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In the coming decades, eliminating malaria is the foremost goal of many tropical countries.
Transmission control, along with an accurate and timely diagnosis of malaria, effective
treatment and prevention are the different aspects that need to be met synchronously to
accomplish the goal. The current review is focused on one of these aspects i.e.,
transmission control, by looking deeper into the event called gametogenesis. In the
Plasmodium life cycle, gametocytes are the first life forms of the sexual phase. The
transmission of the parasite and the disease is critically dependent on the number, viability
and sex ratio of mature gametocytes and their further development inside mosquito
vectors. Gametogenesis, the process of conversion of gametocytes into viable gametes,
takes place inside the mosquito midgut, and is a tightly regulated event with fast and
multiple rounds of DNA replication and diverse cellular changes going on within a short
period. Interrupting the gametocyte-gamete transition is ought to restrict the successful
transmission and progression of the disease and hence an area worth exploring for
designing transmission-blocking strategies. This review summarizes an in-depth and up-
to-date understanding of the biochemical and physiological mechanism of gametogenesis
in Plasmodium, which could be targeted to control parasite and malaria transmission. This
review also raises certain key questions regarding gametogenesis biology in Plasmodium
and brings out gaps that still accompany in understanding the spectacular process
of gametogenesis.
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BACKGROUND

As per the current knowledge, malaria in humans can be caused by at least nine different species of
Plasmodium, namely - falciparum, vivax, malariae, ovale curtisi, ovale wallikeri, (Sutherland et al.,
2010), knowlesi, cynomolgi (Ta et al., 2014), simian (Deane, 1992; Brasil et al., 2017) and brasilianum
(Lalremruata et al., 2015). However, the majority of the disease burden is attributed to P. falciparum
(known for the majority of malaria-related deaths) and P. vivax (known to cause relapses); human
infections from the latter four species are reported to be zoonotic (Ramasamy, 2014). The mortality
and morbidity due to P. falciparum and P. vivax have significantly declined in recent times, owing to
the improvements in diagnostic and treatment approaches and the implementation of strategies like
‘Global Vector Control Response’ (WHO, 2017) and ‘High Burden to High Impact initiatives’ by
gy | www.frontiersin.org June 2022 | Volume 12 | Article 8779071
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World Health Organization (WHO, 2019). According to the
WHO’s latest World Malaria Report, there were an estimated
241 million cases and 0.6 million malaria deaths worldwide in
2020, representing about 14 million more cases and 69,000 more
deaths in 2020 than that in 2019, (WHO, 2021). Approximately
two-thirds of these additional deaths (47,000) were linked to
disruptions of services during the COVID-19 pandemic (WHO,
2019; WHO, 2021). To add further, the number of cases and
deaths has shown stagnancy in the last five years, which is a
matter of concern.

Looking at the “incidence to mortality ratio” of malaria in the
last two decades, it can be deciphered that currently available
medications, which potentially target the asexual symptom-
causing parasitic forms, effectively reducing mortality, are
inadequate in preventing the disease transmission. Strategies to
interrupt malaria transmission have played a key role in tackling
the condition for all malaria-afflicted countries that have either
successfully controlled malaria or are at the elimination phase.
However, the existence of a transmissible reservoir of
gametocytes in asymptomatic individuals can reintroduce
malaria transmission in countries that have successfully
controlled or even eliminated malaria (Schneider et al., 2006;
Bousema et al., 2012; Lindblade et al., 2013; Lin et al., 2014).

Two epidemiological metrics have been defined for assessing
malaria elimination. i) Basic reproductive number (R0): the
anticipated number of vectors (malaria invertebrate hosts)
infected by one generation of parasite from an infected
vertebrate host (or vector) (Smith et al., 2007). An R0 of less
than one is indicative of malaria elimination. The overall
effectiveness of an elimination-targeted intervention is
quantified by its ability to reduce R0, over one round of
transmission (from host to vector to host), and is termed as
the effect size (Lloyd-Smith et al., 2009; Griffin, 2015; Griffin,
2016). ii) Entomological inoculation rate (EIR) which is the
average number of infective bites per person in a unit time and is
defined as the product of the human biting rate (HBR; average
number of times a human is bitten by mosquitoes in a unit time)
and sporozoite infection rate (SIR; proportion of biting
mosquitoes that have sporozoites in their salivary glands)
(Macdonald G, 1957. The Epidemiology and Control of
Malaria. London: Oxford University Press.; Blagborough et al.,
2013). It has been stated that EIR has to be less than one bite per
person to achieve malaria elimination (Ulrich et al., 2013).
Parasite transmission can be either from mosquito-to-human
(M!H) or human-to-mosquito (H!M) and hence
interventions at these two interfaces that involve targeting
either sporozoites (M!H) or gametocytes/gametes (H!M))
are likely to be effective in reducing R0 below 1 in addition to
other intervention strategies.
TRANSMISSION OF PLASMODIUM
(HUMAN TO A MOSQUITO)

Plasmodium biology is highly intricate, involving two hosts with
strikingly dissimilar microenvironments, transformation into
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
multiple life stages with a brief transition period, and evasion
of the host defense mechanisms, to complete its life cycle.
Plasmodium inhabits a range of vertebrates as its primary host
where the asexual phase is carried out. At the same time, the
dipterans of the genus Anopheles are the only invertebrate and
definitive host where the sexual phase of the parasite takes place.
Successful interchange of parasites between the primary and
secondary hosts is essential to continue the life cycle. Therefore,
the parasite stages that are exchanged between the hosts are
crucial in the context of disrupting transmission.

Gametocytes and sporozoites are the Plasmodium stages, that
are transferred from H!M and M!H, respectively and
therefore, interventions targeting sporozoites (M!H) or
gametocytes/gametes (H!M) stages of the parasite can
effectively block transmission. Since sporozoites are the
infective stage and are solely responsible for causing the
infection in human, most studies have been done in the M!H
interface, targeting sporozoites. While gametocytes do not
appear to have any direct role in causing pathology to the
vertebrate host and therefore relatively less explored, they play
a major role in maintaining the malaria burden. Successful
transmission of the parasite from vertebrate host to mosquito
and progression to further stages depends upon many factors like
(i) sex ratio and viability of gametocytes, (ii) host and vector
defense mechanism, (iii) behavior and occupation of the host,
which indirectly controls the exposure of the host to mosquito
(iv) vector density, behavior and competence, and (v) HBR of
mosquito. Therefore, the gametocytes inside the human host and
the gametocytes and gametes inside the mosquitoes need to be
removed for effective inhibition of transmission. However,
attempts to restrict transmission by interrupting the growth
and development of gametocytes and/or gametes are scanty
due to a lack of knowledge about the detailed biology of
transition from gametocytes to gametes, and downstream
physiology inside the mosquito midgut. The other reasons
could be the technical hurdles associated with inspection of the
approaches interrupting gametogenesis. Therefore, the
knowledge gap between the transition of the two parasite
stages needs to be filled, both in terms of morphological and
physiochemical aspects, for effective designing of transmission-
blocking strategies targeting the H!M interface. Current
explorations have improved our insights on gametogenesis.
The present review will emphasize on what is known about
gametogenesis, the knowledge gaps, and the possible and novel
avenues for developing transmission-intervention strategies by
interfering gametogenesis.
GAMETOCYTES: THE PRECURSOR
STAGE OF TRANSMISSION AT THE
HUMAN-TO-MOSQUITO INTERFACE

