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Abstract: Pseudomonas aeruginosa is a Gram-negative pathogenic bacterium that is present commonly in
soil and water and is responsible for causing septic shock, pneumonia, urinary tract and gastrointestinal
infections, etc. The multi-drug resistance (MDR) phenomenon has increased dramatically in past years
and is now considered a major threat globally, so there is an urgent need to develop new strategies
to overcome drug resistance by P. aeruginosa. In P. aeruginosa, a major factor of drug resistance is
associated to the formation of biofilms by the LasR enzyme, which regulates quorum sensing and
has been reported as a new therapeutic target for designing novel antibacterial molecules. In this
study, virtual screening and molecular docking were performed against the ligand binding domain
(LBD) of LasR by employing a pharmacophore hypothesis for the screening of 2373 FDA-approved
compounds to filter top-scoring hit compounds. Six inhibitors out of 2373 compounds were found to
have binding affinities close to that of known LasR inhibitors. The binding modes of these compounds
to the binding site in LasR-LBD were analyzed to identify the key interactions that contribute to
the inhibition of LasR activity. Then, 50 ns simulations of top hit compounds were performed to
elucidate the stability of their binding conformations with the LasR-LBD. This study, thus concluded
that sulfamerazine showed the highest binding affinity for the LasR-LBD binding pocket exhibiting
strong inhibitory binding interactions during molecular dynamics (MD) simulation.

Keywords: LasR inhibitors; virtual screening; pharmaco-informatics

1. Introduction

Pseudomonas aeruginosa is a well-known opportunistic bacterium that is responsible for many
nosocomial infections worldwide, accounting for approximately 10% of all infections in European Union
hospitals [1]. It causes respiratory tract infections, urinary tract infections, dermatitis, chronic wounds,
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soft tissue infections, and several systemic infections specifically in patients with comorbid severe burns,
cancer, and AIDS patients who are already immunocompromised. Resistance towards antimicrobial
agents is a widely studied research problem, and Pseudomonas aeruginosa is one of the bacteria that shows
resistance towards antimicrobial agents by forming biofilms and results in chronic infections [2]. In fact,
biofilm-forming bacteria are 100–1000 times more resistant to antimicrobial agents [3].

Biofilms formed by Pseudomonas aeruginosa are heterogeneous and mushroom-shaped
microcolonies and use carbon as a source of nutrients. The persistence of chronic Pseudomonas
aeruginosa lung infections in cystic fibrosis (CF) patients is due to alginate producing mucoid strains
grown by biofilm. The biofilm serves as armor for the bacteria, embedded in a self-synthesized polymer
matrix consisting of polysaccharides, proteins, and DNA [4]. Due to its complex nature, researchers
have tried several strategies to block biofilm forming molecular cascades, but, remarkably, a solution
is still wanting. Herein we focus on the molecules that target quorum sensing (QS) which has been
proposed as an anti virulence strategy.

In Pseudomonas aeruginosa, QS is considered as a key mechanism in the regulation of virulence
factor production and in the formation of biofilms that make it tolerant to antimicrobials. The signal
N-3-oxododecanoyl homoserine lactone (3OC12-HSL) is produced by a synthase called LasI (encoded
by lasI). The 3OC12-HSL signal affects gene expression by binding to a specific signal receptor called
LasR (encoded by lasR), which in turn modulates transcription of effector genes. LasI and LasR
are members of conserved families of synthases and receptors that have been found in dozens of
different species of Proteobacteria. Acyl-homoserine lactone (acyl-HSL) signals produced by homologs
of LasI differ in their acyl side chains, and the receptors have differing specificities for the various
acyl-HSLs [5–8]. The LasRI system controls the expression of many genes, several of which encode
virulence factors. Mutants with defects in quorum sensing (rhlI, lasI, and lasR) have substantially
reduced virulence in a variety of animal models. Furthermore, there is evidence that inhibitors of
3OC12-HSL quorum sensing can reduce the severity and duration of P. aeruginosa lung infections in
rodents. The second acyl-HSL signaling system in P. aeruginosa, the RhlR-RhlI system (encoded by
rhlR and rhlI), also controls the expression of multiple genes. Production of RhlR and RhlI requires
activation by the LasR-LasI system. Thus, the LasR-LasI system is at the top of the acyl-HSL signaling
cascade in P. aeruginosa. There is also a third LasR homolog called QscR that lacks a cognate I protein.
Instead, like LasR, it responds to 3OC12-HSL and regulates a set of genes that overlap with the LasR-
and RhlR-activated genes [9–12].

