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Abstract

Cell shape changes within epithelia require the regulation of adhesive molecules that maintain tissue integrity. How
remodelling of cell contacts is achieved while tissue integrity is maintained remains a fundamental question in
morphogenesis. Dorsal Closure is a good system to study the dynamics of DE-Cadherin during morphogenesis. It relies on
concerted cell shape changes of two epithelial sheets: amnioserosa cell contraction and epidermal cell elongation. To
investigate the modulation of DE-Cadherin we performed antibody uptake experiments in live embryos during Dorsal
Closure. We found that some antibodies access certain epitopes of the extracellular domain of native DE-Cadherin only in
the amnioserosa and epidermal cells attached to the amnioserosa, which has never been observed in fixed DE-Cadherin in
Drosophila embryos. These differences correlate with the different cell behaviour of these regions and therefore we suggest
that DE-Cadherin exists in different forms that confer different adhesive strengths. We propose this to be a widespread
mechanism for the differential modulation of adhesion during morphogenesis.
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Introduction

The Cadherin protein family is a group of calcium dependent

homophilic cell adhesion molecules that mediate adhesion between

cells [1]. The signature of this protein family is an extracellular domain

composed of ‘‘cadherin domains’’ that promote intercellular interac-

tions, and an intracellular domain that serves as a link between the

intercellular adhesion and the actin cytoskeleton through interactions

with the catenins [1]. In epithelia, Cadherins localise at the Adherens

Junctions (AJs) near the apical side of the cell and generate a

continuum between the actin cytoskeleton of different cells allowing

coordinated tissue deformation [2,3,4]. Although the dynamics of

cytoskeletal activity during morphogenesis is being extensively studied

[5], less is known about how adhesion is modulated during these

processes. Biophysical models of morphogenetic processes predict that

changes in adhesion are important in the modulation of the

mechanical properties of epithelia [6]. This could be achieved by

modulating the total amount of Cadherin, through the regulation of its

expression [7,8,9,10], or its steady-state levels at the membrane,

through endocytosis and recycling [11,12]. A third mechanism could

target the adhesive properties of Cadherin, regulating its conforma-

tion, clustering state and other higher-order organizations [1].

Assessment of Cadherin adhesive properties in vivo during

morphogenesis is difficult since genetic removal of Cadherin

has a dramatic effect on tissue integrity. Dorsal Closure (DC) in

Drosophila represents a good model to address DE-Cadherin

modulation in vivo. DC is a process whereby two epithelia, the

epidermis and the amnioserosa (AS), interact to cover a disconti-

nuity on the dorsal epidermis of the Drosophila embryo [13,14]. It is

associated with cell shape changes and local cell interactions as

generators of dynamical force fields that drive a patterned

contraction of the AS and a correlated epidermis elongation

[15,16,17]. Drosophila E-Cadherin, DE-Cadherin, encoded by the

shotgun (shg) gene, provides an essential cell adhesion force, balancing

the stresses generated during DC [18]. Removal of DE-Cadherin,

both maternally and zygotically, results in the loss of epithelial

integrity early in embryogenesis [10,19]. However zygotic null

mutants for shg receive maternal DE-Cadherin that allows the

embryos to initiate DC with reduced levels of DE-Cadherin levels

[18]. Interestingly, embryos mutant for null alleles of shg are rescued

by ubi-DE-CadherinGFP expression and develop into normal adult

flies [20] suggesting that any modulation of Cadherin activity during

development might occur at the post-transcriptional level.

Here we investigate post-transcriptional modulations in DE-

Cadherin during a morphogenetic process. Our study reveals

surprising spatial differences in the configuration of the extracel-

lular domain of DE-Cadherin which correlate with patterned cell

shape changes during DC. We propose that these differences

represent Cadherins with different adhesive properties.

Materials and Methods

Drosophila strains
Wild-type embryos were from the Oregon R strain, w ; shgR64/CyO

strains (Tepass et al., 1996), ubi-DE–CadherinGFP [20], ShgR64

homozygous mutant embryos were selected from a cross between w;

shgR64, UASactinGFP/CyO and w; shgR64, enGal4/CyO (N. Gorfinkiel).

