed and small cloaking
window with picosecond-level due to the periodicity and aperture
limit of time lens. In early years, the time lens was created by a
pair of split time lens employing four-wave mixing in a highly-
nonlinear fiber (HNLF)14, suffering from strong pump con-
sumption and low energy efficiency. Afterwards, the time lens was
created by temporal Talbot effect employing phase modulator
(PM) and chirped fiber grating15,21. Unfortunately, a PM could
only provide very limited aperture of time lens when driven by a
sinusoidal voltage22. Even the PM was optimized by chirped
component and cascaded structure, the maximum continuously
cloaking windows was 196 ps, far from nanosecond-level. A large
cloaking window has been pursued all along since it represents
the hidden capacity available in a time slot for secure commu-
nications. For some specific scenario of secure communication,
data protection is an important secure device, allowing for
sharing some public data to the user but concealing other private
data in real time. Thus, it is very important to make cloaking
window field-programmable (i.e., the cloaking window can be
switched off, switched on, or stretched freely, similar to the
concept of field programmable gate arrays in digital circuits) since
different types of optical packets can be hidden at any time slots
with the cloaking system. However, all state-of-the-art cloaking
systems so far featured periodical cloaking windows without field-
programmability.

In this paper, we demonstrate a field-programmable silicon
temporal cloak with a record cloaking window at the nanose-
cond-level, benefiting from a unique electrically controllable
silicon-based time lens. The superior time lens consists of an
optical frequency comb and an electrically tuned microring
resonator (ET-MRR) acting as a scanning filter, whose output
wavelength is proportional to the applied voltage. The electrically
controllable time lens is enabled by applying an electrical split
sawtooth signal on the ET-MRR and disabled by applying a direct
current (DC) electrical signal. This electrically controllable
silicon-based time lens has distinct advantages of field-
programmable cloaking window, moderate power consumption
and compact photonic integration. To break the periodicity of the
cloaking window, we demonstrate, for the first time, a field-
programmable silicon temporal cloak with potential applications
in data protection, enabling to share some public data to the user
but conceal other private data in real time. In addition, we obtain
a record cloaking window of up to 3.365 ns, which is 17 times
larger than the longest time window reported so far21. Further-
more, we succeed in concealing pseudorandom dark return-to-
zero (RZ) signal at a rate of 200 Mbit/s and verify the stretch-
ability of cloaking window from 3.365 ns to 0.449 ns by changing
the repetition rate and peak voltage of driving electrical signals.
We suggest that the real-time programmability of temporal cloak

may make its applications, such as secure communication and
data compression, more practical and closer to our daily life.

Results
Operation principle. Time-lens is a core of temporal cloak,
which determines the capacity of cloaking window at the event
plane. To intuitionally understand the cloaking window, the
probe light waveform at the event plane is illustrated in Fig. 1a.
The zero-intensity regions represent the time gaps as the cloaking
windows23. Within these time slots, any temporal events will be
concealed and not appear to the observer. In the traditional
temporal cloaking systems shown in Fig. 1a, the open windows
can only last for <200 ps14,15,21,24 because of the limited aperture
of time-lens. Besides, the open windows are periodic, which
means all events in the cloaking windows are concealed peri-
odically without flexibility.

Figure 1b shows the probe light waveform at the event plane in
our cloaking scheme, featuring a large cloaking window (~3 ns)
and the cloaking window can be field-programmable. The large
cloaking window makes it possible to conceal optical packets with
nanosecond-level events, and the controllable cloak windows
allow for real-time switching off, switching on, and stretching the
cloaking window freely. The field-programmable temporal cloak
enables to share some public data to the user (at the state of cloak
off) but conceal other private data (at the state of cloak on, gray
labels) in real time, similar to a hardware of data protection.
However, the traditional temporal cloaking systems were unable
to do so.

