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Abstract
Citation between papers can be treated as a causal relationship. In addition, some citation

networks have a number of similarities to the causal networks in network cosmology, e.g.,

the similar in-and out-degree distributions. Hence, it is possible to model the citation net-

work using network cosmology. The casual network models built on homogenous space-

times have some restrictions when describing some phenomena in citation networks, e.g.,

the hot papers receive more citations than other simultaneously published papers. We pro-

pose an inhomogenous causal network model to model the citation network, the connection

mechanism of which well expresses some features of citation. The node growth trend and

degree distributions of the generated networks also fit those of some citation networks well.

Introduction
Citation network of papers is a directed graph, which describes the inter-citations between the
papers. The network regards papers as nodes and contains a directed link from paper i to paper
j, if i cites j. The idea or method of a paper, more or less, is inspired by its references. The refer-
ences thus can be treated as sources or causes of the idea or method of the paper. Therefore,
the link in citation network is one of causal relationships [2]. Causal relationship extensively
exists in physical, biological and social networks [3]. For example, the relationship defined by
light cone structure induces a directed graph, called causal network, from universe models [4–
6]. Nodes of those networks are sprinkled randomly and uniformly onto spacetimes. Two
nodes will be linked by a directed edge from the young node to the old one, if one node is in the
other one’s light cone.

D. Krioukov et al proposed the concept of network cosmology in 2012 [7], showing that in-
and out-degree distributions in the causal networks of de Sitter space are power-laws and Pois-
sonian respectively [8–10]. Some citation networks [11–16] also have such degree distributions.
However, some assumptions of the existing models in network cosmology are not satisfied by
various citation networks. For example, in the casual network on a patch of de Sitter space [7],
the growth velocity of nodes at time t is proportional to cosh(t), which is too fast for some em-
pirical data. In addition, the existing casual networks are built on homogenous spacetimes.
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Hence the nodes born at the same time have equal opportunities to be linked. However, as the
empirical studies about ‘attractiveness’ or ‘fitness’ of scientific papers show, the hot papers can
receive more links or citations than other contemporaneous papers [17, 18].

We propose an inhomogenous casual network model for citation networks. At each time,
we generate a circle, whose center is on a fixed axis, and sprinkle some nodes uniformly and
randomly onto this circle. The radius of the circle is proportional to the number of nodes on
the circle. Each node attaches an intervals for its angular coordinate, called influence region.
Generate a directed link from node i to node j, if i’s angular coordinate belongs to the influence
region of j and the birth time of i is later than that of j. The influence region gives a casual rela-
tionship for nodes and can be assumed to be inhomogenous: the nodes born simultaneously
can have different lengths of influence region.

The connection mechanism is shown to effectively describe the main features of the citing
behavior of papers, including relativity, latest, inheritance, popularity, and aging. Assume the
growth function of nodes to be an exponential or a constant function of time and the length of
the influence region to be inversely proportional to the number of existing nodes. Then the in-
creasing trend of new-born nodes, expected out-degree evolutionary trend, and distributions of
the network generated by the model are proved to fit those of some citation networks well.

The inhomogenous casual network model
Consider a (2 + 1)-dimensional spacetime with circumference polar coordinates {r, θ, t}. The
nodes of the model are uniformly and randomly sprinkled onto a cluster of circles of the space-
time whose centers are on the time axis(Fig. 1). Hence we name it concentric circles model(CC
model). For each time t between times t = 1 and t = t0,

Step 1. Sprinkle N(t) nodes uniformly and randomly onto a new circle S1 with radius RðtÞ ¼
NðtÞ
2pd centred at point (0, 0, t), where δ is a positive real number;

Step 2. Give each node i an interval Di for its angular coordinate θi to express its influence
region;

Fig 1. Two networks generated by the CCmodel. The functions of the CCmodel are set to be N(t) = 5, j Di j¼ 0:2bðyiÞ
ti

for the case in Panel(a), andN(t) =

[e0.1t], j Di j¼ 0:15bðyiÞ
½e0:1ti � for the case in Panel(b). β(�) is given by Equation (2) for both cases.

doi:10.1371/journal.pone.0120687.g001
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Step 3. Connect node i and node j from i to j, if θi 2 Dj and ti > tj.