In vivo hand-devitellinization
Our hand-devitillinization protocol follows published reports

[21]. Embryos at DC stage were selected and aligned with the
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ventral region upward and anterior part towards the observer on

top of a narrow stripe of double-sided tape. Sörensen phosphate

buffer (SPB) was added to cover the aligned embryos. The vitelline

membrane was pierced at the head with a glass needle that was

moved to the posterior of the embryo; the movement is done

without indenting deep in the embryo. The embryo was teased out

of the vitelline membrane, away from the tape.

Antibody uptake assays
Hand-devitellinized embryos were transferred with a coated glass

pipette into a coated glass dish with SPB at 4uC, then to another glass

dish with 500 ml of cold SPB containing primary antibodies and

incubated for 1 hour at 4uC, rinsed 3 times and finally washed 6

times for 2 minutes with SPB at 4uC. The embryos were either

immediately fixed (time 0) or chased for 10, 30 minutes or 1 hour in

Schneider’s insect medium supplemented with 10% Fetal Calf

Serum (FCS) and 1% L-Glutamine at 25uC. Fixation was performed

in paraformaldehyde (PFA) 4% for 40 minutes at 25uC, wash-

blocked (3 rinses plus four 10 minutes incubations) in BBT-BSA

(BBS + CaCl2 1 mM + 0,1% Triton + 0,5% BSA). For further

antibody labelling, embryos were incubated with other primary

antibodies diluted in BBT-BSA for 2 hours at Room Temperature

(RT), and thoroughly washed with BBT-BSA. Finally, embryos were

incubated with 500 ml of BBT-BSA containing secondary antibodies

at RT for 2 hours in the dark, rinsed 3 times and washed 4 times in

BBT-BSA and then individually mounted in Vectashield.

The pulse-chases were done simultaneously, with 66 embryos

for each time point. The experiment was repeated 3 times.

Thereafter all the experiments with different antibodies or mutant

embryos were done using the same protocol without chase, always

using DCAD2 as a control.

Antibodies
The following primary antibodies were used: rat anti-DE-

Cadherin DCAD1 (T. Uemura) 1:100, rat anti-DE-Cadherin

DCAD2 (DSHB) 1:200, rabbit anti-DE-Cadherin d-300 (Santa

Cruz) 1:100, goat anti-DE-Cadherin-intra dP-20 (Santa Cruz)

1:200, rat anti-DE-Cadherin (V. Hartenstein) 1:50, mouse anti-

Notch-extra C458.24 (DSHB) 1:50, rabbit anti-Scribble (C. Doe)

1:1000, 1:10. Secondary antibodies were from Molecular Probes.

Immunostainings
Embryos were fixed and stained as previously described

(Kaltschmidt et al., 2002). Fluorescently labelled embryos were

mounted in Vectashield (Vector) and examined under a Nikon D-

Eclipse C1 confocal scanning unit, mounted on a Nikon Eclipse

90i microscope, using the EZ-C1 3.60 software and a 60x/1.40

NA Apo VC oil-immersion objective. Five-seven z-sections,

0.5 mm apart, were projected using ImageJ (http://rsb.info.nih.

gov/ij/) and processed using Photoshop.

Quantification of fluorescence intensities
For quantification of fluorescence intensity, the polygon

selection tool was used to draw around an object and the mean

gray value was obtained using ImageJ. Notch and DCAD2

fluorescence intensity from different time points were compared

using One-Way ANOVA and Tukey HSD Test for Post-ANOVA

Pair-Wise Comparisons.

Time-lapse movies
Stage 13 Drosophila embryos carrying an ubi-DE-CadherinGFP

construct (Oda and Tsukita, 2001), were dechorionated, mounted

on coverslips with the dorsal side glued to the glass and covered

with Voltalef oil 10S (Attachem). Imaging of the embryos was

done using an inverted LSM 510 Meta laser-scanning micro-

scope with a Plan-Apochromat 63x/1.4 oil-immersion objective.

