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In brief

This study presents a learning-based

method for evaluating data quality

tailored to AI applications, underlining the

critical role of data value in boosting big-

data performance. This approach can

enhance model efficiency, data usage,

and governance. This work seeks to

reconcile data quality with its practical

applications, offering a streamlined path

from data valuation to application in data-

driven fields.
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THEBIGGERPICTURE In the era of big data, the surge in volume ismatched by the challenges of data qual-
ity, which resonates across all domains of data-driven and artificial-intelligence-related technologies. This
research proposes a method to navigate these challenges by introducing a paradigm based on deep rein-
forcement learning, capable of discerning value in data across varied contexts. By enabling the strategic
selection of optimal data samples, we envision a future where analytics are not just smarter but also
more adaptable, allowing decision makers to harness the full potential of their data assets. The implications
of this work extend beyond technical realms, offering insights that could shape policies and provide fresh
perspectives in data-driven industries.
SUMMARY
Artificial intelligence has substantially improved the efficiency of data utilization across various sectors. How-
ever, the insufficient filtering of low-quality data poses challenges to uncertaintymanagement, threatening sys-
tem stability. In this study, we introduce a data-valuation approach employing deep reinforcement learning to
elucidate the value patterns in data-driven tasks. By strategically optimizing with iterative sampling and feed-
back, our method is effective in diverse scenarios and consistently outperforms the classic methods in both
accuracy and efficiency. In China’s wind-power prediction, excluding 25% of the overall dataset deemed
low-value led to a 10.5% improvement in accuracy. Utilizing just 42.8% of the dataset, the model discerned
80% of linear patterns, showcasing the data’s intrinsic and transferable value. A nationwide analysis identified
a data-value-sensitive geographic belt across 10 provinces, leading to robust policy recommendations
informed by variances in power outputs and data values, as well as geographic climate factors.
INTRODUCTION

Artificial intelligence (AI) technologies have revolutionized the uti-

lization of data for constructing machine-learning models,

thereby empowering and optimizing real-world research anal-

ysis and production processes, leading to tangible benefits.1–4

For example, in the low-carbon energy revolution, the integration

of digital technologies links the production, transmission, con-

sumption, and storage of renewable energy with data and con-

trol systems, building the basic support of the modern energy in-

dustry.5–7 However, the sheer volume and diversity of data not

only lead to an abundance of low-quality data with escalating

processing and storage costs but also pose challenges in

training efficiency due to the variable significance of data in AI-

based modeling. The existence of low-quality data causes

models to learn complex and irrelevant numerical rules. This
This is an open access article under the CC BY-NC-ND
causes a decrease in the accuracy and the efficiency of these

methods in the absence of data screening.8–11 The instability in

data quality resulting from the drastic and unpredictable nature

of natural climatic conditions poses challenges in comprehend-

ing renewable-energy patterns. This instability jeopardizes the

safety and the reliability of power systems.12–14 By discerning

the varying contributions of data of different qualities to practical

scenarios, informed decisions can be made regarding the reten-

tion or elimination of data based on their quality. This strategic

approach to extracting and utilizing ‘‘smart data’’—the data

that are most relevant and beneficial for specific tasks—en-

hances the refinement of data-driven models while simulta-

neously maximizing the overall value of the data.15,16 The criteria

for data screening vary significantly depending on the specific

application of the data. This variability highlights the urgent

need for a flexible, comprehensive data-valuation paradigm.
Patterns 5, 100965, May 10, 2024 ª 2024 The Author(s). 1
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Such a paradigm is essential for advancing data-drivenmodeling

across diverse scenarios.

However, the research on data-value assessment is currently

limited. Most existing approaches for evaluating dataset quality

lack unified quantitativemeasurements and supervisionmethods

that incorporate actual scenario model outputs.17,18 Moreover,

these approaches do not reliably benchmark the practical usage

of data. While some statistical filtering algorithms effectively

denoise datasets by identifying outliers, thus improving the distri-

bution for enhanced model generalization,19 these binary classi-

fications fall short in differentiating the nuances of various data

points for precise dataset adjustments. More crucially, such

methods overlook the influence of usage scenarios on data-value

judgment, such as the contribution of outliers to model robust-

ness in extreme-event models. Scholars use the Shannon en-

tropy and the non-noise ratio to describe data quality20 and to

explain the value of data through the reduction in uncertainty21

on renewable energy. However, neither metric is used to explain

value creation at the data level. From this standpoint, while the

leave-one-out (LOO) method effectively evaluates the marginal

utility of an individual data point against the whole dataset, its

ability to extend this evaluation to the cumulative value of data

is limited, which restricts its use in broader big-data analysis.