Sexual stage commitment (or gametocytogenesis) is thought to
occur in two ways. A subpopulation of merozoites is committed
to developing into the sexual form i.e., gametocytes, without
undergoing the erythrocytic schizogony inside the human host
June 2022 | Volume 12 | Article 877907
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(Bancells et al., 2019). The other route involves gametocyte
commitment at the erythrocytic schizont so that all the
merozoites from a committed schizont are destined to develop
into gametocytes of either sex but never both (Silvestrini et al.,
2000; Poran et al., 2017) (Figure 1). Gametocyte commitment in
P. falciparum is epigenetically regulated in which P. falciparum
heterochromatin protein 1 (PfHP1) is an essential factor for
mitotic proliferation. Additionally, PfHP1- dependent regulation
of PfAP2-G, a transcription factor initiated by de-repression of
the ap2-g locus during DNA replication which regulates the
switch from asexual proliferation to sexual differentiation
(Brancucci et al., 2014; Kafsack et al., 2014; Waters, 2016;
Poran et al., 2017; Llorà-Batlle et al., 2020). In a controlled
human malaria infection (CHMI) by P. falciparum, less than
10% of the total asexual parasites are found to be committed to
developing into gametocytes (Collins et al., 2018) while, in
natural infection, less than 5% of the total parasite biomass are
developed into mature gametocytes (Taylor and Read, 1997).

A committed merozoite upon sexual conversion by either
pathway forms a gametocyte-committed ring or gametocyte ring,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
which is the first sexual developmental stage in the human host.
Such rings then directly follow sexual development from stage I
gametocyte until they reach maturity (stage V gametocytes)
(Llorà-Batlle et al., 2020). The development of gametocytes in
P. falciparum is completed in five stages, i.e., stage I-V, with
distinct physiological and morphological changes (Hawking
et al., 1971). The immature gametocytes are sequestered in
host tissues, particularly in bone marrow and spleen, whilst
only the mature gametocytes (stage V) are found in the
peripheral blood circulation, ready to be taken up by the
mosquitoes (Joice et al., 2014; De Niz et al., 2018; Lee et al.,
2018; Obaldia et al., 2018). Protein synthesis and hemoglobin
digestion cease in mature gametocytes approximately after six
days of gametocyte development (Canning and Sinden, 1975;
Sinden et al., 1978; Hayward, 2000; Baker, 2010) and
gametocytes appear developmentally arrested at the G0 phase
of the cell cycle (Canning and Sinden, 1975; Sinden et al., 1996).
Nucleic acid synthesis is restricted to RNA synthesis, thereby
disabling further genome replication in gametocytes (Raabe
et al., 2009). Genome replication and cell division resumes
FIGURE 1 | Life of Plasmodium in the Vertebrate and Invertebrate Host. The complete life cycle of Plasmodium is largely categorized into asexual (inside the
mammalian host’s liver and RBCs) and sexual (including gametocytogenesis in the mammalian host’s RBCs and gametogenesis in the arthropod host’s midgut)
phases. Activation of male gametocyte includes endomitosis, egress and exflagellation to release 8 motile microgametes whereas activation of female gametocytes
includes maturation, rounding off and egress of single macrogamete. The approximate timing of each event after exposure to mosquito midgut environment is
illustrated in terms of mpe (minutes post entry) and pbm (post blood meal). The grey dashed lines indicate a zoomed-in depiction of micro-events. The black arrow-
headed dashed lines indicate the temporality and directionality of micro-events. EM, Erythrocyte membrane; PVM, Parasitophorus vacuole membrane; PPM, Parasite
plasma membrane; SPM, Sub-pellicular membrane; MTOC, Microtubule Organizing Centre; OB, Osmiophilic Bodies.
June 2022 | Volume 12 | Article 877907
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only after activation of the gametocytes inside the mosquito
midgut (Baker, 2010; Fang et al., 2017). Once ingested by a
mosquito, each male gametocyte forms up to eight flagellated
microgametes, whereas a female gametocyte develops into a
single macrogamete in a process called gametogenesis. The
physical and biochemical pathways involved in gametogenesis,
as well as their importance and obstacles, will be the focus of
this review.
FERTILIZATION, ZYGOTE FORMATION
AND OOKINETE DEVELOPMENT

Fertilization of an immotile macrogamete by a microgamete
involves the generation of slow flagellar waves and perpendicular
orientation of the microgamete to the surface of macrogamete.
The microgamete increases the frequency of the waves and
continues to do so for around 14 secs to enter into the
macrogamete (Sinden and Croll, 1975). Fertilization (fusion of
the nuclei) is preceded by the fusion of the plasma membranes of
male and female gametes; the axoneme and the adhered male
nucleus enter into the cytoplasm of the macrogamete which leads
to the formation of diploid zygote (fertilization) between 10 and
60 minutes post activation (mpa) (Janse et al., 1986). Male
gametes contact the female gametes through Pfs48/45-P230
mediated cell-cell adhesion (van Dijk et al., 2001), and
membrane fusion involves protein hapless 2 (HAP2) that
ensures onward development of the parasite (Liu et al., 2008).
The molecular mechanism of HAP2 that results in gamete fusion
is still unknown. In P. berghei, it has been shown that a plant-like
protein, Generative Cell-Specific 1 (Pbgcs1) gene, a highly
conserved locus across all Plasmodium spp., is expressed only
in microgametes and determines the male fertility and regulates
the interaction of micro- and macrogametes, and hence makes
an essential component of parasite fertilization (Hirai
et al., 2008).

The nuclear fusion is followed by DNA replication and
meiosis over the next three hours. It takes 19-36 hours post
blood meal for parasites to convert into ookinete. The
differentiation of zygote to ookinete stage involves meiosis and
polarity development, producing tetraploid motile and polarized
ookinete (Ranford-Cartwright et al., 1991).