LasR comprises two independently folded protein domains: an amino-terminal ligand-binding
domain (LBD) and a carboxy-terminal DNA-binding domain. Binding of homoserine lactone
autoinducer promotes the dimerization of two LasR subunits. The resulting ligand-bound homodimer
binds target DNA to activate gene transcription [13]. The structure of LasR-LBD (Protein Data Bank
(PDB) code: 6D6A) with the known ligand, TP1, is shown in Figure 1.

Native autoinducers and already-reported inhibitors bind to the LBD of LasR, so this study
was focused on the LBD. Virtual screening techniques are cost effective and faster, whereby large
compound libraries can be screened to discover new hit molecules based on their structure that are
most likely to bind to a drug target. With our objective of identifying new ligand molecules that will
bind selectively to LBD, we adopted a combined structure and ligand-based virtual screening protocol
entailing pharmacophore modeling, molecular docking, and molecular dynamics (MD) simulations.
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Figure 1. (a) 2D structure of TP1; (b) LasR-LBD:TP1 complex (3D structure showing the interaction
of TP1 and LBD). Amino acids involved in interaction are labeled and colored in silver. LBD: ligand
binding domain.

2. Results

2.1. Description of Pharmacophore

Three common pharmacophore hypotheses (CPH) were generated using the PHASE module
with the help of 31 reported LasR-LBD inhibitors. A characteristic framework was used to create a
list of processes that helped in developing pharmacophore models since the modelling process was
qualitative in nature [14]. For distinguishing active from inactive, a threshold IC50 of 30 µM was used.
Three different hypotheses were identified (Table 1).

Table 1. Pharmacophore hypothesis identified using the PHASE module.

Inhibitors Used Pharmacophore Hypothesis PhaseHypoScore Reference of Inhibitors

6 AAADHHR 1.11 [15]
11 AADHHRR 1.05 [16]
14 ADHRR 1.31 [17]

All the generated hypotheses were then submitted to a PHASE scoring procedure, which consisted
of survival active and survival inactive scores. PhaseHypoScore ranks hypotheses by their likely
performance in virtual screening as well as the quality of ligand alignment. It easily recognizes multiple
binding modes in hypotheses from common pharmacophore perceptions when training against diverse
known actives. ADHRR was selected with the highest PhaseHypoScore of 1.31. Corresponding to
their inter-site distances, comparable pharmacophores are assembled through a tree-based partitioning
technique [14]. This process helps to attain common pharmacophores. Tables 2 and 3 display the
inter-site angle and distances of the model.

Table 2. Inter-pharmacophoric site measurements of model ADHRR.

Site 1 Site 2 Distance (Å) Site 1 Site 2 Distance (Å)

A1 D2 3.18 D2 R4 3.53
A1 H3 6.49 D2 R5 3.99
A1 R4 3.74 H3 R4 7.35
A1 R5 4.46 H3 R5 2.74
D2 H3 5.01 R4 R5 6.61
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Table 3. Inter-pharmacophoric angle measurements of model ADHRR.

Site 1 Reference Site 2 Angles (◦) Site 1 Reference Site 2 Angles (◦)

A1 D2 H3 16.1 D2 A1 H3 48.8
A1 D2 R4 48.6 D2 A1 R4 51.8
A1 D2 R5 70.4 D2 A1 R5 50.4
A1 H3 R4 21.4 H3 A1 R4 81.2
A1 H3 R5 23.8 H3 A1 R5 24.9
A1 R4 R5 50.6 R4 A1 R5 97.0
D2 H3 R4 20.1 H3 D2 R4 117.3
D2 H3 R5 34.1 H3 D2 R5 45.7
D2 R4 R5 36.1 R4 D2 R5 112.2
H3 R4 R5 31.8 R4 H3 R5 40.6

The result of the survival inactive scores was used to pick out the best hypothesis model, which
separates the active compounds from the inactive ones. Inhibitor structures used for the modelling of
the selected hypothesis are shown in Figure 2. IC50 values of the nine actives, inhibitors 4, 6, 8, 10, 13,
14, 17, 18, and 25, for the selected hypothesis were 21 µM, 6.6 µM, 16 µM, 9 µM, 9.6 µM, 6.5 µM, 4.8 µM,
9.7 µM, and 21 µM, respectively. IC50 values of the five inactives, inhibitors 9, 20, 24, 27, and 29 were
45 µM, 35 µM, 37 µM, 40 µM, and 52 µM respectively [17].
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Figure 2. Inhibitor structures used for the generation of the selected hypothesis (ADHRR) [17].