Considering the complex interrelations among data points,

some scholars liken them to players in cooperative games by

applying game-theoretical metrics such as the Shapley value.22

However, despite machine-learning enhancements for the

algorithm,23 the applicability of the Shapley value to large-scale

data and complex models remains limited. Furthermore, these

methods often exhibit biases in selecting data subsets that maxi-

mize value, a limitation stemming from the averaging calculations

they rely on. Some scholars have advanced the algorithms by

integrating meta-learning and deep-learning principles,24 primar-

ily in homogeneous data structures such as label diagnosis

and image recognition, where valuation involves discrete, regular

samples.25 However, in fields such as renewable energy, which

are characterized by time-series data, the continuous, intermit-

tent, and complex nature of these datasets necessitates a valua-

tion approach that is simultaneously flexible and specialized.26 A

general valuation approach should be adaptable and robust to

address the potential uncertainties and the instabilities in prac-

tical data usage and should be effectively tailored to meet the

unique challenges of each specific domain. Furthermore, the

role of data valuation extends beyond conventional applications,

especially in scenarios with varied objectives. For instance, in

real-world analytics, data are crucial for guiding optimal decision

making. This drives the need for algorithms that are compatible

with a broader spectrum of value representations that go beyond

simple predictions.27,28 This necessity highlights the importance

of developing a comprehensive and efficient framework for

data valuation that can address themultifaceted and intricate na-

ture of data-value assessment across diverse contexts.

In this research, we establish an effective data-valuation para-

digm suitable for a broad spectrum of data-driven scenarios.

Within this framework, the values derived from continuously

sampled data subsets are interpreted as feedback signals, pro-

gressively revealing the intrinsic patterns that determine the

value of the data. By applying our methodology to various

data-driven contexts—including tasks such as adult income
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classification, forest fire and obesity regression, and heart failure

clustering—we validate the efficacy of our algorithm and demon-

strate its adaptability across various data types, models, and

performance metrics. These metrics include the accuracy,

mean absolute error (MAE), mean squared error (MSE), and

sum of distances to cluster centers (distance), which gauges da-

taset dispersion. Our numerical results indicate that this

learning-based approach significantly outperforms traditional

methods such as the LOO method and the Shapley value in

terms of both data-value calculation efficacy and operational

speed. We further apply our framework to the analysis of wind-

power data in China, highlighting its practical utility in renew-

able-energy prediction scenarios. This application not only

demonstrates the effectiveness of the method but also aids in

uncovering data patterns that can inform policy recommenda-

tions. The findings of this study are particularly noteworthy for

the exceptional precision in handling uncertainty across diverse

datasets. The results of this study demonstrate the inherent and

transferable nature of data-value patterns, with a special focus

on the geographic variations in data-value sensitivity across Chi-

nese provinces. These insights, supported by an integration of

power-based and geographic knowledge, provide a foundation

for informed, data-driven regulation recommendations.

RESULT

Learning-based data valuation
In this section, we explore a learning-based approach to data

valuation by using a deep neural network. The network functions

as a value learner, processing individual data features to esti-

mate their respective values. This method utilizes the ability of

deep learning to discern intricate patterns within the dataset,

facilitating precise data-value estimations. The primary goal is

to identify a data subset that optimizes the utility, a measure,

derived from the dataset, of the performance of the data-based

task. The value of each data point is quantified by its probability

of inclusion in this optimal subset, with values near 1 indicating a

greater likelihood of selection due to their substantial impact on

utility enhancement.

Figure 1 illustrates the iterative training of the value learner,

beginning with an equalized value distribution across the data,

represented as a random ranking. This iterative process in-

volves repeatedly sampling data subsets based on their cur-

rent value estimations within each cycle. This method not

only augments the stability of the learning process but also op-

timizes the efficiency of sample utilization. During each itera-

tion, the utility of the selected subsets is assessed in the

context of a specific data-driven task. This assessment yields

either positive or negative feedback. This feedback is used to

adjust the data-valuation strategy, ultimately guiding the

learner to prioritize data subsets with maximal utility potential

and to devalue fewer contributive points. In summary, the

training process enables the learner to gradually master the

strategy of selecting the subset with the highest utility, thereby

enhancing model performance and the decision-making capa-

bilities in terms of data valuation.

In practical scenarios, especially in complex fields such as

wind-power prediction, data-value expression often tran-

scends binary categorizations (merely 1s and 0s) due to
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Figure 1. LDV paradigm

This figure illustrates our approach, where we use

the term "data-based tasks" to emphasize the

incorporation of various valuation metrics appli-

cable in data-driven contexts. For simplicity in this

visualization, we assume that the data elements

contribute independently to the task. Here, circles

and crosses symbolize positive and negative con-

tributions, respectively. Plus and minus signs indi-

cate the impact of sampled subsets on the value

performance of the task, either enhancing or di-

minishing the learner’s perceived value for these

combinations. The blue bars graphically represent

the data-value outputs assigned by the trained

learner to each data point in their respective posi-

tions. An asterisk symbolizes the optimal learner

state achieved post training. The green box depicts

the final application phase, where the optimized

learner is operationalized. Let us note, however, that

real-world scenarios may present more intricate

interdependencies among data, leading to a more

complex distribution of data values than is de-

picted here.
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intricate interrelations such as substitution and complemen-

tarity effects among data points. Consequently, data values

can manifest as continuous variables that represent the prob-

ability of their inclusion in the optimal subset rather than as

discrete entities. This continuous nature reflects a nuanced

understanding of data value, allowing the data-value learner

to generate a distinctive value distribution. This perspective

accurately captures the subtleties and complexities inherent

in real-world data relationships.