Since the radius coordinates of nodes are not used in what follows, we express nodes by
their time and angular coordinates. For node i with coordinates (θi, ti), the arclength of influ-
ence region is assumed to be

jDij ¼ aðtiÞbðyiÞ; ð1Þ
where α(ti) is inversely proportional to the number of the existing nodes at time ti, and β(θi) is
a piecewise continuous non-negative function of angular coordinate. For example,

bðyÞ ¼
4; y 2 ½0; 0:5pÞ;

1; y 2 ½0:5p; 2pÞ:
ð2Þ

(

For citation networks, α(�) gives a description of the phenomenon that current research is
more and more special. β(�) gives an expression of the inhomogenous popularity of papers
published simultaneously.

In this paper, we discuss two type of N(t): exponential and constant functions. Some jour-
nals publish a fixed number of papers at each time. To deal this case, we can assume N(t) =m
and

jDij ¼
bðyiÞ
ti

; ð3Þ

wherem is an integer. In some journals, e.g., PNAS, the number of published papers is growing
exponentially with time. To model the citation networks from such journals, we assume N(t) =
m[elt] and

jDij ¼
bðyiÞ
½elti � ; ð4Þ

wherem is an integer, [�] is the rounding function, and l is a positive real number.
When the influence region is given by Equation (4) and β(�) is a constant function, the

model is a time discrete version of the causal network on a patch of a (1 + 1)-dimensional ho-
mogenous spacetime, whose metric in circumference polar coordinates {t 2 [1, t0], θ 2 R

mod 2π]} is given by

ds2 ¼ �dt2 þ e2ltdy2: ð5Þ

Metric (5) is a solution of generalized hyperbolic geometric flow [19, 20]. This flow is the re-
sulting equations taking leading terms of the Einstein equations.

In the causal network of spacetimes, the relationship between nodes is defined by light cone.
As Fig. 2 illustrates, the future light cone has a counterpart in the CC model: the influence re-
gion, but the past light cone doesn’t have one. In fact, if node i belongs to node j’s past light
cone, then jmust belong to i’s future light cone. Hence the connection relationships given by
the past light cones are redundant.

Modeling the citation behavior
The connection mechanism (Step 3) of the CC model gives geometric expressions to four fea-
tures of the citing behavior between papers: relativity, latest, inheritance, and popularity.

In order to show details of the sources of the authors’ information, ideas and arguments, it
is a basic academic requirement that the papers cite some references which are relevant to
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themselves. The definition of the influence region expresses the relativity of the nodes: if the
angular coordinate of node i belongs to Dj, we say that i is relevant to j. Hence the connection
mechanism gives a geometric realization that the nodes preferentially connect to the
relevant nodes.

Papers cite the latest relevant references. It shows that the authors have a good understand-
ing of recent developments. As Fig. 2(a) shows, the node in the CC model can connect to the
latest relevant node.

Paper and the papers it cited usually have some common references. This phenomenon can
be called inheritance. In the CC model, the smaller the angular distance Δ(θi, θj) = π − jπ − jθi −
θjjj is, the more likely θi 2 Dj, and so i is relevant to j. If the values of Δ(θi, θj) and Δ(θj, θl) are
small, the value of Δ(θi, θl) is necessarily small because of the triangle inequality. It means that
the probability of i 2 Dl is high. Therefore, the connection behavior of the CC model has the
inheritance feature.

Papers prefer to cite the popular or hot papers. Here the node popularity is expressed by the
length of node influence region. Since the nodes in the model are distributed uniformly, the
nodes with larger influence region have more chances to attract connections. It means that the
nodes in the model also prefer connecting to the popular nodes.