Embryos were maintained at 24uC during imaging and around

50 z-sections 1 mm apart were collected every 2 minutes. For

Figure 1F, Ubi-DE-CadherinGFP Drosophila embryos at stage 13

were dechorionated, devitellinized and transferred into small

dips in agar glass dishes with insect medium and imaged every

2 minutes, collecting around 50 z-sections 1 mm apart under a

Nikon D-Eclipse C1 confocal scanning unit, mounted on a

Nikon Eclipse 90i microscope, using the EZ-C1 3.60 soft-

ware and a Nikon Fluor 40x10.80 water-immersion objective.

Movies were assembled and processed ImageJ (http://rsb.info.

nih.gov/ij/).

Results and Discussion

During DC, contraction of the AS cells provides a tensile force

that drives and maintains elongation of the epidermal epithelium

[13,15,16,22] (Figure 1A,A9). During epidermal elongation the

average ratio between the Dorsal/Ventral (D/V) and Anterior/

Posterior (A/P) cell axis changes from 1.5 to 5.2 (Young et al.,

1993). There are two well defined domains in the epidermis: the

Dorsal Most Epidermal (DME) cells, which form an interface

between the AS and the epidermal sheet and bear the brunt to the

forces of the process, and the lateral epidermis, where the

elongation is associated with local cell rearrangements. Analysis of

these rearrangements in the first 6 epidermal rows of 5 segments in

3 embryos over the period of 90 minutes reveals stereotyped

exchange of neighbours (Figure 1B,C and Movie S1) and a

number of 6.4 6 1.2 cell neighbour exchanges per segment.

During Germ Band Elongation (GBE) [23,24] cells also undergo a

sequence of cell contact changes termed T1.T2.T3 transition

(Figure 1D,[23]). However, while in GBE the process is continuous

and irreversible, T1.T2 type transitions are frequently main-

tained or reversed during DC, not leading to cell intercalation

(Figure 1D). This difference might result from the fact that in GBE

cell contact changes underlie tissue elongation that is driven by

local forces [25] whereas in DC there is an external pulling force

generated by AS contraction that drives epidermal cell elongation

[15,16,17] and these transitions accommodate stresses associated

with cell elongation in relation to neighbours. A similar conversion

of junctions has been observed in the ventral epidermis of earlier

Drosophila embryos during epidermal cell alignment along the D/V

boundary [26] suggesting that they represent a theme in

morphogenesis [24].

Cell shape changes and exchange of neighbours require

modulation of the cell surface molecules, in particular of DE-

Cadherin [27,28]. As there are no reports of differential expression

of DE-Cadherin in the epidermis during DC, we looked for

dynamic changes in the cell surface pool of DE-Cadherin by

labelling and chasing this pool of DE-Cadherin. We adapted an

existing culture technique that retrieves the embryo from the

vitelline membrane [21], allows progression of DC (Figure 1F) and

makes the cells competent to take up dyes and antibodies

(Figure 1E2-E3). To test the assay, we pulse labelled embryos with

antibodies against the extracellular domain of DE-Cadherin, and

observed a translocation of the antibody into intracellular vesicles.

In contrast, antibodies against the intracellular domain of the

transmembrane receptor Notch or the intracellular protein

Scribble did not show any signal (Figure S1A9,A0,B9,B0) which

was only detected when cells were permeabilized before

incubation (Figure S1C9,C0). These experiments validate this

protocol for dynamic analysis of cell surface proteins.

Modulation of Cell Adhesion during Morphogenesis
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Dynamic assays reveal that monoclonal antibody binding
to native DE-Cadherin is patterned

To study the dynamics of DE-Cadherin during DC, stage 13–14

Ubi-DE-CadherinGFP embryos were incubated at 4uC with the

monoclonal antibody DCAD2, directed against the extracellular

domain of DE-Cadherin, and with an antibody against the

extracellular domain of Notch as a control, and chased for

different time periods (0, 10, 30 minutes and 1 hour) at RT.