The cornerstone of this learning-based approach is utility

feedback obtained from the data subsets. Its general applica-

bility across various data-driven contexts is attributed to the

focus on utility estimation. This data-valuation approach neces-

sitates mapping only between data subsets and their utility

values, regardless of task complexity or utility metrics. However,

a challenge arises due to the absence of gradient information

when discretizing the continuous value output of the data learner

for the subset in the sampling mechanism. This issue blocks the

training process of the neural network, particularly during back-

propagation. To overcome this hurdle and to ensure theoretical

robustness, the model employs a policy gradient algorithm

within a deep reinforcement-learning framework.29 This strategy

redefines the learner’s objective as an optimization within the

context of reinforcement learning. The algorithm plays a crucial

role in making the neural network trainable while expediting the

adaptation and refinement of the data-value strategy. To further

enhance the training process, techniques such as importance

sampling and clipping functions30–33 are implemented. These

methods are instrumental in promoting algorithm convergence

and stability, thereby significantly improving the reliability and

the effectiveness of the data-valuation model.
Experiments for various data-
driven tasks
To evaluate the adaptability and the effec-

tiveness of our learning-based data-valua-

tion (LDV) algorithm, we conducted exper-
iments across four distinct datasets from various disciplines,

namely the social, natural, life, and medical sciences. These da-

tasets, which are critical to a range of practical tasks, include

adult income level classification by using census features,34 for-

est fire size prediction with meteorological and geographic

data,35 obesity-level estimation based on dietary habits and

physical conditions,36 and clustering analysis of clinical features

in heart-failure patients.37 For these diverse tasks, we selected

appropriate machine-learning methods and assessment met-

rics, as detailed in Table 1. Our comparative analysis focused

primarily on the LOO and Shapley value (SV) methods; we eval-

uated their performance and computational efficiency.

The precision of the data valuation for each method was as-

sessed by sorting and excluding a predefined fraction of the

data based on their calculated values. This was followed by re-

assessing the utility of the remaining subset. Specifically, we

removed the data in both ascending and descending order of

value ranking and re-evaluated the model performance with

the condensed dataset. Optimal valuation significantly enhances

the final value by accurately identifying and removing low-value

data, while the elimination of high-value points leads to amarked

decrease in value. This indicates the precise representation of

essential data features.

In Table 1, biases in data-value calculations when using LOO

and SV are identified; these biases affect the performance in

certain tasks. For instance, SV fails to reduce the MSE in the

obesity dataset, while LOO fails to increase accuracy in census

classification. In contrast, LDV consistently yields significant im-

provements across datasets, tasks, and valuation methods, out-

performing LOO and SV. These improvements are substantial,

with LDV performing 6.76 times better than LOO does in the
Patterns 5, 100965, May 10, 2024 3



Table 1. Performance comparison under various datasets, models, and value metrics

Subject

Task

Model

Metric Method Promotion (within 40% removal) Declination (within 40% removal) Running time (s)

Adult census classification LOO – �8.5% 22

XGB SV +0.5% �11.5% 126

accuracy LDV +1.1%*1 �15.4%* 104

Forest fire regression LOO +0.025 �0.056 5

SVR SV +0.089 �0.053 562

MAE reduction LDV +0.169* �0.105* 103

Obesity regression LOO +0.021 �0.388 102

LGBM SV – �0.487 2,448

MSE reduction LDV +0.031* �0.611* 387

Heart failure cluster LOO +0.068 – 2

K-means SV +0.070 �0.009 320

distance reduction LDV +0.264* �0.013* 52
1Note: An asterisk (*) indicates the method that achieved the best performance.
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forest fire dataset and 3.77 times better than SV does in the

heart-failure dataset. This remarkable improvement is also

evident in the decrease in themetrics upon removal of high-value

data, where the LDV surpasses the LOO and SV algorithms in

terms of performance. For instance, in the census dataset, the

LDV outperforms the LOO by 6.9% and the SV by 3.9%.

Regarding computational efficiency, LOO has a shorter

execution time due to its deterministic and straightforward

calculation process, albeit at the cost of valuation precision.

Despite using Monte Carlo methods to expedite SV computa-

tions, achieving accurate data-valuation convergence remains

time intensive. Conversely, LDV rapidly achieves optimal data

valuations through a reinforcement-learning framework, effec-

tively combining exploration and greedy strategies in agent

network training. As tasks and metrics grow more complex,

the time advantage of the LDV becomes more pronounced.

For instance, in regression problems, the SV execution times

are 5.46 and 6.33 times longer, respectively. In clustering tasks

with flexible utility definitions, LDV requires only 0.16 times the

time taken by SV. Although LDV has a longer runtime than LOO

does, its computational cost is reasonable; this is especially

true when considering its superior accuracy in data valuation

compared to that of the former.

In Figure 2, metric inversion is applied to the vertical axis to

effectively align the trend curves. For the LDV classification (Fig-

ure 2A) and regression tasks (Figures 2B and 2C), we observed

a notable rebound effect. Initially, removing low-value data con-

taining redundant information enhances model performance;

this enhancement demonstrates efficient data governance. How-

ever, as progressively more data are eliminated and the value of

the removed data increases, crucial feature data starts being

excluded. This results in a subsequent performance decline,

underscoring the necessity of maintaining a diverse dataset for

unbiased training and optimal utility in test environments.