The popularity of papers has been fully considered in some typical models for citation net-
works [21–28]. Those inspiring and effective models focus on fitting the in- and out-degree dis-
tributions, clustering coefficients, aging, and assortative property of citation networks.
Comparing to those models, as shown in the following sections, the CC model can not only fit
the in- and out-degree distributions of some citation networks, but also fit the trends of the an-
nual number of published papers and the trends of the annual average reference lengths of
some datasets of papers. In terms of other properties of citation networks, e.g., the abundance
of the triangle: paper i cites paper j, j cites l, and i cites l [27], the model of Wu et al [28] can
generate a network with a giving a number of triangles that matches the empirical citation net-
works. The CC model needs to be generalized to have such ability, which is a problem we need
to consider in the future.

The relativity of contents is one of the reasons for citation behaviors, which is not fully con-
sidered in above models for citation networks. The relativity is called similarity in the Populari-
ty× Similarity optimization model(PSO) [29]. It is an undirected network growth model. In
this model, instead of preferring the popular nodes, each new node is connected to a constant
number of the existing nodes by optimizing certain trade-off between popularity and similarity.
Comparing to the PSO model, the essential difference is that the popularity is inhomogenous

Fig 2. The illustration of the connection mechanisms of the CCmodel(Panel a) and a causal network on a (1 + 1)-spacetime (Panel b). The influence
region of the CCmodel is the counterpart of the future light cone.

doi:10.1371/journal.pone.0120687.g002
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in the CC model, but homogenous in the PSO model: the nodes born at the same time has the
same popularity.

Inheritance is called copy in the copy model [11]. In this model, a new node attaches to a
randomly selected node, as well as all the ancestors of the selected node. It means that if the
new node i connects to the existing nodes j and l, there must be a link between j and l. The CC
model does not have this property. In fact, it is a general phenomenon in citation networks that
two references cited by one paper may not have a citation between them. In addition, the rela-
tivity of the nodes is not considered in the copy model.

Degree distributions
We calculate the degree distributions for the case whose influence region is defined by Equa-
tion (4). The distributions for the other case is the same. The calculation has a little different
and is omitted here. For the approximations ‘�’ in this section, the value of the negligible term
is smaller than one tenth of that of the remaining one.

The node with coordinate (θ, t) belongs to the influence region of the nodes whose coordi-

nates (ϕ, s) satisfy Dðy; �Þ < bð�Þ
½els � and s< t. When bð�Þ

½els� is small enough, β(ϕ)� β(θ), because that

β(�) is piecewise continuous. Hence the expected out-degree k+(θ, t) of the node with coordi-
nates (θ, t) is

kþðy; tÞ ¼
Xt�1

s¼1

bðyÞ
½els� RðsÞd ¼

Xt�1

s¼1

bðyÞ
½els�

m½els�
2pd

d � bðyÞm
2p

t: ð6Þ

The approximation holds for t> 10. Since the number of nodes increases exponentially with
time, the nodes born in times [1, 10] take a small proportion of the total nodes. The expected
out-degree of those nodes are small. This makes that the forepart of a fitting curve has a little
shifting from the synthetic data of the out-degree distribution(Fig. 3(a)).

The influence region of the node with coordinates (θ, t) contains the nodes whose coordi-

nates (ϕ, s) satisfy Dðy; �Þ < bðyÞ
½elt � and s> t. Hence the expected in-degree k−(θ, t) of the node

Fig 3. The in- and out-degree distributions of a network generated by the CCmodel. The functions of the CCmodel are set as follows: N(t) = [e0.1t],
j Di j¼ 0:15bðyi Þ

½e0:1ti � , and β(�) is given by Equation (2). The fitting functions in Panel (a) are the Poisson distribution fðkÞ ¼ ak e�a

k! and the mixture Poisson distribution

given by Equation (13). The fitting functions in Panel (b) are the power-law functions f(k) = ak−2 and fðkÞ ¼ k�gX1
n¼0

ðnþ xminÞ�g.

doi:10.1371/journal.pone.0120687.g003
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with coordinates (θ, t) is

k�ðy; tÞ ¼
Xt0
s¼tþ1

bðyÞ
½elt� RðsÞd ¼

Xt0
s¼tþ1

bðyÞ
½elt�

m½els�
2pd

d � bðyÞm
2pl

elðt0�tÞ � 1
� � � bðyÞm

2pl
elðt0�tÞ: ð7Þ

The first approximation holds for elt > 10 and l< 1 (approximate el − 1 by the first two terms
of its Taylor expansion). The second approximation holds for el(t0 − t) > 10. So the restrictions
for time are t > 1

l
logð10Þ and t0 � t > 1

l
logð10Þ. Since the nodes that don’t satisfy the restric-

tions are born early or late, the expected in-degree of those nodes are large or small. This
makes that the forepart and tail of the fitting curve shift from the synthetic data of the in-degree
distribution(Fig. 3(b)).