Embryos that have been fixed immediately after antibody

loading, express DE-CadherinGFP in all cells (Figure 2C,C9,C0),

however the binding of the DCAD2 antibody to the epidermal

cells reveals a spatial pattern: the AS and the DME exhibit

clear antibody binding which is absent in the lateral epidermal

cells, except in small patches (Figure 2D,D9,D0). We have not

investigated the nature of these patches but they could result e.g.

from local rearrangements occurring underneath the epidermis

Figure 1. Cell shape changes and exchange of cell neighbours in DC. (A–C) Stills from a time-lapse of an Ubi-DE-CadherinGFP embryo during
DC. Colours identify cells that are followed during the process, highlighting cell shape changes (A,A9). Exchanges between neighbours (B) in the
lateral epidermis (C). The number of cell neighbour exchanges is 6.4 6 1.2 per segment (first 6 epidermal rows in 5 segments in 3 embryos over
90 minutes). (D) Pattern of neighbour exchange during DC and GBE. (E) Overview of the pulse-chase assay (antibodies appear outside the vesicles for
simplicity). (F) Stills from a time-lapse of a hand-devitellinized Ubi-DE-CadherinGFP embryo (Movie S1).
doi:10.1371/journal.pone.0027159.g001

Modulation of Cell Adhesion during Morphogenesis
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that impinge into the epidermis tension and adhesion systems. The

binding of DCAD2 to the AS and DME cells mainly, could be due

to an inability of the antibodies to access epitopes on the surface of

lateral epidermal cells. However, under the same experimental

conditions, antibodies against the extracellular domain of Notch

(Figure 2E, E9,E0), bind homogeneously to all the epidermal cells.

Interestingly, in the DME cells, the borders that face lateral cells

have less DCAD2 labelling than the others, and we observe a

Figure 2. In vivo antibody binding to native DE-Cadherin reveals patterned access to DE-Cadherin in the cell surface. (A) Cartoon
depicting the two tissues analyzed in the assays, the AS (green) and the epidermis (EP), which comprises the DME (orange), and the lateral epidermis
(yellow). (B–I) Pulse-chase assay in Ubi-DE-Cadherin-GFP embryos using DCAD2 and Notch-extra antibodies. Yellow arrows highlight the binding of
DCAD2 and Notch-extra antibody along the D/V contact of DME cells.
doi:10.1371/journal.pone.0027159.g002

Modulation of Cell Adhesion during Morphogenesis
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gradient of label along the D/V border (Figure 2D9 inset yellow

arrows). In contrast, Notch antibodies bound homogeneously

along the borders of all epidermal cells (Fig 2E9 inset yellow

arrows). After 10 minutes of chase the pattern of DCAD2 binding

was preserved and vesicles positive for DCAD2 and DE-

CadherinGFP could be detected inside DCAD2 labelled cells

(Figure 2G,G9,H,H9), which indicates that the pool of DE-

Cadherin recognized by DCAD2 is dynamic. Vesicles containing

Notch were observed in all epidermal cells at the same chase time,

showing that both proteins are endocytosed in less then

10 minutes (Figure 2I,I0). Nevertheless, after 30 minutes of chase

at room temperature, differences in the localization at the

membrane of both proteins were accentuated. Even though both

proteins seem to be equally abundant inside the cell, the majority

of Notch protein detected by the antibody is cleared from the

membrane over time, which contrasts with DE-Cadherin detected

by the antibody, which stays at the membrane even with longer

chases, indicating that both proteins have different turnovers at the

cell surface (Figure S2C9,C0,D9,D0,I). These differences probably

reflect their different functions. DE-Cadherin mediates cell-cell

adhesion and Notch is a signalling molecule which undergoes

endocytosis as part of its signalling activity [30,31]. In agreement

with this, after 1 hour chase, labelled Notch was undetectable

(Figure S2H9,H0) but DCAD2 antibody was still detected at the

membrane or in large vesicles, especially at the cell basal region

(Figure S2G9,G0).