In clustering tasks (Figure 2D), the pattern deviates due to

the unsupervised nature of these tasks. Clustering lacks the

stringent requirement for specific feature data essential for

performance validation in supervised tasks. Therefore, no
4 Patterns 5, 100965, May 10, 2024
comparable rebound phenomenon is observed. The LDV

algorithm effectively identifies and removes isolated data

points. This process accelerates the formation of clustering

centers. In contrast, LOO and SV are slower at recognizing

data contributions in clustering tasks, resulting in a more

gradual formation of cluster centers. This distinction under-

scores the adaptability and the effectiveness of LDV in ad-

dressing the distinct requirements of both supervised and

unsupervised learning environments. Furthermore, these as-

pects of the model help to elucidate the governing principles

of data value from two distinct perspectives, enhancing our

understanding of the intricate role of data across various ma-

chine-learning contexts.

In Figures 2A, 2B, and 2C, the removal of high-value data in the

LDV exhibits a consistent pattern: as more data are excluded,

the inverse value metric correspondingly increases. Over the

long term, LDV shows a faster and more stable rate of increase

in inverse value than do other methods, highlighting the direct

impact of removing high-value data on the utility and efficacy

of the model training for the dataset. The removal process, start-

ing with the most critical features, leads to a direct and steady

decline in performance. This downward trajectory persists

even as the value of the removed data decreases, indicating

that the training of the model deteriorates continuously with

decreasing data, regardless of the diminishing value of the

data being excluded.

In Figure 2D, the ability of LDV to maintain the discreteness of

data points notably surpasses that of the other methods, illus-

trating the effectiveness of our data-valuation framework. Overall,

beyond the exemplary performance of LDVs in data-removal ex-

periments, the data-value patterns theoretically alignwith the prin-

ciples of machine learning. This alignment is significant because it

demonstrates the robust understanding and effectiveness of LDV

in terms of data valuation. In contrast to the unstable data-value

expression observed in LOO and SV, the LDV approach more

accurately reflects our expectations of data-value patterns, af-

firming its superior performance in both comprehension and prac-

tical application within data-driven models.
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Figure 2. Comparative trends in high/low data removal across different methods

(A–D) This figure encapsulates the results from experiments conducted when using the leave-one-out (LOO) method, the Shapley value (SV), and the learning-

based data-valuation (LDV) approach across four distinct datasets: (A) adult census, (B) forest fire, (C) obesity, and (D) heart failure. Each subgraph includes two

representations of high/low-value removal. The depicted curves represent the mean values; the shaded areas around these curves indicate confidence intervals.

(E) The runtime ratio of various methods with runtime for the SV as the baseline = 1.
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Applicability in wind power prediction
Wind power, heralded as a key player in the global energy shift,

is at the forefront due to its sustainability, affordability, and

abundant nature.38,39 Acknowledging the inherent volatility

and unpredictability of wind-energy generation, we applied pre-

dictive modeling as the data utilization case, and we selected

accuracy as a metric for data-value assessment. Accurate

wind-power forecasting mitigates uncertainty and facilitates

optimized energy dispatch; this approach can yield substantial

savings, thus augmenting the efficiency of electricity mar-

kets.40,41 Consequently, the application of data-valuation meth-

odologies is imperative for enhancing forecast precision by

leveraging reliable datasets with informative, high-quality data

points.42–44

Our predictive model inputs include wind-power data from the

preceding 48 h coupled with daily and hourly meteorological

information to forecast subsequent 24-h power generation. We

adopted the mean absolute percentage error (MAPE) as a

reverse metric to gauge the utility of the prediction model trained

on various data subsets. In this section, we focus on data-valu-

ation experiments utilizing wind-power data from Sichuan (SC)
Province, which is renowned for its significant power generation

and demand.

Figure 3A exhibits a data-value pattern consistent with earlier

experiments, with the removal of high-value data correlating to a

pronounced increase in the wind-power prediction error. Elimi-

nating 40% of the high-value data inflates the median MAPE

by 25.8%. Conversely, discarding low-value data reduces the

MAPE, peaking at a 4.5% decrease with 25% data removal,

equivalent to a 10.5% relative change. This finding suggests

that excising superfluous data may indeed bolster the accuracy

of renewable-energy forecasts. However, the subsequent

rebound in the MAPE above the 25% removal threshold under-

scores the risk of depleting the training sample to a detrimental

level; this depletion can undermine model training efficacy.

Figure 3B illustrates the impact of excising 20% of the valued

data on the prediction error across a 24-h forecast period. The

baseline error trajectory, derived from training with the complete

dataset, pinpoints the primary forecasting challenges as occur-

ring beyond the 10-h mark, where the temporal inertia of the po-

wer-generation time series starts to wane. The removal of 20%

of the low-value data leads to a tangible reduction in prediction
Patterns 5, 100965, May 10, 2024 5



A B Figure 3. Value characteristics of wind-po-

wer data in SC

(A) The red and blue boxplots show the MAPE

variation from removing the highest- and lowest-

value data, respectively, with the median marked by

the bold line.

(B) The error trends on the first and last days of the

last 2 months from the test set (11.1 and 12.31)

illustrate that the absolute prediction error changes

when 20% of the highest-value (gray) and lowest-

value (green) data are removed compared to that of

the full dataset (orange).
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error after 10 h, whereas the excision of an equal proportion of

high-value data markedly exacerbates the error. Thus, the stra-

tegic value of wind-power data is demonstrated by their ability

to confine prediction errors, particularly beyond the critical

10-h threshold. By eliminating low-value data, we reduce noise

and enhance the training process of the model. In contrast,

removing high-value data impairs the predictive performance

of the model by eliminating essential training data. This delinea-

tion of results validates the practical application and robustness

of our data-valuation methodology in wind-power forecasting,

especially from an hourly perspective.