Figure 1c describes the schematic of the proposed field-
programmable silicon temporal cloak, and the bottom insets
show the waveforms and spectra of the light transmission,
electrical control signal and event at different locations in the
cloaking system. A continuous wave (CW) light (Fig. 1d) is firstly
converted into a broadband flat optical frequency comb source
via an optical frequency comb generator (Fig. 1e, green), then
launched into the ET-MRR. The ET-MRR acts as a swept-
frequency filter when driven by an electrical split sawtooth
waveform (Fig. 1f, green curve within gray label). The ET-MRR is
fabricated on a commercial silicon-on-insulator (SOI) wafer
consisting of a ring waveguide and two straight waveguides. The
microscope images of the fabricated ET-MRR and the zoom-in
ring region is shown in the top inset. The details of ET-MRR
fabrication can be found in Methods section for device
fabrication. The detailed scheme and the whole micrograph of
the ET-MRR can be found in Supplementary Note 1. The output
wavelength dependent on time is a split sawtooth function
(Fig. 1g, pink) curve within gray label since the output wavelength
of optical frequency comb source is continuously scanned by the
swept-frequency filter. Then, the electrically controllable time lens
is created. The detailed principle of the electrically controllable
time lens can be found in Supplementary Note 2.

While the cloak is set to cloak on (i.e., the ET-MRR is driven by
a split sawtooth waveform, gray labels), the light then passes
through a dispersion element, such as a spool of single mode fiber
(SMF), where the shorter wavelength light propagates faster than
the longer wavelength light. Thus, the dispersion effect makes
energy of longer wavelengths and shorter wavelengths converge
into temporal pulses and leave a time gap, which is shown in
Fig. 1h (blue curve within gray label), and the cloaking window
(or time gap) is opened. Any event during this time gap will not
be perceived by the probe. When the probe light experiences an
opposite dispersion amount, such as a spool of dispersion
compensating fiber (DCF), the cloaking window will be sutured.
Then the probe light is detected by a photodetector (PD) and the
corresponding output waveform is observed by an oscilloscope, as
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shown in Fig. 1j (orange curve within gray label). For the
observer, the signal waveforms at input and output planes are the
same, and the events could not be perceived. While the cloak is
set to cloak off (i.e., the ET-MRR is driven by a DC voltage), the
output optical field of the electrically controllable time lens is
monochromatic light. Whether the probe light passes through a
normal dispersion element or an opposite dispersion amount, the
light waveform remains essentially unchanged and time gap
disappears. In this case, the events can be captured by the probe
light and the corresponding output waveform is shown in Fig. 1j
(orange curve without gray label). Therefore, this superior time
lens can alter the cloaking window in real time and produce the

field-programmable silicon temporal cloak. In order to describe
the cloaking system in details, we also simulate all the cloaking
states of the cloaking system (see Supplementary Note 3). Note
that the wavelength has changed when the probe light passed
through the cloaking system. Thus, this hiding event may be still
scouted from the spectral evolution. To solve this issue, a
wavelength converter can be inserted after the dispersion
compensation to convert multi-wavelength signal to a single
wavelength as same as the input light25,26. In this way, the output
signal of our system will turn to be a continuous wave light and
the cloak could function not only in the time domain but also in
the frequency domain, as a full temporal cloak.
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Fig. 1 Schematic and representative of field-programmable silicon temporal cloak. a The probe light waveform at the event plane of the traditional temporal
cloak. b The probe light waveform at the event plane in our cloaking scheme, featuring a large cloaking window (~3 ns) and the cloaking window can be
field-programming freely. c Schematic of field-programmable silicon temporal cloak. d-j represent various points in the circuit and the characteristic curves
corresponding to the probe light, electrical control signal and event are as follows: (d) the probe light is continuous wave; (e) optical frequency comb
generator creates a broadband flat optical frequency comb; (f) an ET-MRR driven by an electrical split sawtooth signal and DC signal; (g) the output of
drop-port of ET-MRR is split linearly chirped optical signal or monochromatic light, which is required for field-programmable temporal cloak; (h) opening
gap is achieved while the ET-MRR is driven by a split sawtooth waveform (cloak on), and temporal gap does not open while the ET-MRR is driven by a DC
signal (cloak off); (i) event (dark RZ); (j) the output waveform is CW (cloak on) or inverted pulse (cloak off). Inset: the microscope images of the fabricated
ET-MRR and the zoom-in ring region. The gray labels represent the cloaking bits
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Electrically controllable silicon-based time lens. To demonstrate
the proposed cloaking system, the crucial element is the imple-
mentation of the electrically controllable silicon-based time lens,
which consists of an optical frequency comb generator and an
ET-MRR. The tuning mechanism of ET-MRR is based on the
plasma dispersion effect. The measured transmission spectra at
the drop-port of the ET-MRR are illustrated in Fig. 2a, when
different DC voltages are applied on it. One can see that as the
applied voltage increases, the Q factor decreases, and the reso-
nance wavelength experiences blue shift due to carrier dispersion
effects. We also notice that when the driving voltage increases, the
ET-MRR transmission at the peak would decrease (see Supple-
mentary Note 4). The difference of the transmission peak is up to
10 dB, when the driving voltage varies from 0.8 to 1.3 V. This
difference may deteriorate the cloaking performance without
spectral compensation. To compensate the uneven transmission
of ET-MRR when blue shifted, a clival optical frequency comb
generator is employed. Here we use a PM together with a wave
shaper to generate a clival optical frequency comb. A low-Vπ PM
is driven by a sinusoidal radio frequency (RF) signal with a
repetition rate of 10 GHz. Moreover, this sinusoidal RF signal is
strongly amplified to about 30 dBm. A broadband flat optical
frequency comb (green) is generated as shown in the inset of
Fig. 2b. We further use a wave shaper (see the inset of Fig. 2b,
purple) to tailor the flat optical frequency comb to a clival optical
frequency comb with 10 dB difference of the peak power, as
depicted in Fig. 2b, which exactly covers the sweeping spectral
range of the ET-MRR. Finally, an electrical signal (mixed split
sawtooth signal and DC signal) with repetition rate of 200MHz
(Fig. 2c) is applied to the ET-MRR. The electrically controllable
silicon-based time lens is constructed while the ET-MRR is driven
by a split sawtooth waveform, and time lens does not work while
the ET-MRR is driven by a DC signal. The instantaneous fre-
quency of the output signal of the ET-MRR (Fig. 2d) is calculated
according to the characteristic curve of wavelength shift (Sup-
plementary Fig. 4a) and the electrical signal (Fig. 2c). Note that