It has been reported that crosslinking of cell surface proteins by

antibodies might trigger endocytosis [29]. While this remains a

possibility, pulse-chase assays performed with Dextran revealed

that DE-Cadherin is endocytosed in the epidermis and AS with

Figure 3. Antibodies against different epitopes of DE-Cadherin bind differently along the epidermis. (A,A9) Hand-devitellinized embryos
fixed and then incubated with DCAD2 at 09 chase. (B) Structure of Drosophila E-Cadherin depicting the epitopes recognized by the antibodies used in
this study [41,42,43]. (C–F) Confocal z-projections of Ubi-DE-CadherinGFP embryos pulsed with DCAD2, DCAD1, d300 and DE-cad 1-1140 antibodies,
fixed without chase. (G) Summary of anti-DE-Cadherin antibodies binding patterns in AS and epidermal cells. (H) Current models for interactions
between Cadherins (C, adapted from Leckband and Prakasam, 2006).
doi:10.1371/journal.pone.0027159.g003
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Dextran (not shown), suggesting that an important fraction of what

we observe is related to DE-Cadherin endocytosis.

It is noteworthy that the differential binding of DCAD2 to

epidermal cells was also observed in wild-type embryos (Figure

S3E-G9) and thus it is not a consequence of the expression of DE-

CadherinGFP with the wild-type protein. The pattern has been

seen in wild-type embryos in 76.4% 6 16.3 of the embryos at 09

chase (n = 67 embryos from 5 independent experiments) and in

ubi-DE-CadherinGFP embryos 73.2% 6 19.9 (n = 56 embryos

from 8 independent experiments). The dynamics of this pattern

could not be investigated in later embryos because cuticle

secretion, which begins at stage 15, interferes with antibody

binding.

Antibodies against different epitopes of DE-Cadherin
bind differently along the epidermis

In contrast with the standard immunostaining protocols, which

result in a homogeneous binding of DCAD2 to the epidermis, we

incubate the embryos with the antibodies before fixation, which

results in a patterned DCAD2 labelling of the epidermis. In fact,

fixation after hand-devitellinization but before antibody incuba-

tion also disrupts the pattern (Figure 3A,A9). Formaldehyde, which

was used to fix the embryos, crosslinks proteins during the process

of fixation, that can lead to artefacts such as chemical modification

of proteins, which then can affect the interaction of the antibody

with the antigen [32]. Therefore, the pattern observed with

DCAD2 could be associated with a particular epitope or form of

DE-Cadherin that is disrupted upon fixation.

To investigate whether there are differences in the extracellular

domain of native DE-Cadherin along the epidermis we used the

same assay with antibodies against different regions of the DE-

Cadherin extracellular domain (Figure 3B). Another monoclonal

antibody, DCAD1, bound to the AS, DME cells and more ventral

epidermal cells (Figure 3C,C9). The DCAD1 antibodies also

recognized patches of the lateral epidermis. The polyclonal

antibody d300 bound to all the epidermal cells, but with different

affinities across the epidermis (Figure 3E,E9); the lateral epidermis,

which was not labelled with DCAD2, was weakly labelled by d300.

On the other extreme, a polyclonal antibody generated against the

entire extracellular domain of DE-Cadherin, DE-cad 1–1140,

labelled all epidermal cells homogeneously, though with a lower

affinity when compared with the other antibodies against DE-

Cadherin (Figure 3F,F9).

These results indicate the existence of a spatial pattern of

accessibility to the extracellular domain of DE-Cadherin in the

epidermis at stages 13–15 (Figure 3G). These differences could

result from different DE-Cadherin homophilic binding states, from

different organization of DE-Cadherin at the cell surface or

binding to other proteins at the cell surface.

We do not present direct data showing that these antibodies

recognize different DE-Cadherin forms, nevertheless there are

examples of antibodies that bind to different conformations of

molecules involved in adhesion [33,34,35]. Furthermore, there is

evidence for different configurations of Cadherin at the cell surface

(Figure 3H) [1,36,37]. During the establishment of Cadherin

mediated adhesion, dimerization of Cadherin molecules precedes

trans interactions, but the lateral dimers can dissociate to form

adhesive trans-homophilic bonds or remain dimerized in the trans

interactions. Initially, N-terminal domain interactions are thought

to have an important role in adhesion and binding selectivity in

the trans interactions. However, these adhesive complexes can

progress to associations involving further ectodomains that

strengthens the adhesive bonds [36]. Since our results suggest

that different regions of the extracellular domain of DE-Cadherin

are more exposed in certain regions of the epidermis, we propose

that the different antibodies recognize DE-Cadherins engaged in

binding that involves a different number of extracellular domains.