One acceptor group (A), one donor group (D), one hydrophobic group (H), and two aromatic rings
(ADHRR) are the five key features of the chosen CPH. Figure 3 displays the results of this hypothesis.
Superimposed images of the active ligands with ADHRR are shown in Figure 4.
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Figure 3. The five-feature pharmacophore model ADHRR as generated using PHASE illustrating the
acceptor group (A1; pink), donor group (D2; blue), hydrophobic group (H3; green), and aromatic ring
(R4, R5; orange). This model was created using known inhibitors of LasR. Almost all of the inhibitors
used had these five features in common.
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hypothesis ADHRR. The structural similarity in these ligands and their relationship with the hypothesis
can be observed from this superimposed image.

2.2. Phase Database Generation

From the 2373 FDA-approved compounds attained from the DrugBank, 1382 were obtained by
applying Lipinski’s rule. Stereoisomers were generated by restricting specific chiralities and allowing
variability for other chiral centers. At most, four low energy stereoisomers were retained and up to
one low energy conformation for five to six membered rings were generated. Subsequently, the total
number of compounds obtained was 2760, from which the average conformers generated per record
was 49.08 and a total of 135,460 conformations were obtained.



Molecules 2020, 25, 3723 6 of 19

2.3. Screening Using a Pharmacophore Model

To find possible LasR-LBD inhibitors, the pharmacophore model (ADHRR 3) generated was
employed to screen the phase database. For every ligand from the database in this study, the sites of
the hypothesis were compared against a pre-computed set of conformers [14]. The molecules were
compared to at least four sites of the hypothesis, hence four out of five sites were matched. From
the 135,460 molecules examined, top ten compounds were prepared for the docking to analyze their
binding ability. Phase screen score was used for finding out the top ten compounds. Values of the
phase screen score are mentioned in Figure 5. These molecules have the essential features required to
bind to LasR-LBD. These compounds were considered for further examinations as they may have more
potential to inhibit LasR-LBD. Superimposed images of top screened molecules with the hypothesis
are shown in Figure 5.
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Figure 5. Superimposed images of screened hit molecules from the database with the selected hypothesis
ADHRR. (a) Sulfadimethoxine, (b) sulfamerazine, (c) sulfamethazine, (d) sulfapyridine, (e) articaine,
(f) sulfametopyrazine, (g) sulfadiazine, (h) esomeprazole, and (i) kinetin. PhaseScreenScore are
mentioned along with the title of the compounds.

2.4. Molecular Docking Using GLIDE

The docking protocol was validated by using a ligand from the LasR-LBD structure file, PDB
ID: 6D6A, 2,4-dibromo-6-{[(2-nitrobenzene-1-carbonyl)amino]methyl}phenyl benzoate, for redocking
(Figure 6). 6D6A is a high resolution (1.9 Å) X-ray structure of the complete LasR-LBD domain of
P. aeruginosa. We found that the docked ligand occupied a similar position at the binding site of
LasR-LBD. Root mean square deviation (RMSD) of the docked ligand was found to be 0.46 Å when
compared with the ligand in the crystal structure.
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Figure 6. Docking protocol validation, 4-dibromo-6-{[(2-nitrobenzene-1-carbonyl)amino] methylphenyl
benzoate redocked with LasR ligand-binding domain, 6D6A. Conformation of the docked molecule
was found to be similar to the conformation of the inhibitor reported with 6D6A.

At first, the nine reference ligands, actives of the selected CPH, were docked to the LasR-LBD
following the calculation of their glide energies and scores. After that, the top ten hit molecules from
the screening results were docked in the same binding site. Six hits with glide scores comparable to the
known LasR-LBD inhibitors were attained from the results. These included articaine, sulfametopyrazine,
sulfadiazine, sulfamethazine, sulfamerazine, and sulfapyridine. The glide score of sulfamerazine
was −9.68 kcal/mol, which was greater than −9.28 kcal/mol, the glide score of the reference ligand 17.
Figure 7 represents the complete process of virtual screening and docking. Figure 8 shows the 2D
structures of hit molecules. Glide score and glide energy of the top seven reference ligands and the six
best hits are shown in Table 4.

Table 4. Docking scores and energy involvement of reference LasR inhibitors and screened hit molecules
against LasR-LBD.

Ligands Glide Gscore
(kcal/mol)

Glide Energy
(kcal/mol)

MMGBSA dg Bind
(kcal/mol)

Results of reference LasR inhibitors

8 −10.24 −53.28 −75.43
10 −10.17 −55.49 −80.50
6 −10.10 −52.53 −75.53

13 −10.06 −56.90 −79.33
14 −10.01 −56.38 −79.76
4 −9.95 −52.45 −74.45

17 −9.28 −56.20 −76.42

Results of LasR inhibitors

Articaine −9.01 −41.63 −46.27
Sulfamerazine −9.68 −47.48 −52.74

Sulfametopyrazine −8.37 −48.73 −52.71
Sulfapyridine −8.07 −45.25 −51.35
Sulfadiazine −8.27 −45.08 −44.23