The ookinete traverses through the mosquito’s midgut
epithelial cell layer from the apical side to reach the basal
lamina. Out of the five perforin like proteins present in
Plasmodium, Perforin like Proteins 4 (PLP4) are female
gametocyte-specific and have a role in ookinete development
and traversal through the mosquito midgut. This invasion step is
accompanied by host protective mechanisms that cause a
considerable reduction in ookinete numbers (Han, 2000).
However, little information is available on the considerable loss
in the number of ookinetes, the surviving ookinetes transform
into oocysts. The transition from ookinete to oocyst stage is one
of the major bottlenecks of Plasmodium development. The
oocyst grows extracellularly leading to formation of
sporozoites, which are then released into the body cavity of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
mosquito and enter its salivary glands (Hillyer et al., 2007).
Sporozoites are transmitted during the mosquito bite into the
mammalian host, wherein they initiate liver infection (Figure 1).
THE CRITICALITY OF GAMETOGENESIS
AND ITS BIOLOGY

Gametogenesis is a compound process of cell differentiation and
morphological changes likely engaging multiple pathways.
Although the development of gametocytes circulating in the
bloodstream of a vertebrate host is blocked in the G0 phase,
they respond within seconds once they reach the mosquito
midgut, which is also known as gametocyte activation. The
male and female gametocytes then lyse and exit from the host
erythrocytes. The female gametes are available for fertilization
after emerging from the erythrocytes, while microgametes
undergo various additional cellular actions at the same time to
duplicate their genome three times and assemble their axoneme
within 8-10 minutes of post-activation (Janse et al., 1986).
Microgametes are finally expelled from the residual body of the
male gametocyte in a spectacular process termed exflagellation
(Laveran, 1880; Billker et al., 2004). Fertilization between male
and female gametes occurs within 15 to 20 minutes of the
generation of dimorphic gametes.

Gametocyte Activation
The mature stage V gametocytes ingested by mosquitoes during
their blood meal are exposed to an entirely different milieu that
includes a decrease in temperature (from 37°C to around 20°C),
increase in pH (from 7.4 to 8.0) and gametocyte activating factor
(GAF), (Billker et al., 1997; Gregory E Garcia et al., 1998).
Exposure to these changes triggers gametocyte activation,
which is measured by the number of exflagellation centres. Of
the three known environmental stimuli, decrease in temperature,
along with one more factor (either pH or XA) is critically
required for gametocyte activation (Sinden and Croll, 1975;
Kawamoto et al., 1991). Therefore, pH and XA can be
substituted with each other (Sinden et al., 1996; Billker et al.,
1997). However, how these environmental signals, especially
temperature and pH, are translated into biochemical stimuli is
only partially understood, and the complete signaling cascade is
yet to be deciphered.

Role of pH
The physiology of the mosquito midgut plays a vital role in
gametogenesis. The pH (~7.4 to 8.0) experienced by the
gametocyte inside the mosquito midgut is not its physiological
pH, rather an increased one after a blood meal. The abdominal or
posterior midgut of hematophagous insects usually maintains a
pH of ~6 when not blood-fed (Santos et al., 2008). The alkaline
medium of mosquito midgut after a blood meal is attributed to
volatilization or hydration of CO2 released from blood in the
presence of enzyme carbonic anhydrase (CA), which reduces the
H+ concentration (thereby increasing pH) and produces HCO3

-

ions (Nijhout and Carter, 1978; Billker et al., 2000). The HCO3
-
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ions generated during this process induce exflagellation via an
ion-exchange mechanism (Kawamoto et al., 1992). Therefore,
the rise of midgut pH subsequently increases the pH of the
gametocyte or infected erythrocyte by activating the Na+/H+

exchange antiport system (Kawamoto et al., 1991). An increase
in intracellular pH of the parasite leads to Ca2+ mobilization and
cyclic guanosine monophosphate (cGMP) production (the
cGMP mediated gametogenesis is explained in a later section),
which explains how the change in pH regulates gametogenesis.
The shift in pH does not have any role in DNA synthesis per se
but affects other developmental events required for microgamete
assembly and exflagellation (Kawamoto et al., 1991)

Role of Temperature
As mentioned earlier, numerous studies have shown that a drop
in temperature is an inevitable factor for gametogenesis (Sinden
and Croll, 1975; Sinden, 1983; Kawamoto et al., 1991; Ogwan’g
et al., 1993; Billker et al., 1997), along with any one of the other
factors, i.e., pH and/or GAF. The Plasmodium spp. complete
their sporogonic development within the mosquito midgut in a
temperature range of 16-24°C, with P. berghei at a minimum
temperature of 16°C while P. falciparum at 18°C. The duration of
the maturation period is thermodynamically controlled, i.e., the
sporogony takes more time at lower temperatures, while at a
higher temperature, the development process is relatively faster
(S inden and Crol l , 1975) . DNA synthes i s dur ing
microgametogenesis occurs at 20° C and pH 7.3 but not at
37°C and 8.0 pH, suggesting that the enzymes involved in DNA
synthesis might be thermodynamically regulated (Kawamoto
et al., 1991). Even though the temperature is one of the
indispensable changes the parasite encounters inside a
mosquito, there are only studies in the late 90s showing how a
rise in temperature affects the sporogonic development in
mosquitoes and some speculations about how the temperature
change regulates the process, but no solid shreds of evidence exist
so far (Vanderberg and Yoeli, 1966; Kawamoto et al., 1991;
Noden et al., 1995).

Role of Xanthurenic Acid
XA is a byproduct of the ommochrome pathway of tryptophan
metabolism, which produces eye pigment in insects and is also
known to play a major role in gametocyte activation (Summers
et al., 1982; Garcia et al., 1998). XA is abundant inside the
mosquito head, especially in the salivary gland (0.28+/-0.05 ng),
and found in lower concentrations inside the midgut (0.05
+/-0.01 ng) in a non-blood-fed mosquito. (Nijhout, 1979;
Garcia et al., 1997; Okech et al., 2006). The reduction of XA
concentration in the salivary gland immediately after a blood
meal suggests that XA released in saliva during the blood meal
might have entered into the midgut, therefore a lower
concentration. of XA in the midgut than the salivary gland
(Okech et al., 2006). However, further studies have shown a
substantial increase in XA concentration immediately after a
blood meal to millimolar scale (~ 5mM), which is thrice the
magnitude of XA concentration in vertebrates (Lima et al., 2012).
In blood-fed insects, XA functions as an antioxidant, reducing
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
the oxidative stress generated by the heme or iron molecule after
digestion of a blood meal. XA binds to both heme and iron and
inhibits phospholipid oxidation, thereby acting as a protective
molecule in mosquitoes (Lima et al., 2012; Yamamoto
et al., 2018).