This also agrees with the existence of different pools of Cadherin

with different adhesive properties as shown in the Drosophila

epidermis [38].

Genetic reduction of DE-Cadherin increases DCAD2
binding to epidermal cells

The observed surface pattern of DCAD2 binding correlates

with different cell behaviours during DC [18]. To experimentally

assess the functional role of the observed DCAD2 pattern along

the epidermis, we performed the same assay in shgR64 zygotic

mutant embryos, which only have the maternal contribution of

DE-Cadherin [18]. We reasoned that if the differences observed

Figure 4. Genetic Reduction of DE-Cadherin increases DCAD2
binding to epidermal cells. Projection of confocal z-sections of wild-
type (A, C, E) and shgR64 homozygous mutant (B, D, F) embryos pulsed
with DCAD2 at 09 chase. ShgR64 homozygous mutant embryos result
from a cross between shgR64,enGal4 and shgR64,UASactinGFP, therefore
a stronger staining on the engrailed domain is detected in F. (G)
Contingency table with the number of embryos exhibiting DCAD2
labelling pattern in wild-type embryos and shgR64, UASactinGFP/shgR64,
enGal4 embryos. The x2-test revealed that the differences between
wild-type and mutant embryos are extremely statistically significant
(p,0.0001).
doi:10.1371/journal.pone.0027159.g004
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were linked to differential engagement in adhesion, altering the

levels of Cadherin would alter this balance and therefore the

pattern.

Cad-intra antibody (Figure 4 A,E) shows that the levels of

Cadherin in wild-type are homogeneous along the epidermis but

DE-Cadherin is detected differently on the extracellular domain

by DCAD2 (Figure 4C). In the shgR64 mutant, Cad-intra antibody

clearly shows that the total levels of DE-Cadherin are lower than

in wild-type (Figure 4B,F), which explains why DCAD2 antibody

labelling is weak in the epidermis (Figure 4D). Interestingly, in

shgR64 mutant embryos DCAD2 antibody binds to DE-Cadherin

in all epidermal cells (Figure 4D). We quantified the number

of embryos exhibiting the DCAD2 labelling pattern in wild-type

embryos and shgR64, UASactinGFP/shgR64, enGal4 embryos, applied

the x2-test and found that the differences between wild-type and

mutant embryos are statistically highly significant (p,0.0001;

Figure 4G). In this attempt to manipulate the adhesive strength,

lowering the amount of DE-Cadherin levels in the embryo could

have led to epitope exposure and higher antibody accessibility,

nevertheless when we tried an antibody against FasII, a com-

ponent of the Septate Junctions that lies below the AJs, the binding

was homogeneous (not shown), suggesting that the different

binding of DCAD2 in wild-type or in the shgR64 mutants is not

result of different accessibility of the antibody to the protein

epitope.

Our interpretation for the homogeneous binding of DCAD2 to

all epidermal cells in the shgR64 mutants is that in the mutant all

DE-Cadherin is engaged in strong homophilic adhesion, to

compensate for DE-Cadherin reduced levels and to avoid

epidermal cells from falling apart. Accordingly with this

consideration DCAD2-labelled-DE-Cadherin would be engaged

in stronger adhesion. Although, there is no direct data that shows

whether the differences in antibody binding reflect strong

Cadherin-Cadherin interactions or weak Cadherin-Cadherin

interactions, the results obtained in shgR64 mutant suggest that

DE-Cadherin exists in different forms that confer different

adhesive strengths during DC in the Drosophila embryo.

Downregulation of Cadherin mediated adhesion and changes of

adhesive activity with no detectable changes in the levels of

Cadherin were observed during Xenopus laevis development.