Sulfamethazine −7.86 −50.23 −51.16
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2.5. Interaction Studies of Screened Hit Molecules

The ligand interaction diagram (LID) of the Schrödinger suite helped to examine the reference
inhibitors and hit molecules’ interaction patterns (Tables 5 and 6). Figure 9 shows the results obtained.
The hydrogen bond interactions help to stabilize the ligand greatly and are represented by purple lines
in the figure. Along with these H-bonds, pi-pi interactions are also substantial in the binding of the
ligand. Hence, these two major interactions are critically observed in the hit molecules. Figure 9a
shows that the LasR-LBD-17 complex, which was analyzed using LID, forms four H-bond interactions,
and two pi-pi stacking interactions. The pi-pi stacking interactions were formed by Trp88 and Tyr64,
whereas Trp60, Ser129, Tyr56, and Asp73 formed H-bonds. Reported literature emphasizes the
significance of Asp73, Ser129, and Tyr56 in maintaining the stability of the ligand [18]. Additionally,
Figure 9b–g displays the results of the analyses of the hit molecules, as well. Evidently, sulfamerazine
formed four H-bond interactions while articaine formed five. The pi-pi stacking interactions that
strengthen the protein-ligand binding when checked were present, with four such interactions for
sulfamerazine and one for the articaine ligand [18].

Table 5. Interaction analysis of reference LasR inhibitors against LasR-LBD.

S. No. Compound Number of H
Bonds

Interacting Atoms of
Protein-Ligand Complex Distance (Å)

1 8 4

TYR 56 . . . Lig(O) 1.81
Lig(NH) . . . ASP 73 1.82
TRP 60 . . . Lig(O) 2.11
SER 129 . . . Lig(O) 2.13

2 10 4

TRP 60 . . . Lig(O) 2.07
TYR 56 . . . Lig(O) 1.97
SER 129 . . . Lig(O) 2.08
Lig(NH) . . . ASP 73 1.73

3 6 4

TRP 60 . . . Lig(O) 2.21
TYR 56 . . . Lig(O) 1.88
SER 129 . . . Lig(O) 2.15
Lig(NH) . . . ASP 73 1.79
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Table 5. Cont.

S. No. Compound Number of H
Bonds

Interacting Atoms of
Protein-Ligand Complex Distance (Å)

4 13 4

TYR 56 . . . Lig(O) 1.86
SER 129 . . . Lig(O) 2.12
Lig(NH) . . . ASP 73 1.83
TRP 60 . . . Lig(O) 2.10

5 14 4

TYR 56 . . . Lig(O) 1.97
SER 129 . . . Lig(O) 2.08
Lig(NH) . . . ASP 73 1.74
TRP 60 . . . Lig(O) 2.08

6 4 4

SER 129 . . . Lig(O) 2.13
TYR 56 . . . Lig(O) 1.85

Lig(NH) . . . ASP 73 1.82
TRP 60 . . . Lig(O) 2.14

7 17 4

TRP 60 . . . Lig(O) 2.18
Lig(NH) . . . ASP 73 1.86
SER 129 . . . Lig(O) 2.15
TYR 56 . . . Lig(O) 1.89

Table 6. Interaction analysis of screened hit molecules against LasR-LBD.

S. No. Compound Number of H
Bonds

Interacting Atoms of
Protein-Ligand Complex Distance (Å)

1 Articaine 5

TRP 60 . . . Lig(O) 2.64
Lig(NH) . . . ASP 73 1.73
TYR 56 . . . Lig(O) 2.24
SER 129 . . . Lig(O) 2.06

Lig(NH2
+) . . . ASP 73 2.01

2 Sulfamerazine 4

Lig(NH) . . . ASP 73 4.67
TYR 56 . . . Lig(O) 5.68

Lig(NH2) . . . TYR 93 5.71
Lig(NH2) . . . LEU 110 5.18

3 Sulfametopyrazine 4

SER 129 . . . Lig(O) 2.00
TYR 56 . . . Lig(O) 1.82

Lig(NH2) . . . LEU 110 2.16
Lig(NH2) . . . TYR 93 2.26

4 Sulfapyridine 4

Lig(NH) . . . ASP 73 2.46
TYR 56 . . . Lig(O) 2.06

Lig(NH2) . . . LEU 110 2.52
Lig(NH2) . . . TYR 93 2.19

5 Sulfadiazine 5

Lig(NH) . . . ASP 73 2.25
TYR 56 . . . Lig(O) 1.70
SER 129 . . . Lig(O) 1.95

Lig(NH2) . . . TYR 93 1.88
Lig(NH2) . . . LEU 110 2.43

6 Sulfamethazine 5

Lig(NH) . . . ASP 73 1.80
TYR 56 . . . Lig(O) 2.58
SER 129 . . . Lig(O) 2.46

Lig(NH2) . . . ASP 65 2.74
Lig(NH2) . . . ARG 61 2.79
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2.6. Molecular Mechanics—General Born Surface Area (MM-GBSA) Estimation