Since the nodes are distributed according to Poisson point process, the degrees in those net-
works will not be exactly equal to their excepted values. In order to find the correct in- or out-
degree distributions, as Ref. [7] said, we have to average the Poisson distribution,

pðk�ðy; tÞ ¼ kÞ ¼ 1

k!
k�ðy; tÞð Þke�k�ðy;tÞ; ð8Þ

which is the probability that node born at time t 2 [1,t0] has in- or out-degree k, with the tem-
poral density ρ(t). In the CC model,

rðtÞ ¼ m½elt�Pt0
s¼1 m½els� �

lelt

elt0 � 1
/ elt: ð9Þ

of nodes born at time t, in which the approximation holds for elt > 10. So the out-degree distri-
bution is the integration

pðkþ ¼ kÞ ¼ 1

2p

Z 2p

0

Z t0

1

pðkþðy; tÞ ¼ kÞrðtÞdt
� �

dy

/ 1

2p

Z 2p

0

Z t0

1

ða1tÞke�a1telt

k!
dt

 !
dy � 1

2p

Z 2p

0

a1

Z a1t0

a1

tke�t

k!
dt

� �
dy

¼ 1

2p

Z 2p

0

a1
G kþ 1; a1ð Þ � G kþ 1; a1t0ð Þ

k!

� �
dy

� 1

2p

Z 2p

0

ak1e
�a1

k!
1� tk0e

�a1ðt0�1Þ� �� �
dy � 1

2p

Z 2p

0

ak1e
�a1

k!

� �
dy;

ð10Þ

where Γ(�, �) is the upper incomplete gamma function, a1 ¼ bðyÞ
2p , and τ = a1 t. The condition for

the first approximation is a1 > 10l, which is satisfied by letting bðyÞm
2p > 10l. We have used

limx ! 1Γ(s + 1, x) = xse−x in the second approximation, which requires a large a1. The third
approximation holds for tk0e

�a1ðt0�1Þ < 0:1, which can be satisfied by setting a large t0. When
β(θ) is a piecewise constant function, p(k+ = k) is close to a weighted summation of Poisson dis-
tributions. This summation is called mixture Poisson distribution.

Modeling the Citation Network by Network Cosmology

PLOS ONE | DOI:10.1371/journal.pone.0120687 March 25, 2015 6 / 13



The in-degree distribution is calculated as follows,

pðk� ¼ kÞ ¼ 1

2p

Z 2p

0

Z t0

1

pðk�ðy; tÞ ¼ kÞrðtÞdt
� �

dy /
Z 2p

0

1

k!

Z a2e
lðt0�1Þ

a2

tk�2e�tdt

 !
dy

� R 2p

0

e2�kðk� 2Þk�2

k!

Z a2e
lðt0�1Þ

a2

e
�
ðt� kþ 2Þ2
2ðk� 2Þ dt

0
BB@

1
CCA dy

� 1

kðk� 1Þ
Z 2p

0

Z a2e
lðt0�1Þ

a2

e
�
ðt� kþ 2Þ2
2ðk� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðk� 2Þp dt

0
BBBB@

1
CCCCA dy;

ð11Þ

where a2 ¼ bðyÞm
2pl , and τ = a2e

l(t0−t). Here we have used the Laplace approximation in the third step and the

Stirling’s approximation ðk� 2Þ! � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðk� 2Þp

k�2
e

� �k
in the fourth step. The integration in the fourth

step is independent of k approximately. It can be verified as follows,

d
dk

Z T1

T2

e �ðt�kþ2Þ2
2ðk�2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðk� 2Þp dt ¼ e�
T�kþ2ð Þ2
2k�4

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðk� 2Þp 1þ T

k� 2

� �
jT1T2 � 0; ð12Þ

where T1 = a2e
l(t0−1) and T2 = a2. The condition for the approximation is a large a2 or k, which

is satisfied because of the same reason for the third step of Equation (10). The in-degree distri-
bution is thus a power-law with exponent 2. The numerical experiments (Fig. 3) confirm the
results given by Equations (10, 11).