Intrinsicality and transferability in subset valuation
In this study, we investigated value patterns within wind-energy

data subsets and their learning performance in terms of value.

We split the initial 42.8% of the training set and the remaining

portion into two datasets, named alpha and beta. Then, we

trained two different learners: (1) by using both alpha and beta,
Figure 4. Data-value patterns between subsets

The graph illustrates the correlation in data values as assessed by learner i

(trained on the alpha dataset and beta dataset) and learner ii (trained only on

the alpha dataset), where red represents data points in (A) alpha and blue

represents (B) beta. R-squared values are presented to quantify the linear

correlation after fitting a linear regression model with ordinary least squares.
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and (2) by using only alpha. These learners

were then tasked with evaluating both da-

tasets. The learner trained on both data-

sets serves as the optimal benchmark

and possesses comprehensive training in-

formation. We compared its data-value
output with that of the learner trained solely on alpha, assessing

consistency across both the trained (alpha) and untrained (beta)

datasets.

Figure 4 reveals a significant correlation in the data-value out-

puts between the learners. An R2 value of 0:81 for alpha reflects

the stability and intrinsic robustness of our learning module

within wind-energy scenarios. These facts indicate reliable value

generalization for the same dataset under varying training condi-

tions. Moreover, an R2 value of 0:76 for beta highlights the

learner’s strong generalizability with evidence for the transfer-

ability of known value patterns to similar but previously unseen

datasets.

The implications of such robustness and generalizability are

2-fold. First, consistent value patterns observed across different

training regimens underscore a stable, intrinsic link between

wind-power data and their value. This consistency reinforces

the importance and necessity of our research into data valuation

in the wind-energy domain. Second, the ability to accurately pre-

dict the value of new, untrained data demonstrates the transfer-

ability of value patterns. Given the extensive computational re-

sources typically required for processing large volumes of

wind-power data, the ability to generalize and to transfer learning

efficiently is pivotal; these abilities potentially reduce the compu-

tational burden associated with extensive training.

Geographic value patterns in China’s wind power
prediction
In our study, we extend the data-valuation methodology nation-

ally to discern patterns across 25 Chinese provinces. Employing

consistent data-value calculations, we integrate the effects of

high/low-value data removal into Figure 5, utilizing the province

abbreviations listed in Table S1.

The data-value behavior across most Chinese provinces ex-

hibits a consistent pattern. In general, the MAPE decreases

initially then increases with the sequential removal of low-value

data, while the removal of high-value data leads to a steady in-

crease in theMAPE. This trend is exemplified by Jilin (JL) andHe-

bei (HE), which exhibit curve patterns similar to those of SC. In

addition, the varied geographic and climatic conditions across



Figure 5. Data-value effects on wind-power

prediction across 25 provinces in China

Prediction performance across 25 provinces rela-

tive to the removal of high-value (red) and low-value

(blue) data. The vertical axis shows the MAPE; the

horizontal axis represents the percentage of data

removed.
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China indicate that a low data value does not necessarily equate

tomodel interference, as observed in provinces such asHeilong-

jiang (HL) and Guangdong (GD), where removing low-value data

does not substantially decrease the MAPE. However, the univer-

sal increase in the MAPE with the removal of high-value data

across all 25 provinces emphasizes the critical nature of certain

feature data. The marked difference in the MAPE following the

removal of equivalent amounts of high- and low-value data ac-

centuates the capacity of the algorithm to discriminate data

values. This consistency, despite China’s geographic and cli-

matic variability, attests to the adaptability and efficacy of the al-

gorithm on distributed datasets; these benefits underscore the

robustness and versatility of our approach.

The results reveal significant regional disparities in the sensi-

tivity of wind-power prediction to data valuation across Chinese

provinces, as illustrated by the extent of divergence in the curves

for low- and high-value data removal. This sensitivity highlights

the varying impacts on prediction accuracy resulting from the

elimination of equal quantities of data with differing values. Prov-

inces such as HE and Liaoning (LN) demonstrate pronounced in-

creases in the MAPE difference following data removal, in

contrast to the more subdued patterns from Xinjiang (XJ) and

Chongqing (CQ). These observed variations in data-value sensi-

tivity across provinces prompted further investigation into the

underlying patterns and reasons for these geographic patterns.

In subsequent analysis, we focus on the distributed sensitivity

of the data across provinces, with a cap of 40% on the removed

data volume. Specific removal points at 10% intervals up to 40%

provide insight into the predicted effects created by valuedwind-

power data. In Figures 6A, 6B, and 6C, color-coded deviations

indicate the impact of data valuation on the prediction perfor-

mance (MAPE) difference, with darker hues denoting greater

sensitivity. An observable pattern emerges, with darker shades

from southwest to northeast China occurring at 10% removal,
indicating a sensitive region. This sensi-

tivity becomes more defined within a nar-

rower belt at 20% removal, shifting from

northeast to southwest with increased

removal (40%).

In Figure 6D, we calculate a generalized

sensitivity index for each province by aver-

aging the effect ranging from 10% removal

to 40% removal; we identify a continuous

geographic belt of heightened sensitivity,

labeled S2 within the red boundary. This

belt segregates the provinces into three

distinct and continuous regions: S2 within

the boundary, S1 to the northwest, and

S3 to the southeast. This delineation aids

in quantifying and in understanding the
geographical distribution of data-valuation sensitivity in national

wind-power forecasting.