The solvent effect on the interaction between LasR-LBD and top ranked docked compound
was evaluated by determining the molecular mechanics—general born surface area (MM-GBSA).
Table 4 shows MM-GBSA of compounds. The MM-GBSA of known inhibitors was recorded between
−74.45 kcal/mol and −80.50 kcal/mol. Amongst the screened drugs, the MM-GBSA of sulfamerazine
was found to be the lowest (−52.74 kcal/mol). Altogether, the MM-GBSA results suggest the formation
of a stable complex between LasR-LBD and sulfamerazine. Further, MD simulation was used to
estimate the stability of the LasR-LBD-sulfamerazine complex.

2.7. Molecular Dynamics Simulation

MD simulation is used for the estimation of dynamics and stability of the ligand-protein complex.
The complex of sulfamerazine-LasR-LBD obtained from the docking was subjected to MD simulation.
Total duration of the simulation was 50 ns, Figure 10. It is evident that the system was well equilibrated
as the root mean square deviations (RMSD) deviation followed the similar trajectory during the the
latter half of the MD simulation, and the complex form trajectory tended to converge with that of the
apo form during the last 5 ns of the simulation. In the first half of the simulation, the RMSD variation
remained well below 0.3 Å, ranging between 0.9–1.2 Å for the complex and 1.2–1.5 Å for the apo
form (without ligand). In the latter half, deviation again remained below 0.3 Å followed by a surge of
1 Å. The RMSD of the protein apo form remained within the upper limit of 2.0 Å. Also, the RMSD of
sulfamerazine showed variation within 0.3–2.4 Å. In the last 5 ns, the LBD of both apo and the complex
with sulfamerazine were observed to converge. Collectively, these results propose the formation of a
stable complex between LasR-LBD and sulfamerazine upon the formation of favorable interactions
with key amino acid residues.

Molecules 2020, 25, x FOR PEER REVIEW 13 of 20 

 

2.6. Molecular Mechanics—General Born Surface Area (MM-GBSA) Estimation 201 

The solvent effect on the interaction between LasR-LBD and top ranked docked compound was 202 
evaluated by determining the molecular mechanics—general born surface area (MM-GBSA). Table 4 203 
shows MM-GBSA of compounds. The MM-GBSA of known inhibitors was recorded between −74.45 204 
kcal/mol and −80.50 kcal/mol. Amongst the screened drugs, the MM-GBSA of sulfamerazine was 205 
found to be the lowest (−52.74 kcal/mol). Altogether, the MM-GBSA results suggest the formation of 206 
a stable complex between LasR-LBD and sulfamerazine. Further, MD simulation was used to 207 
estimate the stability of the LasR-LBD-sulfamerazine complex. 208 

2.7. Molecular Dynamics Simulation 209 

MD simulation is used for the estimation of dynamics and stability of the ligand-protein 210 
complex. The complex of sulfamerazine-LasR-LBD obtained from the docking was subjected to MD 211 
simulation. Total duration of the simulation was 50 ns, Figure 10. It is evident that the system was 212 
well equilibrated as the root mean square deviations (RMSD) deviation followed the similar trajectory 213 
during the the latter half of the MD simulation, and the complex form trajectory tended to converge 214 
with that of the apo form during the last 5 ns of the simulation. In the first half of the simulation, the 215 
RMSD variation remained well below 0.3Å , ranging between 0.9–1.2Å  for the complex and 1.2–1.5Å  216 
for the apo form (without ligand). In the latter half, deviation again remained below 0.3 Å  followed 217 
by a surge of 1 Å . The RMSD of the protein apo form remained within the upper limit of 2.0 Å . Also, 218 
the RMSD of sulfamerazine showed variation within 0.3–2.4 Å . In the last 5 ns, the LBD of both apo 219 
and the complex with sulfamerazine were observed to converge. Collectively, these results propose 220 
the formation of a stable complex between LasR-LBD and sulfamerazine upon the formation of 221 
favorable interactions with key amino acid residues. 222 

 223 

Figure 10. Root mean square deviations (RMSDs) trajectories derived from molecular dynamics (MD) 224 
simulation of the LBD-sulfamerazine complex apo form (no ligand). The system is well equilibrated 225 
as the average deviation was observed to follow the similar pattern in both the trajectories during the 226 
latter half of the MD simulation. The complex form showed higher RMSD during 40–45 ns, however, 227 
it converged for the last 5 ns, forming a stable complex with sulfamerazine. 228 