Importantly, this change in Cadherin activity also altered the

binding of antibodies to native Cadherin [39,40]. Our results

suggest that these adhesive Cadherin properties are conserved and

provide direct evidence for the first time for a spatial cellular

organization of Cadherin during a morphogenetic process. The

pattern observed along the epidermis correlates with differential

cell behaviour during DC. The DME cells are attached to the AS,

remain tightly bound to each other and bear most of the

mechanical stress of the process (Figure 5A). Therefore, they have

strong staining, the stronger the closer to the LE. The lateral

epidermal cells, that undergo continuous cell rearrangement and

might be in a more fluid phase, show less staining than DME cells

and the AS (Figure 5B). Moreover, the binding of DCAD2 to the

AS is similar to the DME cells and cell intercalation has not been

observed in the AS [17]. Finally, DE-Cadherin level reduction

results in a more homogeneous binding and we suggest that in this

situation the little DE-Cadherin available is engaged in stronger

adhesion. This would implicate that in wild-type DE-Cadherin

molecules in the lateral epidermis, that are not recognized by

DCAD2, are engaged in weaker adhesion. Altogether, our results

suggest that structural differences in the extracellular domain of

Cadherin can mediate differential cell adhesion during develop-

ment, allowing distinct cell behaviour required for morphogenesis.

Supporting Information

Figure S1 Validation of the live pulse-chase assay in
embryos. Pulse-chase assays with 09 chase (first raw) and 309

chase (second raw) were performed with antibodies against the

extracellular domain of DE-Cadherin (A,B), the intracellular

domain of Notch (A9,B9) and Scribble, an intracellular protein

(A0,B0). Arrowheads show intracellular puncta positive for

DCAD2 that result from endocytosis occurred during the 309 of

chase (B). The intracellular antibodies (against Notch-intra and

Scribble) were not able to access the interior of the cell. In the

third raw, embryos were fixed and permeabilized before

incubation with the referred antibodies; under these conditions

the antibodies against intracellular epitopes in Notch (C9) and

Scribble (C0), can bind and reveal patterns of expression. Confocal

sections from the z-stack projected in B (5 mm along the z-axis).

(TIF)

Figure S2 Pulse-chase assay in ubi-DE-CadherinGFP
embryos with DCAD2 and Notch-extra antibodies. Pulse-

chase assay of DE-Cadherin and Notch in ubi-DE-CadherinGFP

embryos with DCAD2 and Notch-extra antibodies. After 309 of

chase at RT the DCAD2 pattern is still maintained (C, C9), but

Notch levels continue to decrease in the cell membrane of the AS

and epidermis (D, D9). The vesicles of Notch tend to be bigger and

more basal (D9,D0). With 1 hour of chase at RT, DCAD2 is still

present at the membrane of AS and DME cells and also in large

cytoplasmic vesicles (G,G9,G0). Notch is cleared from the

membrane and the number and size of vesicles is greatly reduced

Figure 5. Forces driving DC. AS contraction, actin purse string and zippering contribute positively to closure, in contrast to the resistive force
exerted by the epidermis . Model of regional differences in adhesion along the epidermis.
doi:10.1371/journal.pone.0027159.g005
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(H,H9,H0). (I) Quantitative comparison of DCAD2 and Notch

labelling at the cell membrane of LE cells over time. A significant

difference occurs in Notch between 09 chase and 109 chase

(p,0.01, n09 = 30 and n109 = 30) and 09 chase and 309 chase

(p,0.01, n09 = 30 and n309 = 20) but not in DCAD2 (error bars

show the SD).

(TIF)

Figure S3 DCAD2 pattern is also observed in wild-type
Drosophila embryos. Using the standard staining protocol for

Drosophila embryos, in which fixation and permeabilization

precedes antibody incubation, DCAD2 binds homogeneously to

the epidermis and AS, regardless of the DC stage (A–D9). The

pattern of DCAD2 observed in ubi-DE-CadherinGFP expressing

embryos is also observed in wild-type embryos at different time

points of the pulse-chase (E9, F9,G9).

(TIF)

Movie S1 Time-lapse of a hand-devitellinized Ubi-DE-
CadherinGFP embryo.

(AVI)
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