the finite width of the curve in the y-direction is attributed to the
bandwidth of the ET-MRR.

Experimental demonstration. According to Fig. 1c, we verify the
experiment of a field-programmable temporal cloak. The detailed
experimental setup can be found in Supplementary Note 5. In our
experiment, the cloaking window can be easily opened and closed
by setting the split sawtooth and DC signal applied on the ET-
MRR, respectively. Without loss of generality, the split sawtooth
signal is recorded as cloaking bit 1, representing the state of cloak
on, and the DC signal is recorded as cloaking bit 0, representing
the state of cloak off. Figure 3 shows some typical experiment
results of field-programmable temporal cloak by varying the
cloaking bits on the ET-MRR. The first row shows the sequence
of cloaking bits at the bit rate of 200 Mbit/s. The second row
shows a user-defined sequence event (blue) with dark RZ signals.
The third row shows the output waveforms controlled by the
cloaking bits. To characterize the performance of the temporal
cloak, we define the ripple factor as the ripple voltage over the
average voltage of output signals in the state of cloak on. Ideally,
in a perfect temporal cloak, the ripple factor should be as small as
possible. In Fig. 3a, the output waveform is a constant with a low
ripple factor (~30%), which means all event bits have been hidden
successfully since all the cloaking bits (cyan) on the ET-MRR are
set to 1111111111. From Fig. 3b, c, the switching bits (cyan) is set
as random sequences, such as 0101100111, and 1100111000,
respectively. Then we can observe the event waveforms at
cloaking bit of 0 (bright region), but cannot observe the event
waveforms at cloaking bit of 1 (gray region). The ripple factor is
about 25% in the gray region, representing a good cloak perfor-
mance. Figure 3d shows that the output waveform is the same as
the event waveform when the cloaking bits are all set at 0s,
representing the state of cloak off. The output signal is broadened
after the DCF and it can be compensated by introducing a spool
of SMF to compensate the dispersion of the DCF. Further, we set
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Fig. 2 Electrically controllable silicon-based photonic time lens. a Measured transmission spectra at the drop-port of the fabricated ET-MRR with different
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the switching bits to random sequences such as 1010011000, and
select 100MHz dark RZ signal as the event. As shown in Fig. 3e,
the periodic sequence dark events with half cloaking repetition
rate is selectively cloaked by the arbitrary sequence temporal
cloak. In addition, an arbitrary sequence dark events with both
two-pulse event and one-pulse event are erased by the periodic
temporal cloak, as shown in Fig. 3f. It shows that the long
cloaking window could hide more pulses, not only a single pulse.
Therefore, the field-programmable cloak has been successfully
demonstrated. We may notice that the waveform contrast
between cloak on and cloak off is not very high. In our scheme,
the electrically controllable silicon-based time lens with a swept-
frequency filter introduces a high loss for the output light signal.
When the broadband optical frequency comb propagates through
the swept-frequency filter and the selected light signal with very
low power is amplified by the erbium doped fiber amplifier
(EDFA), some noise is introduced. Thus, the signal-to-noise ratio
is not high. The waveform contrast can be improved further by
optimizing the DCF length, link loss, and the electrical signal on
ET-MRR.