Protein interactions with the ligand were monitored throughout the simulation. These 229 
interactions were categorized by their types and summarized, as shown in Figures 11 and 12. Protein-230 
ligand interactions (or “contacts”) were categorized into four types: hydrogen bonds, hydrophobic, 231 
ionic, and water bridges. The stacked bar charts are normalized throughout the trajectory, for 232 
example, a value of 0.7 suggests that for 70% of the simulation time, the specific interaction is 233 

Figure 10. Root mean square deviations (RMSDs) trajectories derived from molecular dynamics (MD)
simulation of the LBD-sulfamerazine complex apo form (no ligand). The system is well equilibrated as
the average deviation was observed to follow the similar pattern in both the trajectories during the
latter half of the MD simulation. The complex form showed higher RMSD during 40–45 ns, however,
it converged for the last 5 ns, forming a stable complex with sulfamerazine.

Protein interactions with the ligand were monitored throughout the simulation. These interactions
were categorized by their types and summarized, as shown in Figures 11 and 12. Protein-ligand
interactions (or “contacts”) were categorized into four types: hydrogen bonds, hydrophobic, ionic,
and water bridges. The stacked bar charts are normalized throughout the trajectory, for example,
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a value of 0.7 suggests that for 70% of the simulation time, the specific interaction is maintained. Values
over 1.0 are possible as some protein residues may make multiple contacts of the same subtype with the
ligand. The atomic contributions of the ligand in these interactions can be seen in Figure 11. Interaction
analysis of LasR-LBD and the sulfamerazine complex after MD simulation showed that it binds to the
allosteric binding site of the enzyme. The complex was stabilized by two hydrogen bonds with Tyr56,
Trp60, Thr115, and Ser129 along with one hydrophobic interaction with Tyr64 (Figures 11 and 12).

Hydrogen bonds play a significant role in ligand binding. Consideration of hydrogen-bonding
properties in drug design is important because of their strong influence on drug specificity, metabolization,
and adsorption. Hydrogen bonds between a protein and a ligand can be further broken down into four
subtypes: backbone acceptor; backbone donor; side-chain acceptor; and side-chain donor.
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Figure 12. Atomic contributions in ligand-protein interactions. Hydrogen bonding observed with
TYR56, TRP60, THR115, and SER129. Hydrophobic interactions observed with TYR64. Purple:
Hydrogen bond, Green: Hydrophobic interaction.

3. Discussion

P. aeruginosa, a Gram-negative bacterium, is responsible for urinary tract infections, nosocomial
pneumonia, and bloodstream infections [19]. The ability of P. aeruginosa to produce biofilms [20,21]
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and increased antibiotic resistance has become the driving force to find new therapies that can address
this issue. Recent efforts have been focused in developing antipathogenic strategies by decreasing
bacterial virulence through QS systems [22,23]. Evidence suggested the attenuation of pathogenicity
of P. aeruginosa through inhibition of the LasR QS system [22,24–26]. Therefore, impeding QS in
P. aeruginosa by the use of LasR inhibitors is a promising strategy for the treatment of infections [22].
Different groups have identified a series of LasR inhibitors using traditional methods from natural
resources [22,27–29]. Novel computer-aided drug designing can address the limitations of traditional
methods [18,30]. This brings a new opportunity for the designing of LasR inhibitors, which can reduce
pathogenicity, virulence, and resistance rather than directly inhibiting the bacterial growth.

The core objective of this study was to find out potential LasR-LBD inhibitors from already
approved drugs through pharmacophore-based virtual screening. A total of 1382 drug molecules
and 135,460 conformations were screened, out of which the top ten compounds were docked against
LasR-LBD. Molecular docking results showed six compounds, namely, articaine, sulfametopyrazine,
sulfadiazine, sulfamethazine, sulfamerazine, and sulfapyridine, with docking scores comparable to the
known LasR-LBD inhibitors that were used for the development of the pharmacophore hypothesis.
The docking score of sulfamerazine was −9.68 kcal/mol, which was greater than −9.28 kcal/mol,
the docking score of one of the reference ligands. The drug molecule with the highest binding affinity,
sulfamerazine, was further utilized for molecular dynamics simulation to check the stability of binding
interactions. Collectively, these results proposed the formation of a stable complex between LasR-LBD
and sulfamerazine upon the formation of favorable interactions with key amino acid residues.