In our investigation of geographic patterns of data sensitivity,

we merge data valuation with energy dynamics data to elucidate

regional differences across Chinese provinces. Figure 7A dis-

plays a scatterplot distinguishing provinces by sensitivity along

two variance dimensions. A clear division among provinces in

three regions (S1, S2, S3) is visible, with the high data-value

sensitivity of S2 distinctively in the upper right. Notably, within

S2, Gansu (GS) Province connects the climatic zones of XJ

and Inner Mongolia (IM), which exhibit characteristics similar to

those of the S1 region.

Horizontally, a broader data-value variance in S2 suggests an

unstable system; moreover, the removal of extreme values

significantly affects the distribution bounds, altering the central

tendency and data spread. This phenomenon underscores

how greater value variance enhances sensitivity to data removal,

directly influencing model accuracy in predictive tasks, particu-

larly in diverse datasets such as wind-power forecasting. Verti-

cally, there is a notable difference in the wind-power variance

between the S1 and S3 regions. The power variance of S1 is

considerably greater than that of S3, with S2 falling in between.

For a detailed interpretation, Figure 7B presents the normal-

ized power output distributions for these regions. The peak po-

wer metric indicates the most prevalent normalized output level

within each region, embodying the percentile relative to the

maximum observed output.

Influenced by the subtropical monsoon climate of the south-

east plains of China, S3 has the lowest peak power at 15.43%,

which aligns with the limited wind resources and consistent

low-level outputs with low variance. Consequently, data valua-

tion has a limited role in distinguishing performance due to the

predictability of low, stable outputs. Conversely, the peak power

of 34.76% in S1 signals substantial wind-energy production
Patterns 5, 100965, May 10, 2024 7
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Figure 6. Sensitivity analysis of nationwide data values

(A–C) The sensitivity of the data valuation across provinces when (A) 10%, (B) 20%, and (C) 40% of the highest and lowest value data are removed, respectively,

with color intensity indicating the extent of MAPE variation.

(D) The overall sensitivity of each province to the data value, with the color intensity reflecting the average impact of removing 10% of the data on model per-

formance. The red line marks the region with the highest sensitivity (S2), dividing China into three zones: S1 (northwest), S2 (central belt), and S3 (southeast).
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with notable variability, influenced by its temperate continental

climate. Despite these fluctuations, the cyclical nature of the

wind patterns in S1 simplifies predictions, leading to a homoge-

nized data value and a reduced impact of data variations on

model performance.

The "data-favored" profile of S2 emerges with its 26.65%peak

power, situated between the stability of S3 and the variability of

S1. Its location, encompassing both temperate and subtropical

climates, results in a complex, less-predictable wind pattern.

This variability necessitates precise data valuation for capturing

the intricacies of wind generation, for underscoring the critical

role of high-quality data, and for removing redundant data for ac-

curate forecasting. This is particularly true for the threemost sen-

sitive provinces in S2—Yunnan (YN), LN, and JL—for which

refined data valuation is essential for enhancing model efficiency

and predictive reliability.

DISCUSSION

In this study, we present a learning-based paradigm for data

valuation, and we demonstrate significant improvements in
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model utility and efficiency across various data-driven con-

texts. By employing deep reinforcement learning in our

approach, we select the data subsets with the highest utility,

optimizing performance, as shown by comparative analyses

across diverse scientific datasets. Specifically, in wind-power

prediction, our paradigm proficiently identifies valuable data,

influencing model accuracy through the removal of data

points and demonstrating consistent data-value patterns

across regions.

Our findings reveal intrinsic and transferable data-value pat-

terns, with learners effectively capturing value characteristics

despite limited training data. This indicates the underlying nature

of the data value and the potential for computational efficiency.

Nationwide application of our algorithm has verified the pres-

ence of uniform data-value patterns across 25 Chinese prov-

inces. Nonetheless, the degree to which the predictive accu-

racies of different regions react to data removal varies

illuminates diverse spatial sensitivities to data valuation. This

analysis leads to the identification of a geographically sensitive

belt, providing a deeper understanding of the regional nuances

in the value patterns of wind-power data.



A B

Figure 7. Explanation of the data-value-sensitive geographic belt formation

(A) Scatterplot for 25 Chinese provinces displaying data-value variance on the horizontal axis and wind-power-generation variance (logarithmic) on the vertical

axis, with bubble size indicating sensitivity levels. Provinces are color coded: S1 (blue), S2 (orange), and S3 (green), demarcated by two dotted lines.

(B) Annual wind-power-generation distribution across the three regions, with power-generation percentiles on the horizontal axis and probability on the vertical

axis. Decile histograms and kernel density estimation (KDE) curves illustrate distribution disparities.
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Our data-valuation framework offers substantial contributions

to renewable-energy policy by enhancing wind-power fore-

casting and by mitigating uncertainty in energy systems. We

introduce an efficient approach for data-level governance, opti-

mizing computational resources by effectively evaluating wind-

power data quality and implementing strategic data filtering.

This approach enhances forecast accuracy, stabilizes the en-

ergy grid, and supports potential data transactions.