Although the role of an unknown mosquito factor in inducing
gametogenesis was reported during the early nineties (Micks
et al., 1948), its identity as a heat-stable and dialyzable molecule
was first reported by Nijhout as “mosquito exflagellation factor
(MEF)” (Nijhout, 1979). Later, the molecule was isolated from
the gut lumen and head of the mosquito, characterized as a small
and negatively charged chromophore and termed as “gametocyte
activating factor (GAF)” (Garcia et al., 1997). In 1998, the
compound was identified as XA (C10H7NO4), which can
induce gametogenesis in vitro at a concentration lower than
0.5 µM in P. berghei, P. gallinaceum and P. falciparum (Billker
et al., 1998; Garcia et al., 1998). An optimum infection is induced
at a concentration of 100 µM in P. falciparum (Bhattacharyya
and Kumar, 2001). The hydrophilic nature of XA suggests that it
has ligand-like properties and interacts with receptors on
gametocyte plasma membranes. However, the physiochemical
process that stimulates gametogenesis is yet to be known. XA acts
as a neurotransmitter in vertebrates and interacts with a specific
G-protein coupled receptors (GPCR) to induce neuronal
pathways (Taleb et al., 2012). A recent study in P. yoelii by
exploiting all gametocyte integral membrane proteins revealed
that a membrane protein called gametogenesis essential protein 1
(GEP1) interacts with guanylyl cyclase-a (GC-a) and induces
cGMP- (protein kinase-G)PKG-Ca2+ signaling cascade (Jiang
et al., 2020). The PyGEP1 is a transporter protein, expressed in
cytoplasmic puncta of male and female gametocytes and
conserved across the Plasmodium spp. Jiang et al. also reported
similar cellular localization of GEP1 and GC-a in the
cytoplasmic puncta. However, its direct role in sensing XA
could not be established. Another G-protein coupled receptor
protein found in P. berghei (PbGPR180) is engaged in the cGMP-
PKG-Ca2+ pathway and has a similar cellular location to GEP1
and GC- a (Wang et al., 2022). Although, there is a significant
decrease in oocyst intensity and prevalence rate in the pbgpr180
deleted parasites however, sizable amount of infection in
mosquitoes infected with pbgpr180 parasites suggest auxillary
role of the gene in parasite development in mosquito. Though it
is hypothesized that it senses the environment signal
(Temperature, pH or XA) essential for gametocyte activation,
the exact mechanistic contribution of the molecule is yet to be
determined. As a result, the question of how XA stimulates
gametogenesis remains unanswered.

The sensitivity of pH and XA towards amiloride, a Na+/H+

exchange system inhibitor (Kawamoto et al., 1991), suggests a
similar or common mechanism is followed by both of the factors
to induce physiological changes required for gametogenesis. It
may also explain why, in addition to temperature, the presence of
one of these components is sufficient for gametogenesis (Billker
et al., 1997). The enzymes involved in DNA synthesis,
erythrocyte membrane disruption and exflagellation might be
temperature and pH-sensitive and thus get activated at alkaline
June 2022 | Volume 12 | Article 877907
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pH and lower temperatures, present in the mosquito midgut
(Kawamoto et al., 1991). However, the order and reciprocity of
these environmental and chemical inputs to orchestrate
gametogenesis have yet to be deciphered.

Microgametogenesis
An enlarged nucleus characterizes mature microgametocytes
with an electron-dense intra-nuclear body, the cytoplasm with
very few endoplasmic reticula, mitochondria, apicoplast and
osmiophilic bodies (Sinden, 1982). The kinetochores present
inside the nucleus are coupled to the MTOC located on the
cytoplasmic side of the nuclear envelope through a nuclear pore.
A series of events (endomitosis, rounding up, exflagellation and
egress) occurred in male gametocytes within a short period to
produce eight motile microgametes. All these events are initiated
more or less simultaneously in a single time frame; some of these
events last less than a minute, while others last longer. As a result,
it is technically challenging to demarcate the chronology of the
events because most of them are initiated together and continue
concurrently. Furthermore, the order and duration of events
differ amongst Plasmodium species. We attempted to discuss
each of the events under successive headings, as best we could,
following their probable chronology.

Endomitosis
In Plasmodium, closed mitosis involves karyokinesis (nuclear
division) without concomitant cytokinesis (Arnot et al., 2011;
Gerald et al., 2011; Wall et al., 2018). In many organisms, the
centrosome serves as MTOC during mitosis, with separate pairs
of duplicated centrosomes forming the two poles of the mitotic
spindle (Conduit et al., 2015). But Plasmodium has structurally
discrete centrosomes that lack traditional centrioles. The spindle
microtubules in Plasmodium originate from an MTOC known as
centriolar plaque (CP), which resembles the spindle pole body
(SPB) of Yeasts and Dictyostelium (Francia et al., 2015). The CP
acts as the primary site for the formation of microtubules and
determining their movement during mitosis (Figure 1).

The Plasmodium life cycle comprises two atypical mitotic
processes: the first occurs during blood-stage schizogony and
resembles endomitosis (Gerald et al., 2011), while the second
occurs during the formation of microgametes in the mosquito
midgut (Sinden, 1991). During microgametogenesis, male
gametocyte undergoes three rounds of quick genome
duplication, changing from haploid to octoploid genome,
concurrent chromatin condensation and nuclear budding, with
an intact nuclear envelope. In P. falciparum, the first nuclear
division during microgametogenesis is complete within 7
minutes of post-activation (mpa), followed by rounding up and
the second nuclear division within 8 to 12 mpa. The final nuclear
division and exflagellation event coincide, releasing eight motile
microgametes (Sinden et al., 1978; Sinden, 1991). The
chromosome condensation and cytokinesis are mediated by an
E3 ubiquitin ligase named anaphase-promoting complex 3
(APC3), through proteolysis of cell cycle regulators (Wall et al.,
2018). Phosphoprotein phosphatase (PPP) plays a critical role in
regulating mitosis in eukaryotes. Recently, an orthologue of
eukaryotic PPP has been characterized in P. falciparum (PPP1)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
that interacts with kinesins and plays a significant role in spindle
formation and is associated with kinetochores (Zeeshan et al.,
2021). A highly co-regulated and coordinated expression of
genes during the intra-erythrocytic developmental cycle
governs DNA replication (Bozdech et al., 2003). During
gametogenesis, mitosis is an extremely fast and well-controlled
process. However, the molecular players involved in controlling
continued DNA replication during exflagellation have not been
completely delineated.