Fitting the empirical data
In this section, the trends of node growths, the trends of the expected out-degree of nodes, and
the degree distributions of some citation data are fitted by above functions respectively. The
paraments of the functions are estimated by cftool: a curve fitting toolbox in MATLAB. Four
statistical measures: The sum of squares due to error (SSE), Root mean squared error (RMSE),
Coefficient of determination (R2), and Degree-of-freedom adjusted coefficient of determina-
tion (Adjusted R2) are used for measuring the goodness of fits.

The in-degree distributions are also fitted by Clauset et al’s method [37]. The fitting func-
tion is f ðkÞ ¼ k�gX1

n
¼0ðnþxminÞ�g

, where γ is the scaling exponent and xmin is the lower bound of

the power-law behavior. Here, the parameters γ and xmin are calculated by Clauset et al’s pro-
grams (http://tuvalu.santafe.edu/aaronc/powerlaws). The p-value (p) and the maximum dis-
tance between the cumulative distribution functions of the data and the fitted function (D) are
also calculated by their program to show the goodness of fit tests.

The citation network can only include a subset of the entire papers: if a paper cites, or is
cited by, a paper outside the subsets, the network does not contain any information about this.
Hence a node’s out-degree is not be exactly equal to the length of its corresponding paper’s ref-
erences, and its in-degree is also not equal to that in the entire citation network containing the
entire papers. We call the in- and out-degrees in the entire network expected in- and out-
degrees.

Consider the dataset for papers from 1915 to 2012 of Proceedings of the National Academy
of Sciences(PNAS, http://pnas.org). The first fitness is the exponentially increasing trend of the
number of new-born nodes(Equation (9)). It is illustrated in Fig. 4(a) that the number of papers
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published on PNAS in a given year roughly grows exponentially with time. The annual number
of papers in DBLP dataset also roughly shows the exponential increasing trend(Fig. 4(c)).

The second fitness is the linearly increasing trend of the expected out-degree of nodes(Equa-
tion (6)). It is illustrated in Fig. 4(b) that the annual average number of references of each
PNAS paper grows with time, which is a piecewise linear increasing function of time approxi-
mately. The data displays a turn around the year of 1945. So it is cut into two fractions, one is
1915-1945 and the other is 1946-2012 to make a more precise fitting. In our opinion, the main
reasons why reference tend to grow slowly or even decline during 1915-1945 is the two world
wars(World War I: 1914-1918 and World War II: 1938-1945). During this period, many scien-
tists suffered drift and miserable fates. Many achievements were not published although they
did the military a favor. After 1945, the information industry developed so rapidly that all the
kinds of science and technology stepped into the golden age. So the relevant prosperity showed
in the PNAS dataset in the same period. Obviously, the slope change in 1945 illustrates the de-
velopment of science after wars. Since the DBLP dataset doesn’t release the information of ref-
erence, we won’t analyze the trend of its annual average reference length here. However, the
relevant data, the papers from the issues from 1893 to 2003 of Physical Review journals [12],
also shows the linearly increasing trend.

The third fitness is the power-law in-degree distributions(Equation (11)). The empirical
data (Table 1) includes: the citation networks of papers from e-print arXiv in the period from
1993-01 to 2003-04 in high energy physics phenomenology (Cit-HepPh) and that in high ener-
gy physics theory (Cit-HepTh) [13, 14], and the citation networks from DBLP dataset (papers
before 2010-05-15, papers before 2013-09-29) collected by Tang et al [15].