The analysis of the ligand binding interaction revealed the involvement of active site residues,
i.e., Try56, Trp60, Tyr64, Asp73, Trp88, Tyr93, Phe101, Leu110, and Ser129. This result was found to
be consistent with the previously conducted research on LasR inhibitors [13,31,32]. Several studies
have been conducted for finding potential inhibitors of LasR. They focused mostly on traditional
remedies [31], 147 approved drugs and natural compounds from SuperNatural and SuperDrug
databases [32], ZINC database [33,34], TimTec’s Natural Derivatives Library [35], and traditional
Chinese medicines [36]. In contrast, our research study focused on FDA-approved drugs from drugbank
database [37]. Since these compounds are already approved for human use, there is a better chance of
developing antipathogenic therapy in a shorter duration.

In comparison to our study, only one of the previous studies used a pharmacophore modelling
technique for finding potential LasR inhibitors [33]. In this study, the native ligand of LasR was used
for searching the two most structurally similar compounds from the PubChem database. These three
compounds were then used for developing the pharmacophore model. In contrast to this, we used
thirty-one previously reported LasR inhibitors with varying IC50 values. Three different hypotheses
were developed out of which one was selected based on the survival inactive scores, which separates
the active compounds from the inactive ones.

Our docking and simulation results showed that these compounds can further be tested in vitro.
Also, these compounds can serve as lead compounds for designing or optimizing LasR inhibitors.

4. Materials and Methods

4.1. Compound Data Set

For this study, the x-ray crystal structure of LasR-LBD (PDB code: 6D6A) was downloaded from
the Protein Data Bank having a resolution of 1.9 Å [38]. Three different pharmacophore hypotheses
(PH) were modelled from the previously reported thirty-one LasR-LBD inhibitors of varying IC50
values [15–17]. To perform virtual screening, 2373 FDA-approved compounds from DrugBank (release
5.1.4 uploaded on 02-07-2019) were downloaded in structure-data file (SDF) file format [37].
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4.2. Protein Preparation

The protein preparation wizard of Maestro, schrödinger graphical user interface, was used for
protein preparation of LasR-LBD [39]. The original protein structures were altered by assigning bond
orders, incorporating H atoms, forming disulphide bonds, and fixing the residue charges [40]. Water
molecules beyond 5 Å of the allosteric binding site were removed. These structures were minimized
with the help of the OPLS 2005 force field [39,41]. This altered protein structure was ultimately used
for docking studies [39]. The binding pocket was identified by the coordinates of the already bound
ligand (TP-1).

4.3. Phase Database Creation

The drugbank database of FDA-approved drugs contained 2373 compounds in the ready-to-dock
SDF format. These compounds were shortlisted into 1382 compounds by applying Lipinski’s rule
of five as a prefilter and prepared in LIGPREP [42]. The ionization states of the compounds were
generated at pH 7.0 ± 2.0 with the help of EPIK [43] followed by the removal of salts from ligands.
A maximum of thirty-two stereoisomers were generated for a compound. An OPLS3 (optimized
potentials for liquid simulations) force field was used to minimize the energy of each compound with
default parameters. Ligand conformers were generated using the conformers generation option in the
create phase database wizard.

4.4. Pharmacophore Generation

The PHASE(PH) module of the Schrödinger package was used for the preparation of the
pharmacophore [44]. The PH essentially provides details about the minimum and necessary structural
features that are required to bind to the target protein. The generation of PH in this study relied
upon the LasR-LBD inhibitors present. Before the generation of the pharmacophore, thirty-one
LasR-LBD inhibitors were processed using LIGPREP [42] with EPIK for expanding the protonation
and tautomeric states at physiological pH 7.0 ± 2.0 [41]. This was followed by the application of the
OPLS3 force field. Conformers were also generated for ligands [45]. All the ligands were aligned, and
a multiple ligand-protein approach was used in which both ligands and proteins were analyzed for
the formation of a common pharmacophore hypothesis (CPH). The set of six built-in pharmacophore
features provided by PHASE are: aromatic ring (R), positively ionizable (P), negatively ionizable (N),
hydrogen bond donor (D), hydrogen bond acceptor (A), and hydrophobic group (H). The survival
active, as well as survival inactive scores, were evaluated once the pharmacophore hypotheses were
generated based on a set of SMART patterns for every feature [44].

4.5. Phase Screening

Virtual screening was performed using a previously created phase database against the generated
pharmacophore model. This screening results in the identification of compounds having structural
similarities with the reported ligands based on the CPH. Top results of phase screening were further
used in the molecular docking study.

4.6. Virtual Screening Using the Molecular Docking Study

Using LasR-LBD (PDB code: 6D6A) with a scaling factor with 1.0 Å, a receptor grid was made
having coordinates 57.49, 16.00, and 6.65 for x, y, and z, respectively. The size of the outer box was set
to 26.11 for all three dimensions, x, y, and z. GLIDE from the Schrödinger interface was used for these
docking studies [46]. The extra precision (XP) method was used for molecular docking study.
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Docking Validation

The validity of the docking protocol was confirmed by performing XP docking of the X-ray crystal
structure ligand TP-1 homolog at the allosteric binding site of LasR-LBD and comparing the RMSDs
between the docked pose and the crystal structure pose of the ligand.