Exflagellation
Exflagellation is an exclusive phenomenon associated with male
gametogenesis. This process takes place in the mosquito midgut
where the activated male gametocytes undergo three rounds of
rapid genome replication, to transition from haploid to
octoploid. Each condensed haploid nucleus, along with its
associated MTOC, basal body, axoneme, and flagellum, forms
a microgamete that exits the main cellular body in a spectacular
process known as exflagellation. (Sinden, 1991). The process
starts with the violent commotion of the content of the
gametocytes, along with endomitosis producing eight nuclei in
the periphery of the cell (Garnham et al., 1967). Concurrently,
the single MTOC present in the microgametocytes divides and
transforms into eight basal bodies, one for each nucleus. These
basal bodies act as nucleation centres from where axonemes are
developed. The duration of exflagellation is determined by
species, temperature, and other unknown factors. Although a
single microgametocyte can produce up to eight microgametes,
abnormal circumstances such as vigorous movement, the
entanglement of the gametes, and inadequate attachment of
the nucleus and flagellum, to name a few, can lower the
number to four. (Sinden and Croll, 1975). In a recent study,
Yahiya and the group developed a workflow to visualize the live
microgametogenesis event in P. falciparum by live-cell
fluorescence imaging, providing a clear insights into
cytoskeletal rearrangement, DNA replication and segregation
for exflagellation (Yahiya et al., 2022). According to a recent
comparative transcriptome analysis study, the CCCH Zinc finger
protein (ZNF4) was shown to have higher expression in mature
male and female P. falciparum gametocytes, and its disruption
resulted in downregulation of male gametocyte-enriched
transcripts. It's an RNA-binding protein that helps with
mRNA metabolism during gametogenesis, especially during
exflagellation (Hanhsen et al. 2022).

Egress
Egress is an essential step in the life cycle of Plasmodium.
Plasmodium parasites, alternating between intracellular and
extracellular stages in which most parts of their life cycle
parasites reside in the parasitophorous vacuole (PV) within the
host cell. One of these stages is gametogenesis, in which the male
and female gametocytes that were developed inside the PV in the
host erythrocytes are egressed to form gametes that participate in
fertilization. This egress process involves the rupturing of two
membranes covering the parasites: i) the parasitophorous
vacuole membrane (PVM), and ii) the erythrocyte membrane
(EM) in which egress of gametocytes from host RBC and egress
June 2022 | Volume 12 | Article 877907
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of gamete from gametocyte PVM. However, the sequence of
membrane rupture is still unclear whether gametocytes egress
first from the RBC or vice versa.

Two different models are proposed to explain the egress
mechanism and directionality of rupture. In a very detailed
study on P. yoelii nigeriensis, rupture of EM and rounding up
of the gametocytes are presented as maturation of the
gametocytes and happens within 7 minutes post-activation
(mpa) followed by exflagellation (Sinden and Croll, 1975).
While in P. falciparum, within a minute of activation, the
PVM ruptures at multiple sites followed by disintegration of
subpellicular membrane (SPM). At last, the EM ruptures at a
single point, approximately 15 mpa, following the inside-out
egress model (Sologub et al., 2011; Yahiya et al., 2022). Also, in
this species the microgametocytes are aligned at the pore formed
in the erythrocyte by a single spindle pole before egress (Yahiya
et al., 2022). However, the factors that regulate the disruption of
PVM at multiple sites and EM at a single site are still gaps to be
filled. The inside-out egress model is the currently accepted
mechanism to explain the egress of gametes from the infected
RBCs. In P. berghei, a similar mode of egress has been reported,
which starts with the swelling of the cell, rupture of PVM,
discharge of content of the OBs, and finally rupture of EM via
a single pore opening (Andreadaki et al., 2018). Accordingly, by
the time EM ruptures, three round of DNA replication with
flagellar development approaches completion and ultimately
flagellated microgametes comes out by rupturing the
erythrocyte membrane. Therefore, the usage of the term
gametocyte egress creates ambiguity and hence it would be
more appropriate to use “egress of gamete” rather than “egress
of gametocyte”.

Molecular Mechanisms Involved in Egress
The egress in gametogenesis is controlled by proteins, localized
in OBs. OBs are membrane-bound, electron-dense structures
found in male and female gametocytes, with sex-specific
distinctive features such as the female OBs are thrice compared
to male OBs in size and density and mostly oval-shaped while
male OBs are club-shaped. The OBs carry many secretory
proteins essential for escape. They are clubbed beneath the
plasma membrane releasing their content through exocytosis
into the vacuolar space, thereby meditating the breakdown of
PVM and EM (Ishino et al., 2020). The molecular mechanism
behind egress of gamete has been studied by reverse-genetic
approaches in Plasmodium, especially in P. berghei. The effector
proteins essential for membrane rupture resides in OBs, and
their release is dependent on intracellular Ca2+ level (Olivieri
et al., 2015). Proteins associated with OB also show sex-
specificity. G377 is expressed only in female gametocytes and
regulates the development of OBs and has a role in egress. A
G377 knockout strain in P. falciparum female gametocytes shows
a reduced number of OBs with consequently reduced infectivity
to mosquitoes (de Koning-Ward et al., 2008). However, a similar
study in P. berghei supports the female specificity of G377 has
also been implicated in delayed egress phenotype albeit
dispensable for parasite (Olivieri et al., 2015). Proteins with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
specific roles in the egress of male gamete have also
been characterized.

In P. berghei, an isoform of actin named actin II has a
significant role in rupturing PVM of male gamete while no
considerable role in egress of female gametes, confirming male
specificity (Deligianni et al., 2011). One of the five perforin-like
proteins (PPLP) of P. berghei, PPLP2supports the egress of
gamete from the erythrocyte membrane (Deligianni et al.,
2013). However, in the pplp2 mutant parasites, the PVM
ruptures commonly while the EM remains intact (Deligianni
et al., 2013). While other OB-resident proteins, namely male
development-1/protein of early gametocyte 3 (MDV1/PEG3)
and gamete egress and sporozoite traversal (GEST), are
reported to express in both male and female gametes with
more abundance in female gametes (Lal et al., 2009; Ponzi
et al., 2009; Talman et al., 2011; Olivieri et al., 2015). Recently,
thrombospondin related adhesive protein (TRAP)-like protein ()
calledmerozoite TRAP-like protein (MTRAP), residing inOBs has
a significant role in egress of both sexes, and in its absence, gametes
were trapped inside the host cell (Kehrer et al., 2016). Another study
established the role ofMTRAP in both P. berghei and P. falciparum
gametogenesis by showing that inmutants parasites with disrupted
mtrap neither the PVMnor the EMwas ruptured in both the sexes
(Talman et al., 2011; Wirth and Pradel, 2012). Similarly, GEP in P.
berghei has been identified and shown to play an important role in
egress of both the sexes and exflagellation in male gametes
(Andreadaki et al., 2020). Lack of GEP causes aberrant rupture of
bothEMandPVManddelayeddischarge ofOBs (Andreadaki et al.,
2020). The co-localization of the mentioned proteins in OBs and
partially in other cellular parts, suggests a significant role of OBs in
sexual stage egress.