The framework underscores the importance of targeted data

collection and analysis, particularly in data-sensitive regions

such as the S2 area in China. Here, the removal of specific valu-

able data markedly influences the predictive performance. Prov-

inces within this belt are advised to advance their data collection

and analytical capabilities, potentially through expanded sensor

deployment and advanced processing techniques. Such mea-

sures are vital for effectively managing wind-power fluctuations

and ensuring robust, field-applicable datasets.

By utilizing data-driven insights, provinces can refine their en-

ergy management strategies. The flexibility and comprehensive

assessment of our framework can equip policy makers with

crucial tools for crafting bespoke renewable-energy policies,

thereby promoting a sustainable and economically beneficial en-

ergy ecosystem.

Future research directions can broaden the application of this

paradigm to address a range of practical decision-making chal-

lenges. This includes optimizing power dispatch in the face of

renewable-energy variability and leveraging enhanced data

analysis to improve public health outcomes. Additionally,

customizing data governance frameworks to align with specific
regional energy policies may increase the effectiveness of

data-driven decision making. Such an approach not only trans-

lates data value into tangible economic benefits but also bolsters

efforts toward sustainable development goal.

EXPERIMENTAL PROCEDURES
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Methods

LOO and SV

The LOO method is a foundational technique in data valuation. It involves as-

sessing the marginal value of an individual data point by comparing it to its

complement, as follows:

LðiÞ = VðDÞ � VðD\figÞ
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where LðiÞ is the LOO value of an individual data point i, determined by quan-

tifying the discrepancies in utility between the entire dataset VðDÞ and its com-

plement VðD\figÞ.
Stemming from efficient allocation of utility in game theory and a more

comprehensive consideration of data contributions, the data SV is defined

as follows:

QðiÞ =
X

S4D\fig

jSj!ðN � jSj � 1Þ!
N!

ðVðSW figÞ � VðSÞÞ

whereQðiÞ denotes the SV of an individual data point i, treated as a participant

in the game, is computed by taking the average of the marginal contributions

from all the other data subsets S in the entire dataset D (with N data points)

while considering the metric that defines the value based on the dataset.

Considering its exponential computational complexity, the SV calculation in

this study is approximated by using aMonte Carlo simulation with randomized

sorting.22 This method provides an efficient way to conduct an abbreviated

computation, maintaining the integrity of the conceptual framework of the

SV while addressing the computational demands.

LDV design

In our research, we introduce a data-valuation paradigm that leverages deep

reinforcement learning to optimize the utility of themodel. We denote the entire

dataset asD = fdigNi = 1� P, where di ˛Rm is an individual data point charac-

terized by an m-featured vector. The utility derived from a subset S is defined

as VðSÞ. Subset S corresponds to a N-dimensional filter vector s˛ f0; 1gN,
where S = fdi jsi = 1; i = 1;2.Ng. For clarity, we express this as VðD; sÞ
instead of VðSÞ.
The data-value learner, represented as l4 : D/½0;1�, is optimized to predict

the probability of the inclusion of each data element in subset S. This probabil-

ity is interpreted as the value of the data point. A higher l4ðdiÞ, approaching 1,

suggests a greater likelihood of the data point di being selected for model

training, indicating its significant contribution and higher value in practical sce-

narios. Conversely, a value closer to 0 implies a higher probability of the data

point being excluded from the final task or training. We define the filter as a

binomial distribution filter FB : ½0;1�/f0;1g, indicating whether di is selected

(FB = 1) or not (FB = 0). Hence, si = FBðl4ðdiÞ Þ.
Given the nondifferentiable nature of this filtering process, we transform the

utility of the data subset into a "sampling signal.’’ This necessitates adopting a

reinforcement-learning framework for resolution. We model this as a decision

process with a single step, where the entire dataset D represents the ‘‘state,’’

the filter vector s denotes the ‘‘action,’’ the utility V is the "reward" from a data-

driven environment, and the learner’s parameter 4 is the strategy to be opti-

mized. Then, the probability of the filter vector s being actioned based on

l4ðDÞ is p4ðD;sÞ =
YN
i = 1

½l4ðdiÞsi $ð1 � l4ðdiÞÞ1� si �, the result of the binomial dis-

tribution filter FB. To maximize the utility of the selected subset, we formulate

the optimization problem for training the learner as follows:

max
4

E
s�p4ðD;$Þ

½VðD; sÞ�

Policy gradient and improvements

Our algorithm undergoes theoretical refinement to enhance its efficiency and

robustness. We address the issue of the non-differentiability of VðD; sÞ with

respect to 4 by using the policy gradient method. This technique allows for

the effective training of the learner under the reinforcement-learning frame-

work. If J ð4Þ is denoted as the objective function, the gradient of strategy 4

is expressed as follows:

V4J ð4Þ = E
s�p4ðD;$Þ

½VðD; sÞ$V4 log ðp4ðD; sÞÞ�

To enhance the stability of the learning process based on policy gradients,

we employ a moving average of the previous rewards, denoted as d, with a

window size T (number of iterations) as the baseline.

Our analysis reveals that, without specific intervention, the values of all the

data points ðc di ˛DÞ are highly likely to skew toward either all 0 s or all 1 s.

Such extrema in the value distribution leads to suboptimal results. This local

convergence is due to inadequate exploration of alternative optimum strate-
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gies. To counteract this, we introduce a penalty function pð4; s; tÞ to promote

exploration:

pð4; s; tÞ = s$

"
max

 XN
i = 1

l4ðdiÞ � N $ t; 0

!