The statistical measures in Table 2 show that the citation networks from DBLP dataset
roughly have the power-law in-degree distributions with power exponent 2, which are similar
to the network generated by the CC model(Fig. 3(b)). The in-degree distributions of the nodes

Fig 4. The evolutionary trends of the annual paper number and the annual average reference length of some datasets. The fitting curves for the data
between 1946–2012 in Panels(a, b) are f(t) = 5.397 × 10−34e4.23 × 10−2 t (R2: 0.974, RMSE: 224.2) and f(t) = 0.5085t − 982.6 (R2: 0.958, RMSE: 2.112)
respectively. The fitting curve in Panel(c) is f(t) = 6.038 × 10−88e0.106t (R2: 0.9828, RMSE: 7249).

doi:10.1371/journal.pone.0120687.g004

Table 1. Empirical citation networks.

Network Nodes Links

Cit-HepTh 27,770 352,807

Cit-HepPh 34,546 421,578

DBLP 2010-05-15 629,814 632,752

DBLP 2013-09-29 2,084,055 2,244,018

doi:10.1371/journal.pone.0120687.t001
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with in-degree larger than 9 more accurately fit the power-law distributions with power expo-
nent 2 and the value calculated by the method of Clauset et al [37] (Fig. 5(b, c, e, f)). However,
the foreparts of the in-degree distributions of Cit-HepPh and Cit-HepTh do not follow the
power-law distributions very well (Fig. 5(a)). The reason for this unfitting phenomenon may
be due to the fact that the time scales of these two networks are not large enough (10 years) to
meet the CC model demands (the large scale time assumption for the approximations in Equa-
tion (11)).

As Fig. 5 shows, the curves given by Clauset et al’s method fit the tails of the in-degree distri-
butions better. Hence, we should give the CC model the function for adjusting the power expo-
nent of the in-degree distribution of the generated network. In the next section, we generalize
the CC model to model the aging phenomena of the citation behavior. This generalized model
has such function.

Table 2. The goodness for fitting the in-degree distributions of some citation networks by the power-
law function f(k) = ak−2.

Network a SSE R2 Adjusted R2 RMSE

Cit-HepTh 0.197 0.02382 0.6354 0.6354 0.003142

Cit-HepPh 0.183 0.02313 0.6031 0.6031 0.005231

DBLP 2010-05-15 0.485 0.007669 0.9707 0.9707 0.003067

DBLP 2013-09-29 0.378 0.01659 0.9028 0.9028 0.002646

doi:10.1371/journal.pone.0120687.t002

Fig 5. In-degree distributions of the citation networks in Table 1. Panels(b, c, e, f) show the fitting effects of the in-degree distributions of the nodes with
in-degree larger than 9 by the power-law functions f(k) = ak−2 and fðkÞ ¼ k�gX1

n¼0
ðnþ xminÞ�g.

doi:10.1371/journal.pone.0120687.g005
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The fourth fitness is the mixture Poisson distribution for out-degree (Equation (10)). Here
we use a simple mixture Poisson distribution to fit the data, which is given by Equation (13),

f ðkÞ ¼ cak
e�a

k!
þ ð1� cÞbk e

�b

k!
; ð13Þ

where a, b 2 R, c 2 [0, 1], and k 2 Z
+. The goodness for fit in Table 3 shows that the out-de-

grees of the citation networks from DBLP dataset approximately follow Equation (13). But the
fitting effects for Cit-HepTh and Cit-HepPh are not good. Except for the relatively short time
scale, the reason for these unfitting phenomena may be due to the occurrence independence of
the Poisson distribution: the events happened in the past have no effect on the probabilities of
future occurrences. This kind of independence isn’t fully satisfied in citation networks: papers
are more or less effected by the ideas, theories, and methods in the previous papers. The gener-
alized Poisson distribution happens to have the ability to describe the situations where the
probability of occurrence of an event is affected by previous occurrences [36].

We next use the mixture generalized Poisson distribution defined by Equation (14) to fit the
out-degree distributions,

f ðkÞ ¼ caðaþ dkÞk�1 e�a�dk

k!
þ ð1� cÞbðbþ ekÞk�1 e�b�ek

k!
; ð14Þ

where a, b, d, e 2 R, c 2 [0, 1], and k 2 Z
+. As Fig. 6(a-d) show, the node out-degrees, on the

whole, follow the mixture distribution. Meanwhile, the statistical measures in Fig. 6 and in
Table 3 show that the fitting effects of Equation (14) are better than Equation (13).