Macrogametogenesis
The mature female gametocyte (in comparison to the male
gametocyte) has a smaller nucleus, higher number of
osmophilic bodies and an extensive endoplasmic reticulum
(ER) with high-density ribosomes required for active protein
synthesis and subsequent development (Sinden, 1982; Khan
et al., 2005). The maturation of the female gametocyte thus is a
preparatory phase for the widespread protein synthesis with
female gametocyte activation. Furthermore, in the female
gametocyte, there is a large pool of female-specific mRNA,
which is bound by a conserved translation repression protein
complex consisting of development of zygote inhibited (DOZI)
and CAR-I/Trailer Hitch Homolog (CITH) (Mair, 2006; Mair
et al., 2010). These translationally repressed mRNA in storage
will not be translated, hence post-activation, female gametocytes
do not undergo genome replication, and give rise to a single,
large round-shaped and motionless haploid macrogamete.
Recently, it is reported that transcription factors of
Apicomplexan Apetala 2 family (ApiAP2) member AP2-O3,
also specifically active in the female gametocytes, is a
transcription repressor that regulates the formation of female
gamete (Li et al., 2021). In addition, recently, Plasmodium yoelii
negative on TATA-less1-G (PyNOT1-G) was discovered to play
dual and opposed sexual functions - reducing gametocyte
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commitment but supporting male (exflagellation) and female
(preparing the female gamete for further development)
gametogenesis (Hart et al., 2021). Though PyNOT1-G is a key
part of mRNA de-adenylation complex (Ccr4p-associated factor/
carbon catabolite repression4/negative on TATA-less (CAF1/
CCR4/NOT)) and plays a fundamental role in preserving the
mRNAs that are critical to Plasmodium sexual and early
mosquito stage development, the mRNAs is regulated by the
complex during gametogenesis is yet to be found (Hart et al., 2021).

Molecular Mechanisms in Gametogenesis
The effect of temperature and pH in gametogenesis were mostly
explored during the twentieth century. Later, multiple
methodologies were used to examine the involvement of XA in
triggering a signalling cascade for gametogenesis and sporogony
development. Three effector pathways have been shown to
orchestrate gametogenesis, either independently or in
coordination via secondary messengers (Figure 2). The
following sections go over the biochemical pathway(s) that XA
uses to regulate gametogenesis.

cGMP as a Secondary Messenger
The crucial role of cGMP as a secondary messenger and the
associated signaling pathway during gametogenesis has been
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
evaluated by exploiting GC and phosphodiesterase (PDE)
activity (Kawamoto et al., 1990; Kawamoto et al., 1991; Muhia
et al., 2001; McRobert et al., 2008). The intracellular cGMP level
in eukaryotes is regulated by GC and PDE by synthesizing and
hydrolyzing cGMP, respectively. In P. falciparum, there are two
membrane-associated GC (PfGCa and PfGCb) (Carucci et al.,
2000) and four putative cyclic nucleotide PDEs (PDE a-d), of
which PfGCa and PDE- d have significant roles during
gametogenesis (Taylor et al., 2008; Baker et al., 2017).
Enhanced activity of membrane-associated GCa in the
presence of XA at 100 mM concentration was reported, by
measuring the level of cGMP production (Muhia et al., 2001).
However, whether XA stimulates GCa by directly interacting
with it or via any other intermediate molecule(s) is yet to be
deciphered. GEP1, a novel protein reported to work upstream of
cGMP by inducing a conformational change in GCa, at the very
initial stages of gametocyte activation in P. yoelii. PyGEP1 is
exclusive to gametocytes and shown to be a critical for
gametogenesis as GEP1 deficient strains could not developed
exflagellation centres (EC) (Jiang et al., 2020). Other GPCR
molecules are recently been identified to work upstream of
cGMP in P. berghei and conserved across Plasmodium (Wang
et al., 2022). Inhibition of PDE activity using pharmacological
agents stimulates rounding up of mature gametocytes in the
FIGURE 2 | Signalling pathways involved in gametogenesis. Gametocytes are activated when exposed to an altered environment (lower temperature, higher pH and
xanthurenic acid) of the mosquito midgut. Xanthurenic acid interacts with an unknown receptor or channel, bringing a structural change in GEP1 and thereby
activating GCa. GCa converts GTP to cGMP, which in turn activates PKG. PKG phosphorylates ICM1 that would activate calcium channels present on the cellular
organelles like mitochondria to release Ca2+ ions. Ca2+ also activates PLC, which catalyzes PIP2 to IP3 and DAG. IP3 further regulates calcium channels to maintain
the intracellular calcium levels. Ca2+ acts as a secondary messenger to activate different CDPKs that modulate gametogenesis. CDPK5 regulates the secretion of
essential protein molecules stored in secretory organelles like microneme and OBs to orchestrate gametogenesis. CDPK4 control the cell division event, and CDPK2
helps in flagellar development and EM lysis, during male gametogenesis. CDPK1 plays a major role in the egress of gametes. CDPK3 has a role in the later stage of
gametogenesis and helps in ookinete migration to traverse the midgut cells to reach the basal lamina. GEP1, gametogenesis essential protein 1; GCa, Guanylyl
Cyclase alpha; GTP, Guanosine triphosphate; cGMP, cyclic guanosine monophosphate; PDE, phosphodiesterase; PKG, Protein Kinase G; ICM1, Important for Ca2+

mobilization 1; PLC, Phospholipase C; PIP2, phosphatidylinositol (4,5)-bi-phosphate; IP3, Inositol-(1,4,5)-trisphosphate; DAG, Diacylglycerol; CDPK, calcium-
dependent protein kinases; PLP2, Perforin-like proteins 2; MAPK, mitogen-activated protein kinases; NEK, NIMA like kinases; EM, Erythrocyte membrane; PVM,
Parasitophorus vacuole membrane; PPM, Parasite plasma membrane; SPM, Sub-pellicular membrane.
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absence of XA (McRobert et al., 2008). Deletion of the gene
coding for PDE-d leads to an impaired ability for gametogenesis,
due to premature increase in cGMP level; hence, the tight
regulation of intracellular-cGMP level is critical for gametocyte
activation (Taylor et al., 2008). These studies strongly indicate
that regulation of intracellular cGMP level via GCs and PDEs is
crucial for rounding up and exflagellation events (Taylor
et al., 2008).