+ max

 
1 �

XN
i = 1

l4ðdiÞ � N $ t; 0

!#

where s is the penalty factor and t is the threshold near 1.

To further enhance the stability, we propose using repeated sampling to

maximize the sample utility. We incorporate importance sampling and a target

network within the reinforcement-learning framework, facilitating a transition

from on-policy to off-policy methods. The modified objective function is

E
s�p

~4
ðD;$Þ

�
p4ðD; sÞ
p

~4
ðD; sÞVðD; sÞ

�

Given the increased variance from off-policy sampling and the potential lim-

itation of updates to new policies, we employ a clipping function to moderate

the disparity between old and new policies:

clip

�
p4ðD; sÞ
p~4ðD; sÞ; 1 � h;1+ h

�

Here, the clip function clipðx; a;bÞ truncates x the bounds a and b, maintain-

ing the sensitivity of the policy gradient to larger step sizes within manageable

limits h. Ultimately, we integrate the clipped objective with the penalty term to

form the final objective function, guiding the training of the data learner’s strat-

egy via the policy gradient method.

Comparison experiments

The datasets utilized for the comparison experiments in our study were

sourced from publicly available repositories comprising adult,34 forest-fire,35

obesity,36 and heart-failure37 data. Notably, in the heart-failure clustering anal-

ysis, we adopted an unsupervised learning approach, and we defined value by

calculating the distance from each point to its nearest cluster center; this

approach demonstrates the versatility of our framework in handling nonpredic-

tive tasks.

To construct classification, regression, and clustering models, we used

appropriate machine-learning algorithms tailored to each problem type. For

classification tasks, we employed eXtreme Gradient Boosting (XGB), a so-

phisticated ensemble boosting model renowned for its effectiveness in

featured data management, numerical pattern extraction, and predictive

analysis capabilities.49 Support vector regression (SVR) was chosen for the

regression tasks, and another regression task utilized the light gradient-

boosting machine (LGBM), a decision-tree-based gradient-boosting frame-

work noted for its outstanding performance and scalability.50 K-means clus-

tering was applied for clustering analyses. In each iteration, the models were

trained on a selected subset of the data based on the calculated value

metric.

The inversemetric employed in classification is the "mismatch rate,’’ defined

as the complement of accuracy (1 � accuracy). For clustering, we computed

the metric by aggregating the distances between each data point and its

respective cluster center. As the volume of data is reduced, the cumulative dis-

tance decreases proportionally. To highlight the unique approach of our algo-

rithm in data valuation, the vertical axis in Figure 2D represents the averaged

distance, calculated as the sum of distances divided by the data volume. In

our analysis, larger metric values indicate greater overall utility in the dataset.

For each dataset, 12 training repetitions were performed for eachmethod, and

the results were averaged and are presented in Table 1.

Wind power prediction

We analyzed 17,520 h of wind data from 2017 to 2018, focusing on 25 Chinese

provinces and regions and omitting those with insufficient or corrupt data.51

This subset still covers a significant portion of China, excluding Hong Kong,

Macau, Tianjin, Taiwan, Tibet, Qinghai, Beijing, Shanghai, and Hainan. To

aid in wind-power forecasting, we integrated multidimensional numerical

weather prediction (NWP) data from The National Aeronautics and Space

Administration (NASA), encompassing more than 3,300 counties nationwide.

Employing cluster averaging, we extracted characteristic NWP data for each
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province and compiled hourly and daily data to support wind-power predic-

tions for corresponding hours. The predictive model inputs merge these

NWP data with historical power-generation data spanning the previous 48 h,

setting the stage to forecast hourly power generation for the subsequent

24 h. Leveraging the capabilities of the LGBM50 for its proven effectiveness

in time-series predictions, we ensured a deterministic and stable utility for po-

wer forecasting.52

The MAPE for the prediction model is calculated as follows:

MAPE =
100%

n � 24
Xn
i = 1

X24
t = 1

���� Pi;t � Ai;t

maxðAi;t ; eÞ
����

where n is the test set size. Pi;t and Ai;t denote the predicted and actual wind-

power values, respectively, at hour t during the day. We introduced e = 0.12 in

theMAPE calculation to prevent small fluctuations in low actual power outputs

from unduly magnifying the error metric, thus avoiding an overemphasis on

prediction accuracy during periods of minimal generation.

In the data-value learnermodel, data points are represented by input vectors

x consisting of hourly/daily NWP and the preceding 48-h power data, with

y representing the subsequent 24-h power data. These inputs are processed

through a fully connected neural layer, and a sigmoid activation function com-

putes the data value between 0 and 1:

SigmoidðxÞ =
1

1+e� x

Sensitivity calculation for each province

To assess the sensitivity of wind-power forecasting to data removal across

various provinces, we define D as a metric quantifying the average change

in the MAPE per 10% increase in data removal, up to a limit of 40%. The for-

mula for D is given by

D = d10% +
d20%

2
+
d30%

3
+
d40%

4

Here, dm% denotes the change in MAPE resulting from the removal ofm%of

the highest or lowest value of the data. This methodology allows for a compre-

hensive assessment of the impact of data valuation in removal experiments,

and this approach allows us to effectively quantify how data value influences

wind-power prediction. Additionally, it serves as an aggregate indicator to

evaluate the sensitivity of each province to the data value in relation to the pre-

diction accuracy.
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