In order to more clearly characterize the cloaking window of
our temporal cloak, we create periodical temporal cloak by setting
the sawtooth voltage with repetition rate of 200MHz applied on
the ET-MRR. Figure 4a shows the opened time gap waveform
with a repetition rate of 200MHz that is measured at the event
plane in our experiment system. We define the continuously
cloaking window as the duration where the intensity of the probe
drops below the 10% of the peak voltage, which is measured as
3.365 ns, 17 times larger than the previous experimental record
(196 ps)21. Then the temporal event is emulated with a dark RZ

pseudo-random binary sequence (PRBS) at a bit-rate of
200 Mbit/s and its temporal waveform is detected by a PD with
5 GHz bandwidth, as shown in Fig. 4b. There are 2 levels in the
eye diagram, caused by the electrical arbitrary waveform
generator (Keysight M8195A) without calibration. The 5 GHz-
bandwidth PD aims to suppress the beating signals from the
optical frequency comb source. More details can be referred in
the Supplementary Note 5. Subsequently, we measure the
temporal waveforms at four different states of the temporal
cloak, as shown in Fig. 4c, d. When the event is turned on and the
cloak is turned off, we can capture the event signals with high-
contrast voltage (Fig. 4c, blue). The measured eye diagram shows
a thick eyelid which is caused by the high loss of the fiber link and
photonic chip, as well as the fiber amplifier noise. And once the
cloak is turned on (the event is kept on), the event signals are
hidden and one can only observe a nearly continuous waveform
(Fig. 4c, red). The ripple factor is ~13.33%. Note that the level is
also different between cloak on and off because of amplifier
saturation of the EDFA, which keeps the average output power
constant. Thus, the CW waveform drops slightly compared to the
modulated case. At the same time, the non constant higher level
and the ripple is caused by the mismatch between the chirp of the
time lens and the dispersion devices. If the event is turned off,
whether cloak is turned on (Fig. 4d, black) or off (Fig. 4d, pink),
the temporal output is the same continuous waveform, and the
ripple factors is ~12.33 and ~6.67%, respectively. It indicates that
a high quality of temporal cloak is successfully implemented. In
addition, we also investigate the pre-compensation of wave
shaper, which follows the optical frequency comb generator. If the
wave shaper is removed, for the state of Event off and Cloak on,
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the captured waveform has a large ripple (see the inset of Fig. 4d).
The ripple factor is as high as 40%, indicating a poor performance
for the cloaking system. Thus, the wave shaper can greatly reduce
the ripple factor and improve the cloaking performance.

A stretchable cloaking window is of importance for a temporal
cloaking system since different duration of optical packets may be
hidden in the cloaking system. In our experiment, the cloaking
window can be easily altered by changing the repetition rate and
peak voltage of the ET-MRR drive signal. The reason lies in that
the width of the cloaking window is determined by the amount of
the chirp of the time lens and the dispersion in our cloaking
system. The amount of the chirp of the time lens depends on the
driving voltage of the ET-MRR. Thus, we can change the width of
the cloaking window by changing the driving voltage of the ET-
MRR while keeping the fiber at the same length. Figure 5a, b show
the measured cloaking window waveforms at the event plane
when the repetition rate of sawtooth signal is 400 and 800MHz,
respectively. The continuously cloaking window (time gap) is
measured to be 0.979 and 0.449 ns, respectively. When we turn on
both the states of cloaking and event, the measured output
waveforms are shown in Fig. 5c (red, 400MHz) and 5d (red, 800
MHz). The ripple factor is about 20 and 27%, respectively. These
nearly constant intensity waveforms mean that the events are
successfully hidden. When the cloak is turned off, the clear eye
diagrams are shown in Fig. 5c (blue, 400MHz) and 5d (blue, 800
MHz). It means the hidden events appear again after the cloaking
is turned off. Therefore, our cloaking system can stretch its
cloaking window easily. Note that the eye patterns for bit rate of
400 and 800MHz are worse than that of 200MHz, because the
aberration of time lens is more serious at higher operation speed,
limited by the time response of the ET-MRR.