Modeling the aging phenomena
It has been empirically observed that the probability of a paper to be cited is a decrease function
of the paper’s age [30–32]. Some growing network models include the aging of nodes as a fea-
ture [33]. In those models, the probability that a paper receives a citation is expressed by a func-
tion Γ(k−, t), which is dependent on the number of citations k− already received and on the
publication time t. In some models, the two effects are considered to be independent: Γ(k−, t) =
f(k−)g(t) with some functional forms of f(k−) and g(t) [34, 35].

Under the enlightenment of the fitness expression in the PSO model, we give an influence
region with aging effect: the influence region length of node i with coordinates (θi, ti) is given
by

jDij ¼
bðyiÞ

½elðatiþð1�aÞtcÞ� ; ð15Þ

where l> 0, tc is the current time, and a 2 [0, 1) is a parameter tuning the velocity of aging.
When a> 0, the length of the node influence region is a decreasing function of tc, which mod-
els the phenomena that the probability of papers to be cited decreases with the papers’ age.

Table 3. The goodness for fitting the out-degree distributions of some citation networks by the mixture Poisson distribution (Equation (13)).a, b, c
are parameters of Equation (13).

Network a b c SSE R2 Adjusted R2 RMSE

Cit-HepTh 9.98 1.758 0.5672 0.0144 0.633 0.6306 0.006963

Cit-HepPh 10.48 2.446 0.5734 0.01099 0.709 0.7071 0.006083

DBLP 2010-05-15 0.2404 4.087 0.543 0.003308 0.9843 0.9842 0.00414

DBLP 2013-09-29 0.3283 5.171 0.4777 0.006728 0.9529 0.9525 0.005011

doi:10.1371/journal.pone.0120687.t003
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When the influence region is given by Equation (15), the expected in- and out-degree of the
node with coordinate (θ, t) is

k�ðy; tÞ ¼
Xt0
s¼tþ1

bðyÞ
½elðatþð1�aÞsÞ�RðsÞd � bðyÞm

2p

Z t0

t

elaðs�tÞds � bðyÞm
2pla

elaðt0�tÞ; ð16Þ

kþðy; tÞ ¼
Xt�1

s¼1

bðyÞ
½elðð1�aÞtþasÞ�RðsÞd � bðyÞm

2p

Z t�1

0

elð1�aÞðs�tÞds

� bðyÞm
2p

e�lð1�aÞ � e�lð1�aÞt

lð1� aÞ :

ð17Þ

The approximations hold for lager t and t0.
When t is lager enough, k+(θ, t) tends to a function which is free of t. It has been empirically

observed that the annual average number of paper references is a monotone increasing se-
quence for some journals, e.g., PNAS(Fig. 4(a)). Meanwhile, it is reasonable to think that the

Fig 6. Out-degree distributions of the citation networks in Table 1 and the fitting curves of the distributions. The fitting model is the mixture
generalized Poisson distribution (Equation (14)).

doi:10.1371/journal.pone.0120687.g006
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number of paper references can’t grow to infinity, and should have an upper bound. Hence, the
expected out-degree given by Equation (17) is reasonable, because that a bounded monotonic
sequence has a limit.

With the similar calculations as those in Equations (10, 11), we find that the network gener-
ated by the model whose influence region is given by Equation (15) has a power-law distribu-
tion with exponent 1þ 1

a
for in-degree. The out-degree distribution is close to a mixture

Poisson distribution.

Conclusions
We propose a model for citation networks using network cosmology, whose connection mech-
anism gives a geometric expression of the main features of the citing behaviors: relativity, latest,
inheritance, popularity, and aging. The model generalizes the homogenous assumption of
some existing models in network cosmology: the nodes born at the same time can have differ-
ent popularity. This property gives an expression of the phenomenon that hot papers can re-
ceive more citations than other concurrent published papers. We show that the node growth
trend, expected node out-degree, and degree distributions of the network generated by the
model fit those of some citation networks well.
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