4.7. Molecular Mechanics—Generalized Born Surface Area (MM-GBSA) Calculations

The solvent effect on the binding free energies of the compounds selected for XP docking was
estimated. Implicit solvation and molecular mechanics force fields were used through the MM-GBSA
method of PRIME [47]. Binding energy calculations were generated using pose viewer file. PRIME local
optimization feature was used to minimize the docked poses. The MM-GBSA continuum solvent model
was used to compute binding free energies of the docked compounds. This solvent model incorporates
the VSGB solvent model [48], the OPLS3 force field [49], and rotamer search algorithms [50].

4.8. Molecular Dynamics Simulation (MD)

MD simulation was used to determine the stability of the docked complex as described
previously [51]. DESMOND was used for the 50 ns MD simulation of the protein-ligand complex with
minimum MM-GBSA binding energy [52]. The orthorhombic simulation box with a TIP3P explicit
water model was prepared using a system builder panel. The 10 Å distance was maintained between
the boundary of the simulation box and the protein surface. The system was neutralized, and 150 mM
NaCl was added to maintain the isosmotic salt environment. The system was minimized with 2000
iterations. A 50 ns MD simulation was performed on the minimized system using the NPT (normal
pressure and temperature) ensemble at 300 ◦K and 1.01 bars with the default setting of relaxation
before simulation. The Martyna–Tobias–Klein barostat [53] and Nose–Hoover Chain thermostat [54]
were used to maintain the pressure and temperature, respectively. The energy and structure were
recorded and saved in the trajectory file at every 10 ps, and a time step of 2 fs was considered during the
simulation. MAESTRO was used for the inspection of trajectories and three-dimensional structures [55].

5. Conclusions

This research adopted a combined structure and ligand-based VS approach to detect potential
LasR inhibitors from the FDA-approved drugs for their repurposing. Fourteen LasR-LBD inhibitors
generated a five-point CPH (ADHRR). An FDA-approved subset of the DrugBank database was used
to create a phase database that was then screened based on ADHRR. Docking was performed for the
hit molecules, and it was revealed that six of these hits had glide scores comparable to their reference
ligands. MM-GBSA of sulfamerazine indicated a stable complex of the drug with LasR-LBD. The MD
simulations carried out for the sulfamerazine-LasR-LBD complex almost reproduced the docking
interaction pattern during trajectory analysis. Hydrogen bonding was observed for more than 70%
of the simulation duration. Finally, it was concluded that sulfamerazine showed the highest binding
affinity to LasR-LBD and exhibited strong and stable binding interactions during MD simulation.
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54. Brańka, A. Nosé-Hoover chain method for nonequilibrium molecular dynamics simulation. Phys. Rev. E
2000, 61, 4769. [CrossRef]

55. Release, S. 4: Maestro; Schrödinger: New York, NY, USA, 2017.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00253-015-7268-8
http://www.ncbi.nlm.nih.gov/pubmed/26887318
http://dx.doi.org/10.1016/j.drudis.2010.03.013
http://www.ncbi.nlm.nih.gov/pubmed/20362693
http://dx.doi.org/10.1021/ci900364w
http://www.ncbi.nlm.nih.gov/pubmed/19928753
http://dx.doi.org/10.1002/prot.10613
http://www.ncbi.nlm.nih.gov/pubmed/15048827
http://dx.doi.org/10.1002/prot.23106
http://dx.doi.org/10.1021/acs.jctc.5b00864
http://dx.doi.org/10.1517/17460441.2015.1032936
http://www.ncbi.nlm.nih.gov/pubmed/25835573
http://dx.doi.org/10.1016/j.ijbiomac.2018.05.023
http://dx.doi.org/10.1063/1.467468
http://dx.doi.org/10.1103/PhysRevE.61.4769
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Description of Pharmacophore 
	Phase Database Generation 
	Screening Using a Pharmacophore Model 
	Molecular Docking Using GLIDE 
	Interaction Studies of Screened Hit Molecules 
	Molecular Mechanics—General Born Surface Area (MM-GBSA) Estimation 
	Molecular Dynamics Simulation 

	Discussion 
	Materials and Methods 
	Compound Data Set 
	Protein Preparation 
	Phase Database Creation 
	Pharmacophore Generation 
	Phase Screening 
	Virtual Screening Using the Molecular Docking Study 
	Molecular Mechanics—Generalized Born Surface Area (MM-GBSA) Calculations 
	Molecular Dynamics Simulation (MD) 

	Conclusions 
	References