Discussion
Our field-programmable silicon temporal cloak is based on an
electrically controllable time lens, which is compared to the

state-of-the-art temporal cloak technologies with experimental
verifications. The performance comparison is summarized
in Table 1. The split time lens-based temporal cloak with
HNLF was limited by the low total cloaking ratio and low bit
rate17. Afterwards, the performances of the temporal cloak
were greatly improved by using temporal Talbot effect6,15,
inverse temporal Talbot effect21 and ultrashort pulse com-
pression with PM24, but these cloaking systems featured peri-
odical and small cloaking windows without flexibility. In
contrast, in our scheme, the cloaking window can be switched
off, switched on, and stretched freely by setting the corre-
sponding control signal of the swept-frequency time lens. Thus,
our temporal cloak offers a field-programmable cloaking win-
dow, which is able to share some public data to the user but
conceal other private data in real time at telecommunication
data rate. Especially, the cloaking window is greatly extended to
nanosecond-level.

Meanwhile, photonic integration of the cloaking system is also
desirable with greatly reduced size and weight compared to the
conventional discrete component approaches. This work repre-
sents a key step forward since the electrically controllable swept-
frequency time lens has great potentials to be fully chip-
integrated. For example, in terms of higher density chip-inte-
gration, the swept-frequency time lens can be potentially imple-
mented by incorporating a Kerr comb (i.e., nonlinear MRR)27–35

with swept-frequency filter (i.e., ET-MRR) on a common silicon
nitride platform. Second, the cloaking window for cloaking sys-
tem is mainly determined by the modulated bandwidth of ET-
MRR (typical less than 1 GHz) and dispersion amount of inte-
grated dispersion device. Third, an additional 5 GHz-bandwidth
PD is used to suppress the beating signal but restrains the
modulated rate of event. If a high Q factor (>105) MRR is used
with very narrow bandwidth in the future36–40, then the PD
bandwidth has no limitation. Fourth, a wave shaper is used to
tailor the spectral shaper of optical frequency comb source, at the
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cost of high loss of optical link. A possible solution is to adopt a
thermally tuned microring resonator (TT-MRR) with a moderate
modulated rate41–43. TT-MRR can offer a constant transmission
as a swept-frequency filter, and a more linear frequency chirp for
the time lens, compared to ET-MRR. Finally, to fabricate the
entire cloaking system on a silicon chip, an on-chip high-speed
intensity modulator is required, which acts as the event emulator.
Currently, the integrated high-speed intensity modulator is
mature in the SOI fabrication foundry44–46, which motivates a
promising future for the full integration.

In conclusion, we demonstrate the field-programmable sili-
con temporal cloak, benefiting from a unique electrically con-
trollable silicon-based time lens. The superior time lens is
enabled by an electrical split sawtooth signal applied on the ET-
MRR and is easily disabled by a DC signal. We demonstrate a
field-programmable silicon temporal cloaking system that break
the periodicity and can be used for data protection. Further-
more, the recorded cloaking window up to 3.365 ns is obtained
and the stretchability of cloaking window from 3.365 to 0.449
ns is verified by changing the repetition rate and peak voltage of
driving electrical signals. The programmability of temporal
cloak may make its applications, such as secure communication
and data compression, more practical and closer to our
daily life.

Methods
Devices fabrication. We employ an add-drop ET-MRR to implement the field-
programmable temporal cloak. Firstly, we design and fabricate the MRR on a
commercial SOI wafer with 220-nm-thick silicon device layer on 2-μm-thick buried
oxide layer. Secondly, we employ deep ultra-violet photolithography using a
248-nm stepper to define the waveguide patterns, followed by anisotropic dry
etching of silicon. Thirdly, we implant boron and phosphorus ion implantations to
form the highly p-type and n-type doped regions. In addition, the slab layer is
etched outside the p-i-n junctions to confine the current flow around the ring
waveguide. Finally, contact holes are etched and aluminum is deposited to form the
metal connection. We use vertical grating coupling method to couple the light to
the silicon MRR. The whole fabrication process is completed using complementary
metal-oxide semiconductor compatible processes.

Data Availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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