An increase of cGMP triggers the activation of cGMP-
d ep end en t PKG tha t c on t r o l s t h e s yn t h e s i s o f
phosphatidylinositol (4,5)-bi-phosphate (PIP2) (Brochet et al.,
2014). Inhibition of PKG has been shown to dysregulate
phosphoinositide metabolism leading to defects in egress of the
parasite from red blood cells and ookinete motility (Brochet et al.,
2014). Phosphatidylinositol specific phospholipase C (PI-PLC) is
one of the classical effector molecules of intracellular Ca2+

signaling that hydrolyze PIP2 into diacylglycerol (DAG) and
inositol-(1,4,5)-trisphosphate (IP3) (Berridge et al., 2000). While
DAG activates protein kinase C (PKC), IP3 plays an important role
in Ca2+ mobilization. It regulates the efflux of Ca2+ from cellular
stores like ER and other organelles into the cytoplasm (Martin
et al., 1994; Raabe et al., 2011), which acts as intracellular
messenger and bind with effector molecules to amplify the
signal and promotes gametogenesis (McRobert et al., 2008).
Thus, activation of PKG leads to an increase in intracellular Ca2
+ levels (Brochet et al., 2014). Cross-talk and interdependency
between secondary messengers is a complex phenomenon in
eukaryotes. Here, cGMP and Ca2+ act together to regulate the
phosphoinositide metabolism via PKG and PI-PLC effector
molecules to control gametogenesis. XA-mediated activation of
gametocytes results in rounding up of both male and female
gametocytes with a concomitant increase in cytosolic calcium level
(McRobert et al., 2008) that perhaps leads to the activation of
calcium-dependent protein kinases (discussed in the subsequent
section). A quantitative global phosphoproteomics analysis of P.
falciparum suggests cGMP/PKG as a signaling hub, that
phosphorylates the proteins involved in different cellular events
associated with nuclear division, egress and cell motility (Alam
et al., 2015).

Role of Ca2+ Signaling
Ca2+ is the ubiquitous cellular secondary messenger in various
organisms and regulates diverse signaling events. The
intracellular Ca2+ signals are translated into cellular responses
via a family of protein kinases named calcium-dependent protein
kinases (CDPKs) that regulate different events of gametogenesis
(Sebastian et al., 2012). The efflux mechanism to maintain
cellular calcium levels is controlled either by Ca2+ channels or
via receptors. In eukaryotes, there are various channels: two-pore
channels (TPRs) and transient receptor potential (TRP) channels
and receptors: inositol 1,4,5-triphosphate receptor (IP3R) and
Ryanodine receptors (RyR), that helps in maintaining the
intracellular Ca2+ level. However, in Plasmodium, a similar
model of Ca2+ signaling is not validated yet. For example, even
though cGMP-PKG and PI-PLC’s role in initiating and elevating
Ca2+ mobilization during gametogenesis are well documented,
the IP3 receptor (IP3R) is not yet identified in Plasmodium
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
(Garcia et al., 2017). Few TPR channel homologs were
successfully located while searching for the mammalian
orthologs of Ca2+ channels and receptors in Plasmodium.
However, receptors of IP3 and Ryanodine could not be
identified yet (Prole and Taylor, 2011), which suggests that
either the receptor is yet to be characterized or Plasmodium
might have specific exclusive machinery to govern Ca2+

mobilization. In general, Apicomplexans lack many important
calcium channels and related proteins, that further supports the
existence of a distinctive calcium influx-reflux mechanism in
Plasmodium, fewer Ca2+ channel-related genes are present
compared to other eukaryotes as well as other Apicomplexan
like T. gondii. P. falciparum is known to have more than 60
calcium-binding proteins (CBP), characterized by the presence
of conserved structural helix-loop-helix motif, known as EF-
hand domain. However, most of them are hypothetical (Budu
et al., 2016). In a recent study, a multipass membrane protein
named important for Ca2+ mobilization 1 (ICM1) was
phosphorylated by PKG and regulated calcium mobilization
from cellular stores in both asexual and sexual stages of the
parasite (Balestra et al., 2021). However, whether ICM1 is the
receptor of IP3 or part of a Plasmodium-specific calcium channel
is still to be confirmed.

Role of CDPKs
A cascade of protein kinases activated in the Ca2+ signaling
pathways have a crucial role at many stages of the Plasmodium
life cycle, including the sexual stages (Ghartey-Kwansah et al.,
2020). The Apicomplexan CDPKs have three functional domains
namely, Ser/Thr kinase domain (KD), junction domain (JD) and
CDPK activation domain (CAD). When Ca2+ binds to CDPK,
the kinase refolds, exposing the KD to interact with the substrate.
In P. berghei, 14 protein kinases are characterized to be involved
in sexual development. In P. falciparum, the CDPK family has 7
members (CDPK 1-7), of which CDPK1 plays a vital role in
gametocyte egress and zygote development by translationally
activating the messenger RNAs (mRNAs), which are
translationally repressed in macrogametes by mRNA
ribonucleoproteins (mRNP) like the RNA helicase DOZI and
the Sm-like factor CITH (Sebastian et al., 2012). CDPK1 in P.
falciparum is shown to play a critical role in gametocyte egress
from red blood cells. CDPK1 depleted parasites show a defect in
egress of both the male gametes and female gametes. Moreover,
CDPK1 KO female gametocytes do not round up post-induction
(Bansal et al., 2018). CDPK2 is known to have a significant role
in the development of flagella and RBC membrane lysis (Bansal
et al., 2017). Interestingly, while CDPK1 seems essential for both
male and female gametogenesis, CDPK2 appears to be
specifically involved in the male gametogenesis phenomenon
(Bansal et al., 2017). CDPK3 has a role in the later stages of
sexual development, i.e. during migration of ookinete through
mosquito midgut, however dispensable in gametogenesis
(Bennink et al., 2016). In P. berghei, CDPK4 controls three
distinct events during male gametogenesis, within 30 secs to1
min of activation. The parasites devoid of CDPK4 fails to
undergo DNA synthesis, a prerequisite for the subsequent
three mitotic divisions that leads to the formation of eight
June 2022 | Volume 12 | Article 877907
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male gametes (Billker et al., 2004). It helps in the first round of
genome replication, mitotic spindle assembly, DNA
condensation, cytokinesis and axoneme motility (Fang et al.,
2017). The role of CDPK4 in P. falciparum (PfCDPK4) in
exflagellation was studied using a chemical genetic approach,
(Ojo et al., 2012; Ojo et al., 2014). A recent study unraveled the
significant role of PfCDPK4 in DNA replication, mRNA
translation and cell motility (Kumar et al., 2021). The study
also identified the putative substrates by identifying
hypophosphorylated protein residues in Pfcdpk4- strain
compared to wild-type. The list also includes GEP1, which is
recently characterized to interact with XA (Jiang et al., 2020).
However, PfCDPK4 has no significant role in female
gametogenesis. CDPK5 in P.falciparum (PfCDPK5) plays an
important role in the egress of parasites by regulating the
release of molecules from secretion-specific organelles like OBs
and microneme during the erythrocytic and pre-erythrocytic
stages (Absalon et al., 2018; Govindasamy and Bhanot, 2020).
However, there is no direct evidence for CDPK5 playing a role in
egress of gametes from activated gametocytes.

The downstream activation of CDPK inducing mitogen-
activated protein kinases (MAPK) regulate the events of DNA
replication, axoneme assembly, nuclear division and egress of the
gametes (Sinden, 2009). In a recent study, P. falciparum specific
MAP kinase 2 (PfMAP-2) is deciphered as an essential component
for genome condensation, axoneme beating and cytokinesis, but
does not have any role in genome replication. The study further
revealed that PfMAP-2 regulates these events by phosphorylating
the target(s) involved in gametogenesis but not by controlling gene
expression (Hitz et al., 2020). PfMAP-2 is an atypical MAPK, with
Thr-Ser-His activation site, which is different from the activation
site usually found in proteins of the MAPK family. The PfMAP-2
is known to be phosphorylated by NIMA (never in mitosis/
Aspergillus) like kinases (PfNek-1) (Dorin et al., 2001). The
enzymes belong to the Nek family and have a critical role in
regulating mitosis and meiosis, localized in the spindle pole body
(SPB), the MTOC in Plasmodium. In P. falciparum, four protein
kinases of the Nek family (PfNek1-4) have been characterized, of
which PfNek-1 is expressed only in male gametocytes (Dorin-
Semblat et al., 2011), while PfNek-2 and PfNek-4 are expressed in
both male and female gametocytes (Reininger et al., 2005;
Reininger et al., 2009). The synergistic role of PfNek-2 and
PfMAP-2 to activate exogenous substrates is suggested but not
scrutinized further.

Subsequently, the loss of two proteins – i) MAP-2 and ii) cell
division cycle protein 20 (CDC20), hinders chromatin
condensation, axoneme motility and cytokinesis, thereby
inhibiting the formation of the male flagellar microgametes
(Rangarajan et al., 2005; Tewari et al., 2005; Guttery et al.,
2012). Also, exhaustion of the Metallo-dependent protein
phosphatase PPM1 in P. berghei causes impaired exflagellation
(Guttery et al., 2014), while reducing the Ca2+-dependent
phosphatase calcineurin affects male gametogenesis and
subsequent fertilization in the rodent malaria parasite (Philip
and Waters, 2015). Recently, another protein in P. berghei, Pb22
is characterized to have an essential function in male
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
gametogenesis by producing defective male gametes, which
further affects egress, fertilization and ookinete formation (Liu
et al., 2021). Though Pb22 is expressed in the membrane of both
male and female gametes, it has no significant role in female
gametogenesis, as proved by the cross-fertilization of male and
female gametes of the Pb22KO line with wild strains (Liu
et al., 2021).
GAPS AND CHALLENGES

It would be off beam to state that the research concerning sexual
stages of Plasmodium is scarce. There are plenty of studies that
effectively identified many essential and stage-specific proteins
that play a significant role in gametogenesis in different
Plasmodium spp. Unfortunately, we still lack a clearer picture
of the complete pathway. Needless to say, one of the factors
driving these challenges include the complex life cycle of the
parasite involving completely different life forms and stages.
Peculiar to this is gametogenesis, which is comparatively more
complex than any other Plasmodium life cycle stages as it
involves many concurrent physiochemical events that are
driven by multiple signaling cascades and happening in two
sexually dimorphic cells. The order and synchronization of the
signaling pathways associated with gametogenesis are partially
solved. With the help of different molecular techniques like
reverse genetics, chemical genetics, phosphoproteome and
transcriptome analysis, more and more genes and proteins are
being identified to play essential roles in Plasmodium
gametogenesis. However, at the same time, it is becoming
difficult to fit them at their respective places in the complex
signaling pathways involved in gametogenesis. Reverse genetic
studies are still one of the most powerful techniques to identify
the genes and proteins critical for gametogenesis, the problem is
that they are unable to decode the mechanisms of action of these
identified critical molecules. Hence, despite significant
development in the identification of genes, proteins and other
molecules involved in gametogenesis, they seem to resemble
numerous dots of a dot-puzzle that seldom do not contextually
connect and pose difficulties in deciphering the ‘bigger picture’
needed to solve the gametogenesis puzzle. Many dynamically
intriguing questions that preclude the connection between dots
still prevail, including: (i) Whether reduced temperature,
increase in pH and XA act independently, together, or in
tandem? If independently, which of them is the most potent
trigger? If in tandem, which of these is a precursor event? (ii) Are
these triggers sex-specific? (iii) How does the reduced
temperature and/or increase in pH translate into chemical
stimuli to initiate gametogenesis? (iv) Although GEP has been
identified to interact with XA to regulate activation very recently,
it is yet to be found out whether GEP1 binds to GCa directly or
some other intermediate molecules facilitate the pathway; (v)
How do the secondary messengers interact with each other to
orchestrate the complete signaling cascade? (vi) What is/are the
specific receptor/s for IP3 that is/are critical regulator/s of
intracellular calcium release?
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CONCLUDING REMARKS

There have been significant declines, at least in some countries,
in malaria-related morbidity and mortality over the last few
decades, that have shifted the focus of current research from
attenuation of disease towards developing new transmission-
blocking strategies to reduce transmission and achieve
elimination of malaria. This will not be possible without
having effective vaccine/s and drugs to prevent malaria
transmission. For this to effectively happen, the parasites’
sexual stages in particular, the gametocyte-gamete transition,
(also called gametogenesis) represent a key bottleneck and an
ideal niche for identifying novel targets and translating them into
effective public health strategies to interrupt transmission.

Although recent developments in dissecting and deciphering
gametogenesis, including the complex phenomenon of
gametocyte activation and its signaling pathways, have led to
the identification of novel targets, there still exist critical
knowledge gaps that preclude a more complete understanding
of gametogenesis and its intricacies. Some of these gaps have
been highlighted here but it can be unarguably concluded that
there is an urgent need to delve deeper into this niche and
connect the dots to be able to timely develop and deploy effective
molecules into the drive for malaria elimination and eradication.
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